ÇANKAYA UNIVERSITY Department of Mathematics and Computer Science MATH 155 Calculus for Engineering I Summer 2008 Problems and Solutions for Recitation 5 July 25, 2008 9:40 –––––––––––––––––––––––––––––––––––––––––– (p.474) 1. D I F 31. Let f (x) = x3 − 3x2 , x ≥ 2. Find the value of df −1 /dx at the point x = −1 = f (3). Solution: df −1 1 1 df = 3x2 − 6x =⇒ |x=f (3) = df |x=3 = dx dx 9 dx –––––––––––––––––––––––––––––––––––––––––– 32. Let f (x) = x2 − 4x, x > 2. Find the value of df −1 /dx at the point x = 0 = f (5). Solution: 1 1 df df −1 = 2x − 4 =⇒ |x=f (5) = df |x=5 = dx dx 6 dx –––––––––––––––––––––––––––––––––––––––––– 33. Suppose that the differentiable function y = f (x) has an inverse and that the graph of f passes through the point (2, 4) and has a slope of 1/3 there. Find the value of df −1 /dx at the point x = 4. Solution: df −1 df −1 1 1 |x=4 = |x=f (2) = df |x=2 = 1 = 3. dx dx 3 dx –––––––––––––––––––––––––––––––––––––––––– 34. Suppose that the differentiable function y = g (x) has an inverse and that the graph of g passes through the origin with slope 2. Find the slope of the graph of g −1 at the origin. Solution: dg −1 dg −1 1 1 |x=0 = |x=f (0) = dg |x=0 = . dx dx 2 dx –––––––––––––––––––––––––––––––––––––––––– 2. U P L (p.484) 1. Express the following logarithms in terms of ln 2 and ln 3. a. ln 0.75 b. ln (4/9) c. ln (1/2) √ √ √ 3 d. ln 9 e. ln 3 2 f. ln 13.5 Solution: 3 (a) ln 0.75 = ln = ln 3 − ln 4 = ln 3 − ln 22 = ln 3 − 2 ln 2 4 (b) ln (4/9) = ln 4 − ln 9 = ln 22 − ln 32 = 2 ln 2 − 2 ln 3 (c) ln (1/2) = ln 1 − ln 2 = − ln 2 √ 1 2 1 3 (d) ln 9 = ln 9 = ln 32 = ln 3 3 3 3 √ 1 1/2 (e) ln 3 2 = ln 3 + ln 2 = ln 3 + ln 2 2 √ 1 1 1 27 1 3 (f) ln 13.5 = ln 13.5 = ln = ln 3 − ln 2 = (3 ln 3 − ln 2). 2 2 2 2 2 –––––––––––––––––––––––––––––––––––––––––– 2. Express the following logarithms in terms of ln 5 and ln 7. √ a. ln (1/125) b. ln 9.8 c. ln 7 7 d. ln 1225 e. ln 0.056 f. (ln 35 + ln (1/7)) / ln 25 Solution: (a) ln (1/125) = ln 1 − 3 ln 5 = −3 ln 5 49 (b) ln 9.8 = ln = ln 72 − ln 5 = 2 ln 7 − ln 5 5 √ 3 (c) ln 7 7 = ln 73/2 = ln 7 2 (d) ln 1225 = ln 352 = 2 ln 35 = 2 ln 5 + 2 ln 7 7 (e) ln 0.056 = ln = ln 7 − ln 53 = ln 7 − 3 ln 5 125 ln 5 + ln 7 − ln 7 1 (f) (ln 35 + ln (1/7)) / ln 25 = = . 2 ln 5 2 –––––––––––––––––––––––––––––––––––––––––– Use properties of logarithms to simplify the expressions in Exercises 3 and 4. 