Math 1013: Precalculus II - Trig Test #2 Practice Questions Questions 1. Match the function on the left with the sketch on the right (no work needs to be shown here, fill in directly on this sheet). y = − sec x matches graph -6 -4 y 1.0 y 1.0 0.5 0.5 2 -2 -0.5 (A) 4 x 6 -6 -4 -2 -0.5 (B) -1.0 -4 2 -2 4 x 6 -6 -4 -2 -2 -4 -6 -0.5 (C) y= sin x2 (D) matches graph y = cos(3x) + sin x matches graph -4 (E) -2 -2 -4 -6 2 4 6 x -2 + cos(20x) matches graph -6 -4 (F) 1 2 4 x 6 -6 -4 (H) -1.0 10 -2 -2 2 4 6 -2 -4 -6 y 8 6 4 2 20 -4 x y 6 4 2 30 -6 2 -1.0 y 40 (I) x -0.5 -2 -0.5 (G) 6 -1 0.5 y = 4 0.5 y 1.0 x2 2 x y 1.0 y 8 6 4 2 -6 6 y 8 6 4 2 0.5 -6 4 -1.0 y y = − tan x matches graph 2 -6 2 4 6 x (J) -4 -2 -2 -4 -6 2 4 6 x x Math 1013: Precalculus II - Trig Test #2 Practice Questions 2. Answer True or False (no work needs to be shown here, fill in directly on this sheet): sin(π/4) = √1 2 ............................................................................................ T F ............................................................................................T F ............................................................................................. T F Sine is an even function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F cos x exhibits damping as x → ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F cos t → ∞ as t → ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F √ cos(π/3) = 3 2 tan(π/6) = 1 2 y= 1 x2 +1 sin t = 1 cos t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T F tan t has period π/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F tan t = sin t cos t ...............................................................................................T F csc t has a vertical asymptote at t = π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F y = cos(2x) + sin(4x) is periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F y = cos(2x) + sin(4x) is a sinusoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F y = 2 cos(4x) + sin(4x) is a sinusoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F The domain of y = sin θ is θ ∈ [−1, 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F The range of y = −7 sin θ is y ∈ [−7, 7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F 3. Sketch the sinusoid y = −5 sin(2x + 7) − 6. Determine the Amplitude, Period, and Phase Shift of the sinusoid. Note: This one is a bit trickier than some that we have done–you might consider drawing intermediate sketches of y = 5 sin(2x + 7) and y = −5 sin(2x + 7) to help you accurately sketch the final sinusoid. 4. Sketch the sinusoid y = 3 sin(π(2x + 1)). Determine the Amplitude, Period, and Phase Shift of the sinusoid. Clearly label the location of a local minimum on your sketch. √ 5. Solve tan t = − 3 for all values of t. 6. Solve sec t = √2 3 for all values of t.
© Copyright 2025 Paperzz