Zeitschrift für Naturforschung / B / 53 (1998)

Notizen
927
Preparation, Structures and Optical
Properties of [H3N(CH2)6NH3]BiX5
(X=I, Cl) and [H3N(CH2)6NH3]SbX5
(X=I, Br)
G. A. M ousdis3, G. C. Papavassiliou3 *,
A. Terzisb, C. P. R ap to p o u lo u b
3 T heoretical and Physical C hem istry Institute,
N ational H ellenic R esearch Foundation, 48,
Vassileos C onstantino u Ave., A thens 116/35,
G reece
b Institute of M aterials Science, N CSR,
D em okritos, A th en s 153/10, G reece
Z. N aturforsch. 53b, 927-931 (1998);
received M arch 2, 1998
A lkylam m onium H alogenobism uthates and A ntim onates, Excitonic Spectra, D ielectric P roperties
T he p rep aratio n , crystal structures and optical
absorption spectra of [H3N(CH:>)6N H 3]BiX 5 (X=
I, C l) and [H 3N (C H 2)6N H 3]SbX 5 (X =I, Br) are
rep o rted . The anions of the com pounds consist of
M X 6-octahedra (M =Bi, Sb) sharing cis vertices in
one-dim ensional zig-zag chains. Because of their
one-dim ensional character, a blue shift of the ex­
citonic absorption bands, in com parison to those
of higher dim ensionality systems (M X 3), is o b ­
served.
o th er via bridging halogen atom s, form ing chains
(ID ) or layers (2D ) sep arated by the am m onium
cations. Thus, these com pounds are natural
quantum -dots, -wires or -wells, respectively. By
decreasing the dim ensionality, the low energy o p ti­
cal absorption peaks, due to the low est free-excitonic states, are shifted to higher energies (i.e., to
sh o rter w avelengths). The intensity of excitonic
optical absorption peaks of LD system s is higher
than th a t of the corresponding three-dim ensional
systems (3D ). In o th er words, the excitonic b in d ­
ing energy and oscillator strength of LD systems
are increased, in com parison to those of 3D sys­
tem s [10].
Recently, the optical absorption bands arising
from the excitonic states of com pounds A 3M 2X 9
and A 3M X 6 have been investigated [2 -4 ], H ow ­
ever, little is know n ab out the A 2M X 5 com pounds,
which usually are ID system s [5,6]. In this paper
we rep o rt the p re p aratio n and characterization of
the (ID ) com pounds [H 3N (C H 2)6N H 3]M X , (M =
Bi, X =I, Cl; M=Sb, X =I, Br).
Experimental
Starting m aterials an d apparatu s
Introduction
C om pounds of the type (A )xMyX z (w here A is
a m in e-H + or l/2 d iam in e-2 H +; M= Bi, Sb, Pb, Sn,
etc; X =I, Br, Cl) have been know n for a long tim e
[1 -1 0 ]. Also, alkylbism uth diiodides have been
p re p a re d recently [11]. M ost of these com pounds
are low -dim ensional (L D ) sem iconducting m ateri­
als, in which the inorganic com ponent is the active
p a rt of the system (sem iconductor), while the o r­
ganic com ponent plays the role of the b arrier (for
a review see [10]). Because of their low dim ension­
ality these m aterials are candidates for the p re p a ­
ratio n of electronic and optoelectronic devices
[10].
The alkylam m onium halogenantim onates and
bism uthates crystallize in a n um ber of different
stoichiom etries of which the m ost com m on are
A M X 4, A 2M X 5, A 3M 2X 9, and A 3M X 6. They con­
tain an anionic sublattice built of distorted M X 63o ctah ed ra, isolated (0D ) or connected with each
* R ep rin t request to Prof. G. C. Papavassiliou.
0932-0776/98/0800-0927 $06.00
The following starting m aterials w ere used w ith­
out fu rth er purification. ( B i0 ) 2C 0 3 (A ldrich
2 7 ,8 9 4 -7 ), Sb20 3 (F erak 30199), hydroiodic acid,
57% (M erck 341), hydrobrom ic acid 47% (M erck
304), hydrochloric acid 25% (M erck 312), 1,2 D ia ­
m ino hexane (Fluka 33000).