2 sin θ 1 3. a. ln sin θ − ln b. ln 3x − 9x + ln 5 3x 1 4 c. ln 4t − ln 2 2 Solution: sin θ sin θ = ln sin θ = ln 5 (a) ln sin θ − ln 5 5 2 3x2 − 9x 1 = ln = ln (x − 3) (b) ln 3x − 9x + ln 3x 3x 2 √ 2t 1 4 2 (c) ln 4t − ln 2 = ln 4t4 − ln 2 = ln 2t − ln 2 = ln = ln t2 2 2 –––––––––––––––––––––––––––––––––––––––––– 4. a. ln sec θ + ln cos θ b. ln (8x + 4) − 2 ln 2 √ 3 2 c. 3 ln t − 1 − ln (t + 1) Solution: (a) ln sec θ + ln cos θ = ln [(sec θ) (cos θ)] = ln 1 = 0 8x + 4 (b) ln (8x + 4) − 2 ln 2 = ln (8x + 4) − ln 4 = ln = ln (2x + 1) 4 √ 2 1/3 1 3 2 ln t2 − 1 − ln (t + 1) = (c) 3 ln t − 1 − ln (t + 1) = 3 ln t − 1 − ln (t + 1) = 3 3 (t + 1) (t − 1) = ln (t − 1). ln (t + 1) –––––––––––––––––––––––––––––––––––––––––– 3. D L In Exercises 5-36, find the derivative of y with respect to x, t, or θ, as appropriate. 5. y = ln 3x Solution: 1 1 y = ln 3x =⇒ y = (3) = . 3x x ––––––––––––––––––––––––––––––––––––––––– 6. y = ln kx, k constant Solution: 1 1 y = ln kx =⇒ y = (k) = . kx x ––––––––––––––––––––––––––––––––––––––– 7. y = ln t2 Solution: 2 1 2 y = ln t =⇒ y = 2 (2t) = . t t ––––––––––––––––––––––––––––––––––––––– 8. y = ln t3/2 Solution: 3/2 dy 1 3 1/2 3 =⇒ = 3/2 t = . y = ln t dt t 2 2t –––––––––––––––––––––––––––––––––––––––– 3 9. y = ln x Solution: 1 1 dy 3 −1 −2 =− . = −3x y = ln = ln 3x =⇒ −1 x dx 3x x ––––––––––––––––––––––––––––––––––––––––– 3 10. y = ln x Solution: 1 3 y = ln = ln 3 − ln x =⇒ y = − x x ––––––––––––––––––––––––––––––––––––––––– 24. y = ln (ln (ln x)) Solution: 1 1 d 1 d 1 (ln (ln x)) = (ln x) = y = ln (ln (ln x)) =⇒ y = ln (ln x) dx ln (ln x) ln x dx x ln x ln (ln x) –––––––––––––––––––––––––––––––––––––––––– 25. y = θ (sin (ln θ) + cos (ln θ)) Solution: dy 1 1 y = θ (sin (ln θ) + cos (ln θ)) =⇒ = [sin (ln θ) + cos (ln θ)] + θ cos (ln θ) · − sin (ln θ) · dθ θ θ = sin (ln θ) + cos (ln θ) + cos (ln θ) − sin (ln θ) = 2 cos (ln θ) –––––––––––––––––––––––––––––––––––––––––– 26. y = ln (sec θ + tan θ) Answer: y = sec θ –––––––––––––––––––––––––––––––––––––––––– 1 27. y = ln √ x x+1 Answer: 1 3x + 2 . y = − ln x − ln (x + 1) =⇒ y = − 2 2x (x + 1) –––––––––––––––––––––––––––––––––––––––––– 1 1+x ln 2 1−x Answer: 1 . y = 1 − x2 –––––––––––––––––––––––––––––––––––––––––– 28. y = 1 + ln t 1 − ln t Answer: 2 y = . t (1 − ln t)2 –––––––––––––––––––––––––––––––––––––––––– √ 30. y = ln t Solution: √ 1/2 1 1/2 −1/2 d 1/2 1 1/2 −1/2 1 dy d 1/2 y = ln t = ln t1/2 = = ln t ln t ln t t =⇒ · · 1/2 · dt 2 dt 2 t dt 1 y = √ . 