INVERSE TRIG REVIEW SHEET INVERSE SINE FUNCTION: y = sin −1 x ⇔ sin y = x Domain: −1 ≤ x ≤ 1 Range: −π π ≤y≤ 2 2 Properties: sin −1 (sin x ) = x ( ) sin sin −1 x = x Derivative: d 1 sin −1 x ) = , −1 ≤ x ≤ 1 ( dx 1 − x2 INVERSE TANGENT FUNCTION: y = tan −1 x 1 ∫ Integral: ⇔ 1 − x2 −∞ ≤ x ≤ ∞ −π π <y< 2 2 Range: Properties: tan −1 (tan x ) = x ( ) tan tan −1 x = x Limits: lim tan −1 x = π x →∞ d 1 tan −1 x ) = , -∞ ≤ x ≤ ∞ ( dx 1 + x2 Integral: dx = arcsin x + C tany = x Domain: Derivative: −π π ≤x≤ 2 2 for -1 ≤ x ≤ 1 for 2 1 ∫ 1+ x 2 , −π π <x< 2 2 for all x for lim tan −1 x = − x →−∞ dx = arctan x + C π 2 INVERSE SECANT FUNCTION: y = sec −1 x ⇔ sec y = x Domain: −∞ < x ≤ −1 U 1 ≤ x < ∞ Range: 0≤ y< Properties: sec−1 ( sec x ) = x for sec ( sec−1 x ) = x for Derivative: d 1 sec−1 x ) = , x ≥1 ( dx x x2 −1 Integral: ∫x 1 x2 −1 ⎛ 1⎞ π ⎛ 1⎞ sec −1 x = cos −1 ⎜ ⎟ = − sin −1 ⎜ ⎟ ⎝ x⎠ 2 ⎝ x⎠ π 2 − tan −1 x ⎛ 1⎞ csc −1 x = sin −1 ⎜ ⎟ ⎝ x⎠ 3π 2 U π ≤ y< dx = arcsec( x) + C for 0 ≤ arcsec x < OTHER USEFUL IDENTITIES: cot −1 x = 2 U π ≤ y< 3π 2 2 − ∞ < x ≤ −1 U 1 ≤ x < ∞ 0≤ y< π π π 2 U π ≤ arcsec x < 3π 2 Distinguishing between numbers and angles: • For y = sin x : Given an angle x, what is sin x? (a number) • For y = arcsin x : Given a number, what is the angle y such that y = arcsin x ? TIP: When in doubt, draw a right triangle. What are you given? What do you want to find? x adj y = arccos x ⇔ cos y = 1 hyp sin y = 1 − x 2 → cos y = x 1 − x2 tan y = x sec y = cot y = 1 1 csc y = 1 − x2 1 x x 1 − x2 y x
© Copyright 2026 Paperzz