C rystal X -ray intensity data w ere collected on a
C rystal Logic [12] dual g o niom eter using graphitem onochrom ated M oK a radiation. U nit cell dim en­
sions w ere d eterm ined and refined by using the
angular setting of 24 autom atically centered reflec­
tions in the range 11°<20<24°. Intensity data w ere
recorded using a 6-26 scan: for
[H 3N (C H 2)6N H 3]B iI5, 6 range = 0 °-2 5 °, scan
speed 3°m in-1, scan range 2.4° plus a xa 2 se p ara­
tion,
data
collected/unique/used
3313; for
[H 3N (C H 2)6N H 3]BiCl5, 6 range = 0 ° - 22.75°, scan
speed 1.5°m in_1, scan range 2.1° plus a xa 2 sep ara­
tion, data collected/unique 4379/4237(/?int =
0.0257), d ata used 4092; for [H 3N (C H 2)6N H 3]SbI5,
6 range = 0 °-2 5 °, scan speed 2.2°m in_1, scan
range 2.4° plus a xa 2 separation, data collected/
unique/used 3255; for [H3N (C H 2)6N H 3]SbB r5, 6
range = 0°-22.50°, scan speed 1.5°m in-1, scan
© 1998 Verlag der Zeitschrift für Naturforschung. All rights reserved.
D
Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung
in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der
Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:
Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland
Lizenz.
This work has been digitalized and published in 2013 by Verlag Zeitschrift
für Naturforschung in cooperation with the Max Planck Society for the
Advancement of Science under a Creative Commons Attribution-NoDerivs
3.0 Germany License.
Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der
Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt,
um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher
Nutzungsformen zu ermöglichen.
On 01.01.2015 it is planned to change the License Conditions (the removal
of the Creative Commons License condition “no derivative works”). This is
to allow reuse in the area of future scientific usage.
928
Notizen
range 2.2° plus a xa 2 sep aratio n , d ata collected/
unique/used 2181*.
T hree stan d ard reflections m o n ito red every 97
reflections show ed less th an 3% v ariation and no
system atic decay. L orentz, polarization and ab ­
sorption correction w ere applied using C rystal
Logic Software. The stru ctu res w ere solved by P a t­
terson m ethods using SH ELX S-86 [13] and re ­
fined by full-m atrix least-squares technique with
SH ELX L-93 [14]. H ydrogen atom s w ere not lo­
cated. All non/hydrogen atom s w ere refined anisotropically.
O ptical absorption spectra w ere reco rd ed by a
Varian m odel 2390 spectrom eter.
P reparation o f co m p o u n d s
[H 3N (C H 2)6N H 3]I2, [H 3N (C H 2)6N H 3]B r2 and
[H 3N (C H 2)6N H 3]C12 w ere p rep ared by treating
H 2N (C H 2)6N H 2' with H I, H B r and HC1, respec­
tively, evapo ratio n of th e solvent on a w ater bath
and recrystallization from C H 3CN.
[H 3N (C H 2)6N H 3]B iI5 was p re p a re d as follows.
( B i0 ) 2C 0 3 (254 mg, 0.5 m m ol) was tre a te d with
aq. H I (8 ml, 57% ) and th en a solution of
[H 3N (C H 2)6N H 3]I2 (372 mg, 1 m m ol) in aq. H I
(4 ml, 57% ) was added at ca. 100 °C. The solution
was cooled slowly to ro o m tem p eratu re. The p re ­
cipitate was filtered and w ashed with aq. H I.
R ecrystallization from hot aq. H I and slow cooling
gave red-violet needles (yield 75% ); m.p.>300 °C.
* C rystallographic In form ation files have been d e p o s­
ited in the C am bridge C rystallographic D ata C enter.
D eposition num bers 101502, 101503, 101504, 101505
for [H 3N (C H 2)6N H 3]B iI5, [H 3N (C H 2)6N H 3]B iC l5,
[H 3N (C H 2)6N H 3]SbI5, and for
[H 3N (C H 2)6N H 3]SbB r5, respectively.
H 3N (C H 2)6N H 3]BiCl5 was prep ared by the sam e
m ethod
using
(B iO )2C Ö 3,
HC1
and
[H3N (C H 2)6N H 3]C12; white needles (yield 70% );
m.p.>300 °C.
[H 3N (C H 2)6N H 3]SbI5 was prep ared as follows.
Sb20 3 (145.7 mg, 0.5 m m ol) was tre ate d with aq.