4t ln t –––––––––––––––––––––––––––––––––––––––––– 29. y = 31. y = ln (sec (ln θ)) Solution: 1 d tan (ln θ) dy = · (sec (ln θ)) = . y = ln (sec (ln θ)) =⇒ dθ sec (ln θ) dθ θ –––––––––––––––––––––––––––––––––––––––––– √ sin θ cos θ 32. y = ln 1 + 2 ln θ Solution: √ sin θ cos θ 1 dy 1 cos θ sin θ y = y = ln = (ln sin θ + ln cos θ) − ln (1 + 2 ln θ) =⇒ = − − 1 + 2 ln θ 2 dθ 2 sin θ cos θ 2 θ 1 + 2 ln θ 4 1 =⇒ y = cot θ − tan θ − . 2 θ (1 + 2 ln θ) –––––––––––––––––––––––––––––––––––––––––– 5 (x2 + 1) 33. y = ln √ 1−x Solution: 5 2 1 1 1 5 · 2x (x2 + 1) − (−1) = y = ln √ = 5 ln x + 1 − ln (1 − x) =⇒ y = 2 2 x +1 2 1−x 1−x 10x 1 + . 2 x + 1 2 (1 − x) –––––––––––––––––––––––––––––––––––––––––– (x + 1)5 34. y = ln (x + 2)20 Solution: 20 5 1 1 (x + 1)5 − . = [5 ln (x + 1) − 20 ln (x + 2)] =⇒ y = y = ln 2 2 x+1 x+2 (x + 2)20 –––––––––––––––––––––––––––––––––––––––––– 35. y = x2 √ 3x √ ln t dt x2 /2 Solution: x2 √ x2 d x2 |x| dy √ 2 d 2 y= · = ln x · x − ln = 2x ln |x| − x ln √ ln t dt =⇒ dx dx 2 dx 2 2 x2 /2 –––––––––––––––––––––––––––––––––––––––––– 36. y = √ x ln t dt Solution: √ 3x √ d √ √ d √ √ 1 −2/3 dy 3 3 3 y = √ ln t dt =⇒ = ln x · x x − ln x · x = ln x − dx dx dx 3 x √ 1 −1/2 x ln x 2 √ √ ln 3 x ln x y = √ − √ . 3 2 x 3 x2 –––––––––––––––––––––––––––––––––––––––––– 4. I Evaluate −2 the integrals in Exercises 37-54. dx 37. −3 x Solution: −2 2 dx = [ln |x|]−2 −3 = ln . 3 −3 x –––––––––––––––––––––––––––––––––––––––––– 0 3 dx −1 3x − 2 Solution: 0 3 dx 2 = [ln |3x − 2|]0−1 = ln . 5 −1 3x − 2 –––––––––––––––––––––––––––––––––––––––––– 38. 2y dy y 2 − 25 Solution: 2y dy = ln y 2 − 25 + C. 2 y − 25 –––––––––––––––––––––––––––––––––––––––––– 8y dy 40. 4y 2 − 5 Solution: 2 8y dy 4y − 5 + C. = ln 4y 2 − 5 –––––––––––––––––––––––––––––––––––––––––– π sin t dt 41. 0 2 − cos t Solution: π sin t dt = ln [2 − cos t]π0 = ln 3. 0 2 − cos t –––––––––––––––––––––––––––––––––––––––––– dx √ 53. 2 x + 2x Solution: √ dx dx 1 √ √ √ ; let u = 1 + x =⇒ du = √ dx; = 2 x (1 + x) 2 x 2 x + 2x √ √ dx du √ √ = = ln |u| + C = ln 1 + x + C = ln 1 + x + C u 2 x (1 + x) –––––––––––––––––––––––––––––––––––––––––– 39. 5. L D In Exercises 55-68, use logarithmic differentiation to find the derivative of y with respect to the given independent variable. 