4.3 Logarithmic Functions Name___________________________________ 9) The graph of y = logb x passes through Provide the missing information. 1) Given y = log x, the base is understood to be . Given y = ln x, the base is understood to be the point (1, 0) and the line a (horizontal/vertical) asymptote. . 10) y = logb x is called the logarithmic form 2) Given positive real numbers x and b such that b 1, y = logb x is the of a logarithmic equation and b y = x is called the form. function base b and is equivalent to b y = x. 11) The graph of f (x) = log4 (x + 6) - 8 is the graph of y = log4 x shifted 6 units 3) Given y = logb x, the value y is called the , b is called the x is called the (left/right/upward/downward) and shifted 8 units (left/right/upward/downward). , and . 4) The inverse of an exponential function base b is the function base b. Write the equation in exponential form. 12) log 243 = b 3 5) The logarithmic function base 10 is called the logarithmic 13) log function, and the logarithmic function base e is called the 1 = -3 4 64 Write the equation in logarithmic form. 14) 83 = b logarithmic function. 6) logb b = because b = b. 15) 103 = 1,000 7) f (x) = logb x and g(x) = bx are inverse 16) 4-3 = functions. Therefore, logb bx = and b is log x b = 1 64 . Simplify the expression. 17) log 81 8) Given y = logb x, if b > 1, then the graph 3 of the function is a(n) (increasing/decreasing) logarithmic function. If 0 < b < 1, then the graph is (increasing/decreasing). 18) log 1 9 1 81 19) ln 20) log 1 32) y = -2 + log (x) 4 e6 1/2 Solve the problem. 33) Use transformations of the graph of y = log x to graph the function. 32 5 y = log (x - 4) - 3 21) log 0.0001 5 Simplify the expression without using a calculator. 22) log 10,000,000,000 23) log Write the domain in interval notation. 34) f (x) = log(4 - x) 1 1/2 16 35) f (x) = ln(x2 - 6x + 5) Approximate the value of the logarithm to four decimal places. 24) log 789 Simplify the expression. 25) 5 log (x + 4) 6 6 26) 5 log (6x + 7y) 5 2 27) ln ex + 1 28) log 1 e Graph the function. 29) y = log x 8 30) y = ln x a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. 31) y = log (x + 1) 4 2 Answer Key Testname: SECTION 4.3 EXERCISES 29) 1) 10; e 2) logarithmic 3) logarithm, base, argument 4) logarithmic 5) common; natural 6) 1; 1 7) x ; x 8) increasing; decreasing 9) x = 0; vertical 10) exponential 11) left; downward 30) b 12) 3 = 243 1 13) 4-3 = 64 14) log b = 3 8 15) log 1,000 = 3 1 = -3 16) log 4 64 17) 4 18) -2 19) -6 20) -5 21) -4 22) 10 23) 4 24) 2.8971 31) 25) x5 + 4 26) 6x + 7y 27) x2 + 1 28) 0 b. domain: (-1, ), range (- , ) c. vertical asymptote: x = -1 3 Answer Key Testname: SECTION 4.3 EXERCISES 32) a. b. domain: (0, ), range (- , ) c. vertical asymptote: x = 0 33) 34) (- , 4) 35) (- , 1) (5, ) 4
© Copyright 2025 Paperzz