H I (8 ml, 57% ) and then a solution of
[H 3N (C H 2)6N H 3]I2 (372 mg, 1 m m ol) in aq. H I
(2 ml, 57% ) was added at ca. 100 °C. The solution
was cooled slowly to room tem perature. The p re ­
cipitate was filtered and washed with aq. H I.
R ecrystallization from hot aq. H I and slow cooling
gave dark red needles (yield 80% ); m.p.=
250 °C(dec.). [H 3N (C H 2)6N H 3]SbB r5 was p re ­
pared by the sam e m ethod using Sb20 3, H B r and
[H3N (C H 2)6N H 3]B r2; yellow
needles
(yield
85% ); m.p.>300 °C.
The com pounds [H3N (C H 2)6N H 3]xB iB r3+x and
[H 3N (C H 2)6N H 3]xSbCl3+x as well as sim ilar com ­
pounds
with the
am ines
H 3N (C H 2)2N H 3,
H 3N (C H 2)3N H 3, H 3N (C H 2)4N H 3,
H 3N (C H 2) i 0N H 3, H 3N (C H 2) 12N H 3, w ere also p re ­
pared but not in a good single crystal form [5].
Satisfactory analyses have been o btained for all
new com pounds [5],
Results and Discussion
M o rp h o lo g y o f m aterials
The com pounds studied herein w ere prep ared
in pure form as single crystals. N eedle- shaped
crystals w ere large enough for X -ray crystal struc­
ture determ inations and investigation of physical
properties.
C rystal structures
A sum m ary of crystal data of the com pounds
[H3N (C H 2)6N H 3]B iI5,
[H 3N (C H 2)6N H 3]BiCl5,
Table I. Sum m ary of crystal, intensity collection and refin em en t data.
C om pound
[H 3N (C H 2)6N H 3]B iI5
[H 3N (C H 2)6N H 3]B iC l5
[H 3N (C H 2)6N H 3]SbI5
[H 3N (C H 2)6N H 3]SbB r5
fw o
961.70
15.170(5)
8.661(3)
14.367(4)
1887.6 (11)
874.47
15.112(8)
8.6111(6)
14.263(8)
1856(2)
639.52
14.286(8)
8.047(5)
14.539(9)
1671(2)
4
3.384/3.36
504.47
20.251(9)
7.776(4)
19.97(1)
3142(3)
92.36(1)
8
2.133/2.11
4
3.130/3.11
4
2.541/2.51
Pn2ja
1.054
0.0258/0.0649
P2,/n
1.176
0.0549/0.1223
Pn2]a
0.917
0.0187/0.0498
Pn2[a
1.189
0.0523/0.1242
a (Ä )
b ( A)
c ( A)
V (A 3)
ß (deg)
Z
D calcd/D m e
asd Mg m -3
Space group
GOF
R {/ w R 2
Notizen
929
4
- l>
P
4
P
»T S
»T S
Fig. 1. C rystal structure of [H 3N (C H 2)6N H 3]B iI5 (a) along the 6-axis, (b) along the a-axis; only the inorganic chains
(Bi-I net) are show n in diagram (b).
H 3N (C H 2)6N H 3]SbI5 and [H 3N (C H 2)6N H 3]SbB r5
at room tem p e ra tu re is given in Table I. The pack­
ing diagram of [FI3N (C H 2)6NIT3]B il 5 is shown in
Fig. 1. The com pounds [H 3N (C H 2)6N H 3]SbI5 and
[H3N (C H 2)6N H 3]SbB r5, are isostructural with
[H 3N (C H 2)6N H 3]B iI5. The crystal structure of
[H 3N (C H 2)6N H 3]B iC l5 is show n in Fig. 2. The p o ­
sitional and equivalent therm al param eters of the
n on-H atom s and th e bond lengths and angles of
[H 3N (C H 2)6N H 3]B iI5 are given in Tables II and
III.
Two general com m ents can be m ade which ap ­
ply to all these stru ctu res as well as those of refer­
ence [6],
Fig. 2. C rystal structure of [H 3N (C H 2)6N H 3]BiCl5.
Table II. Positional (xlO4) and eq uivalent th erm al
param eters
(xlO3)
o f the
non-H
atom s,
for
[H 3N (C H 2)6NH3]B iI5. E.s.d.’s in parentheses. U (eq ) is
defined as one third of the trace of the o rthogonalized
Uij tensor.