55. y = x (x + 1) Solution: 1 y = x (x + 1) = (x (x + 1))1/2 =⇒ ln y = ln (x (x + 1)) =⇒ 2 ln y = ln x + ln (x + 1) 2 1 1 2y 1 1 1 2x + 1 x (x + 1) =⇒ = + =⇒ y = + = y x x+1 2 x x+1 2 x (x + 1) –––––––––––––––––––––––––––––––––––––––––– 56. y = (x2 + 1) (x − 1)2 Solution: 1 2 y = (x2 + 1) (x − 1)2 =⇒ ln y = ln x + 1 + 2 ln (x − 1) 2 1 2 1 2x x y 2 2 = + + =⇒ y = (x + 1) (x − 1) =⇒ y 2 x2 + 1 x − 1 x2 + 1 x − 1 –––––––––––––––––––––––––––––––––––––––––– t 57. y = t+1 Solution: 1/2 t 1 t y= =⇒ ln y = [ln t − ln (t + 1)] = t+1 t+1 2 1 1 1 1 1 dy t 1 dy = − = =⇒ =⇒ y dt 2 t t+1 dt 2 t + 1 t (t + 1) –––––––––––––––––––––––––––––––––––––––––– 1 58. y = t (t + 1) Answer: 1 y= t (t + 1) dy 2t + 1 =⇒ =− . dt 2 (t2 + 1)3/2 –––––––––––––––––––––––––––––––––––––––––– √ 59. y = θ + 3 (sin θ) Answer: √ y = θ + 3 (sin θ) 1 dy √ =⇒ = θ + 3 (sin θ) + cot θ . dθ 2 (θ + 3) –––––––––––––––––––––––––––––––––––––––––– √ 60. y = (tan θ) 2θ + 1 Answer: √ y = (tan θ) 2θ + 1 tan θ dy 2 √ . = sec θ 2θ + 1 + √ =⇒ dθ 2θ + 1 –––––––––––––––––––––––––––––––––––––––––– 61. y = t (t + 1) (t + 2) Answer: y = t (t + 1) (t + 2) dy =⇒ = 3t2 + 6t + 2. dt –––––––––––––––––––––––––––––––––––––––––– 1 t (t + 1) (t + 2) Solution: 1 1 dy 1 1 1 y= =⇒ ln y = ln 1 − ln t − ln (t + 1) − ln (t + 2) =⇒ =− − − t (t + 1) (t + 2) y dt t t+1 t+2 1 1 1 1 3t2 + 6t + 2 dy = − − − =− . =⇒ dt t (t + 1) (t + 2) t t+1 t+2 (t3 + 3t2 + 2t)2 –––––––––––––––––––––––––––––––––––––––––– 62. y = θ+5 63. y = θ cos θ Answer: θ+5 y= θ cos θ θ+5 1 1 dy = − + tan θ . =⇒ dθ θ cos θ θ+5 θ –––––––––––––––––––––––––––––––––––––––––– θ sin θ 64. y = √ sec θ Answer: θ sin θ y=√ sec θ dy θ sin θ 1 1 =⇒ =√ + cot θ − tan θ . dθ 2 sec θ θ –––––––––––––––––––––––––––––––––––––––––– √ x x2 + 1 65. y = (x + 1)2/3 Answer: √ x x2 + 1 y= (x + 1)2/3 √ x x2 + 1 1 x 2 dy = + − . =⇒ dx (x + 1)2/3 x x2 + 1 3 (x + 1) –––––––––––––––––––––––––––––––––––––––––– (x + 1)10 66. y = (2x + 1)5 Answer: (x + 1)10 y= (2x + 1)5 5 dy (x + 1)10 5 =⇒ = − . dx (2x + 1)5 x + 1 2x + 1 –––––––––––––––––––––––––––––––––––––––––– 3 x (x − 2) 67. y = x2 + 1 Answer: 3 x (x − 2) y= x2 +1 1 3 x (x − 2) 1 1 2x dy = + − . =⇒ dx 3 x2 + 1 x x − 2 x2 + 1 –––––––––––––––––––––––––––––––––––––––––– x (x + 1) (x − 2) 68. y = 3 2 (x + 1) (2x + 3) Solution: 1 x (x + 1) (x − 2) =⇒ ln y = ln x + ln (x + 1) + ln (x − 2) − ln x2 + 1 − ln (2x + 3) y= 3 2 (x + 1) (2x + 3) 3 1 3 x (x + 1) (x − 2) 1 1 1 2x 2 =⇒ y = + + − − . 3 (x2 + 1) (2x + 3) x x + 1 x − 2 x2 + 1 2x + 3 –––––––––––––––––––––––––––––––––––––––––– (p.493) 6. D In Exercises 17-36, find the derivative of y with respect to x, t, θ as appropriate. 17. y = e−5x Solution: y = e−5x =⇒ y = −5e−5x . –––––––––––––––––––––––––––––––––––––––––– 18. y = e2x/3 Solution: 2 y = e2x/3 =⇒ y = e2x/3 . 3 –––––––––––––––––––––––––––––––––––––––––– 36. y = e2x √ e4 ln t dt x Solution: e2x 2x d 2x 4√x d 4√x 2x √ 4√x · = (2x) e − 4 x e · e e − ln e y = √ ln t dt =⇒ y = ln e · dx dx e4 x d √ 4 x dx √ √ 4√x 2 2x √ =⇒ y = 4xe2x − 8e4 x . =⇒ y = 4xe − 4 xe x –––––––––––––––––––––––––––––––––––––––––– 7. E L (p.549) Evaluate the limits in Exercises 85-96. 10x − 1 85. lim x→0 x Solution: 10x − 1 (ln 10) 10x 0 = lim = ln 10. The limit leads to the indeterminate form : lim x→0 0 x→0 x 1 –––––––––––––––––––––––––––––––––––––––––– 3θ − 1 θ→0 θ Solution: 86. lim 0 3θ − 1 (ln 3) 3θ The limit leads to the indeterminate form : lim = lim = ln 3. θ→0 0 θ→0 θ 1 –––––––––––––––––––––––––––––––––––––––––– 2sin x − 1 x→0 ex − 1 Solution: 87. lim 0 2sin x − 1 2sin x (ln 2) (cos x) The limit leads to the indeterminate form : lim x = ln 2. = lim x→0 0 x→0 e − 1 ex –––––––––––––––––––––––––––––––––––––––––– 2− sin x − 1 x→0 ex − 1 Solution: 88. lim The limit leads to the indeterminate form 0 2− sin x − 1 2− sin x (ln 2) (− cos x) : lim = lim = x→0 0 x→0 ex − 1 ex − ln 2. –––––––––––––––––––––––––––––––––––––––––– 5 − 5 cos x x→0 ex − x − 1 Solution: 0 5 − 5 cos x 5 sin x 5 cos x The limit leads to the indeterminate form : lim x = lim x = lim = 5. 0 x→0 e − x − 1 x→0 e − 1 x→0 ex ––––––––––––––––––––––––––––––––––––––––– 4 − 4ex 90. lim x→0 xex Solution: 0 4 − 4ex −4ex = lim x = −4. The limit leads to the indeterminate form : lim x→0 e + xex 0 x→0 xex ––––––––––––––––––––––––––––––––––––––––– t − ln (1 + 2t) 91. lim+ t→0 t2 Solution: 2 1 − 1+2t 0 t − ln (1 + 2t) The limit leads to the indeterminate form : lim+ = −∞. = lim+ t→0 0 t→0 t2 2t ––––––––––––––––––––––––––––––––––––––––– sin2 (πx) 92. lim x−4 x→4 e +3−x Solution: sin2 (πx) 2π sin (πx) cos (πx) 0 = lim The limit leads to the indeterminate form : lim x−4 x→4 x→4 0 e +3−x ex−4 − 1 2 π sin (2πx) 