A tom
B i(l)
1(1)
1(2)
1(3)
1(4)
1(5)
N (l)
C (l)
C(2)
C(3)
C(4)
C(5)
C(6)
N (2)
X
8878(1)
7602(1)
10431(1)
8056(1)
7980(1)
10144(1)
3042(6)
2426(8)
1542(7)
983(8)
71(8)
57(7)
559(10)
456(8)
y
10090(1)
10011(1)
9902(1)
7288(1)
12454(1)
7977(1)
5838(11)
4581(12)
5067(17)
3737(14)
4190(16)
5291(15)
4693(14)
5792(12)
z
8803(1)
10453(1)
7408(1)
8009(1)
7715(1)
10171(1)
4377(7)
4555(9)
4874(7)
5189(8)
5516(8)
6346(7)
7176(7)
7977(7)
U (eq )
29(1)
45(1)
44(1)
49(1)
47(1)
39(1)
56(2)
55(3)
50(2)
55(3)
61(3)
49(3)
62(3)
66(3)
A ll com pounds have ID inorganic netw ork.
They consist of corner-sharing M X 6~ d isto rted octah ed ra which form , via cis halogen bridges, zig­
zag anionic chains. O rganic cations fill the space
betw een the chains preventing them from in teract­
ing which results in the ID ch aracter of these com ­
pounds.
T here are th ree distinct pairs of M -X bonds:
bridging, term inal trans to bridging and term inal
cis to the bridging. In the ideal case each pair of
bonds would have equal lengths. This is not the
case here, but we do observe the expected o rd e r­
ing of bond lengths: bridging>cis>trans.
930
Notizen
Table III. Bond lengths [A] and angles [dee], for
[H3N(CH2)6NH3]BiI5.
B i(l)-I(4)
B i(l)-I(3)
B i(l)-I(l)
Bi(l)-I(2)
B i(l)-I(5)#l
B i(l)-I(5)
1(5 )-Bi( 1)#2
N (l)-C (l)
C (l)-C (2)
C(2)-C(3)
C(3)-C(4)
C(4)-C(5)
C(5)-C(6)
C(6)-N(2)
2.914(1)
2.957(1)
3.062(1)
3.098(1)
3.260(1)
3.301(1)
3.260(1)
1.457(14)
1.48(2)
1.50(2)
1.51(2)
1.53(2)
1.51(2)
1.502(14)
I(4)-B i(l)-I(3)
I(4)-B i(l)-I(l)
I(3)-Bi( 1)-I( 1)
I(4)-B i(l )-I(2)
I(3)-Bi( 1)-I(2)
1(1 )-Bi( 1)-I(2)
I(4)-B i(l)-I(5)#l
I(3)-B i(l)-I(5)#l
I(l)-B i(l)-I(5)#l
I(2)-B i(l)-I(5)#l
I(4)-B i(l)-I(5)
I(3)-Bi( 1)-I(5)
1(1 )-Bi( 1)-I(5)
I(2)-B i(l)-I(5)
I(5)#l-B i(l)-I(5)
B i(l)#2-I(5)-B i(l)
N (l)-C (l)-C (2)
C(l)-C(2)-C(3)
C(2)-C(3)-C(4)
C(3)-C(4)-C(5)
C(6)-C(5)-C(4)
N(2)-C(6)-C(5)
99.93(3)
97.78(3)
90.81(3)
92.59(3)
91.60(3)
168.80(2)
85.19(3)
174.77(2)
87.39(3)
89.25(3)
168.72(2)
91.17(3)
83.96(3)
85.05(3)
83.76(3)
163.54(2)
115.0(10)
1 1 2 .8 ( 1 1 )
114.3(11)
114.7(10)
113.4(10)
109.6(10)
Symmetry transformations used to generate equivalent
atoms: #1 -x+2, y+112, ~z+ 2; #2 -x+ 2, y - 1/2, -z+ 2 .
O ptical p ro p erties
Fig. 3 shows th e room te m p e ra tu re optical ab ­
sorption spectra of thin deposits [15] of
[H 3N (C H 2)6N H 3]B iI5, and
Wavelength (nm)
Fig. 3. Optical absorption spectra of thin deposits of
[H3N(CH2)6NH3]BiI5 (a) and [H3N(CH2)6NH3]BiCl5
(b) at room temperature.
Wavelength (nm)
Fig. 4. Optical absorption spectra of thin deposits of
[H3N(CH2)6NH3]SbI5 (a) and [H3N(CH2)6NH3]SbBr5
(b) at room temperature.
[H 3N (C H 2)6N H 3]BiCl5, while Fig. 4 shows the
room tem perature optical absorption spectra of
thin deposits of [H3N (C H 2)6NH3]SbI5, and
[H 3N (C H 2)6N H 3]SbB r5.
The excitonic-peak position of
[H 3N (C H 2)6N H 3]B iI5 occurs at ca. 554 nm (2.24
eV ). The excitonic-peak position of A 3B iI6 (0D )
occurs at ca. 474 nm (2.62 eV ) and th a t of B il3 (q2D ) at ca. 603 nm (2.05 eV ) [1 -4 ,1 6 ]. It appears
th at
the
excitonic
binding
energy
of
[H3N (C H 2)6N H 3]B iI5 is ca. 242 meV, i.e., m ore
than twice the binding energy of B il3, (ca. 100
mev). Similar results were o btained for o th e r ID
systems [H 3N (C H 2)6N H 3]BiCl5,
[H3N (C H 2)6N H 3]SbI5,
[H3N (C H 2)6N H 3]SbB r5
(Figs. 3, 4). H ow ever, the excitonic binding energy
of antim onates is sm aller than th at of the c o rre­
sponding bism uthates (for S b l3 see [17]). In all
cases the excitonic absorption band is shifted to
lower energies and the excitonic binding energy
becom es sm aller as the dim ensionality increases.
As in the cases of Pb and Sn based system s [7 10], it is expected th at the peak position of M X 41_
(2D systems based on Bi and Sb) should occur at
low er energies than those of M X 52~, namely, close
to those of M X 3 (q-2D ) systems; but such com ­
pounds have not been prep ared yet.
Notizen
[1] G. C. Papavassiliou, G. A . M ousdis, I. B. K outselas,
C. P. R aptopoulou, A. Terzis, M. C. K anatzidis, A.
A xtell III, Adv. M ater. O p t. E lectron., in press
(1998).
[2] T. Kawai, S. Shim anuki, Phys. Stat. Sol. 177b, K43
(1993).
[3] G. C. Papavassiliou, I. B. K outselas, Z. N aturforsch.
49b, 849 (1994).
[4] G. C. Papavassiliou, I. B. Koutselas, A . Terzis, C. P.
R aptopoulo u Z. N aturforsch. 50b, 1566 (1995) and
refs cited therein.
[5] G. C. Papavassiliou, G. A. M ousdis unp u b lish ed
work.
[6] J. Z aleski, A. Pietrasko, J. Molec. Struct. 327 287
(1994); G. C. A llen, R. F. M cm eeking, Inorg. Chim .
A cta, 23 185 (1977); W. G. M cPherson, E. M eyers,
J. Phys. Chem . 72 532 (1968).
[7] G. C. Papavassiliou, A. P. Patsis, D. J. Lagouvardos,
I. B. K outselas, Synth. M etals 57, 3889 (1993).
[8] G. C. Papavassiliou, Mol. Cryst. Liq. Cryst. 286,
231 (1996).
931
[9] T. Ishihara J. Lum in. 60-1 269 (1994).
10] G. C. Papavassiliou, Progr. Sol. S tate C hem . 25,
125 (1997).
11] S. W ang, D. B. Mitzi, G. A. L andrum , H. G enin, R.
H offm ann, J. A m. Chem . Soc. 119, 724 (1997); D. B.
M itzi, Inorg. Chem . 35, 7614 (1996).
12] C rystal Logic Inc., 10573 W. Pico Blvd., Suite 106,
Los Angeles, C A 90064.
13] G. M. Sheldrick, SH ELX S 86, S tructure Solving
P rogram , U niversity of G o ettingen, G erm any
(1986).
14] G. M. Sheldrick, S H E L X L 93, C rystal S tructure R e ­
finem ent, U niversity of G o ettin g en , G erm any
(1993).
15] For the m ethod of thin deposits p rep aratio n see
refs 3,4,7.
16] A. D. B rothers, D. M. W ielczka, Phys. Stat. Sol. 80,
201 (1977).
17] Y. K aitu, T. K om atsu, T. A ikam i, N uovo C im ento
338, 449 (1977).
N achdruck - auch auszugsweise - n u r m it schriftlicher G en eh m ig u n g des V erlages g estattet
Satz und Druck: A Z D ruck und D a ten te ch n ik G m b H , K em pten