2π cos (2πx) = lim x−4 = lim = 2π 2 . x−4 x→4 e x→4 −1 e ––––––––––––––––––––––––––––––––––––––––– t 1 e − 93. lim+ t→0 t t Solution: t t t e e −1 e 0 1 The limit leads to the indeterminate form : lim+ − = lim+ = lim+ = t→0 t→0 0 t→0 t t t 1 1. ––––––––––––––––––––––––––––––––––––––––– 94. lim+ e−1/y ln y 89. lim y→0 Solution: ∞ ln y y −1 The limit leads to the indeterminate form : lim+ e−1/y ln y = lim+ y−1 = lim+ = −1 y→0 e y→0 −ey ∞ y→0 (y −2 ) y − lim+ −1 = 0. y→0 −ey ––––––––––––––––––––––––––––––––––––––– (p.550) √ 1/x 3. lim+ cos x x→0 Solution: √ 1/x 1 √ =⇒ ln y = ln cos x and y = cos x x √ √ √ √ 1 −1/2 x sec2 x −1 1 ln (cos x) − sin ( x) tan x 1 2 √ = lim+ = lim+ √ lim+ √ = − lim4 =− 1 −1/2 x→0 x→0 2 x cos x x 2 x→0 2 x→0 2 x x 2 √ 1/x 1 =⇒ lim+ cos x = e−1/2 = √ . x→0 e ––––––––––––––––––––––––––––––––––––––– 4. lim (x + ex )2/x x→∞ Solution: 2 ln (x + ex ) 2 (1 + ex ) 2ex =⇒ lim ln y = lim = lim = y = (x + ex )2/x =⇒ ln y = x→∞ x→∞ x + ex x→∞ 1 + ex x x 2e lim x = 2 x→∞ e =⇒ lim (x + ex )2/x = lim ey = e2 x→∞ x→∞ ––––––––––––––––––––––––––––––––––––––– x 11. For what x > 0 does x(x ) = (xx )x ? Give reasons for your answer. Solution: x ln x(x ) = xx ln x and ln (xx )x = x ln xx = x2 ln x; then, xx ln x = x2 ln x =⇒ xx − x2 ln x = 0 =⇒ xx = x2 or ln x = 0. x ln x = 0 =⇒ x = 1; xx = x2 =⇒ x ln x = 2 ln x =⇒ x = 2. Therefore, x(x ) = (xx )x when x = 2 or x = 1. ––––––––––––––––––––––––––––––––––––––– x t g(x) 13. Find f (2) if f (x) = e and g (x) = dt. 4 2 1+t Solution: 2 2 x g(x) g(x) 0 = =⇒ f (x) = e g (x), where g (x) = =⇒ f (2) = e f (x) = e 4 1+x 1 + 16 17 ––––––––––––––––––––––––––––––––––––––– (p.547) −1 24. Find the derivative of y = 1 + x2 etan x Solution: tan−1 x e −1 −1 −1 −1 y = 1 + x2 etan x =⇒ y = 2xetan x + 1 + x2 = 2xetan x + etan x . 2 1+x ––––––––––––––––––––––––––––––––––––––– √ 29. Find the derivative of y = (sin θ) θ . Solution: √ √ ln y = y = (sin θ) θ =⇒ θ ln (sin θ) √ 1 cos θ 1 dy = θ + θ−1/2 ln (sin θ) =⇒ y dθ sin 2 θ √ √ dy ln (sin θ) θ √ =⇒ = (sin θ) θ cot θ + dθ 2 θ ––––––––––––––––––––––––––––––––––––––– 30. Find the derivative of y = (ln x)1/ ln x . Solution: 1 1/ ln x =⇒ ln y = y = (ln x) ln (ln x) lnx 1 1 1 −1 1 y = + ln (ln x) =⇒ 2 y ln x ln x x x (ln x) 1/ ln x 1 − ln (ln x) =⇒ y = (ln x) . x (ln x)2 –––––––––––––––––––––––––––––––––––––––
© Copyright 2026 Paperzz