Chapter 28 Atomic Physics Problem Solutions 28.1 (a) The w avelengths in the Lym an series of hyd rogen are given by 1 RH (1 1 n2 ) , w here n 2, 3, 4, . . . , and the Ryd berg constant is RH 1.097 373 2 107 m1 . This can also be w ritten as (1 RH ) n2 n2 1 so the first three w avelengths in this series are 1 22 1 7 1.215 10 m 121.5 nm 7 1 2 1.097 373 2 10 m 2 1 2 32 1 7 1.025 10 m 102.5 nm 1.097 373 2 107 m 1 32 1 3 42 1 8 9.720 10 m 97.20 nm 1.097 373 2 107 m 1 42 1 (b) These w avelengths are all in the far ultraviolet region of the spectrum . 28.2 (a) The w avelengths in the Paschen series of hyd rogen are given by 1 RH (1 32 1 n2 ) , w here n 4, 5, 6, . . . , and the Ryd berg constant is RH 1.097 373 2 107 m1 . This can also be w ritten as (1 RH )[9n2 (n2 9)] so the first three w avelengths in this series are 1 9(4) 2 1 6 1.875 10 m 1875 nm 7 1 2 1.097 373 2 10 m 4 9 2 9(5) 2 1 6 1.281 10 m 1 281 nm 7 1 2 1.097 373 2 10 m 5 9 1 9(6) 2 1 6 1.094 10 m 1 094 nm 7 1 2 1.097 373 2 10 m 6 9 544 A tomic Physics (b) These w avelengths are all in the infrared region of the spectrum . 28.3 (a) From Coulom b’ s law , F= ke q1q2 r 2 8.99 10 N m 2 C2 1.60 1019 C 9 1.0 10 10 m 2 2.3 108 N 2 (b) The electrical potential energy is PE 8.99 109 N m 2 C 2 1.60 1019 C 1.60 1019 C ke q1q2 r 1.0 1010 m 1 eV 2.3 1018 J 14 eV -19 1.60 10 J 28.4 (a) From Coulom b’ s law , 8.99 109 N m2 C2 1.60 1019 C k qq F e 12 2 2 r 1.0 1015 m 2 2.3 102 N (b) The electrical potential energy is 8.99 109 N m 2 C 2 1.60 1019 C 1.60 10 19 C ke q1q2 PE r 1.0 1015 m 1 MeV 2.3 1013 J -13 1.60 10 28.5 1.4 MeV J (a) The electrical force supplies the centripetal acceleration of the electron, so m v 2 ke e 2 2 r r (b) No . ke e 2 mr 8.99 10 N m C 1.60 10 C 9.1110 kg 1.0 10 m 9 v v or 2 31 19 2 10 2 1.6 106 m s v 1.6 106 m s 5.3 103 << 1 , so the electron is not relativistic. 8 c 3.00 10 m s 545 546 CH APTER 28 (c) The d e Broglie w avelength for the electron is h p h mv , or (d ) 28.6 6.63 1034 J s 9.1110 31 kg 1.6 10 m s 6 4.6 1010 m 0.46 nm Yes . The w avelength and the atom are roughly the sam e size. Assum ing a head -on collision, the -particle com es to rest m om entarily at the point of closest approach. From conservation of energy, KE f PE f KEi PEi or 0 ke 2e 79e rf KEi ke 2e 79e ri With ri , this gives the d istance of closest approach as 9 2 2 19 158ke e2 158 8.99 10 N m C 1.60 10 C rf KEi 5.0 MeV 1.60 10-13 J MeV 4.5 10 28.7 (a) 14 2 m 45 fm rn n2 a0 yield s r2 4 0.052 9 nm 0.212 nm (b) With the electrical force supplying the centripetal acceleration, mevn2 rn kee2 rn2 , giving vn ke e2 me rn and pn me vn me ke e2 rn . Thus, me ke e 2 p2 r2 9.1110 31 kg 8.99 109 N m 2 C 2 1.6 10 19 C 2 0.212 109 m 9.95 1025 kg m s (c) 6.63 1034 J s h 34 Ln n 2.11 10 J s L2 2 2 2 9.95 1025 kg m s p22 1 2 (d ) KE2 mv2 2 2me 2 9.111031 kg 2 1 eV 5.44 1019 J 3.40 eV -19 1.60 10 J A tomic Physics (e) PE2 ke e e r2 8.99 10 9 N m 2 C2 1.60 1019 C 0.212 10 9 m 2 1.09 1018 J 6.80 eV (f) 28.8 E2 KE2 PE2 3.40 eV 6.80 eV= 3.40 eV (a) With the electrical force supplying the centripetal acceleration, mevn2 rn kee2 rn2 , giving vn ke e2 me rn , w here rn n2 a0 n2 (0.052 9 nm) . Thus, k e2 v1 e me r1 8.99 10 N m C 1.60 10 C 9.1110 kg 0.052 9 10 m 9 2 19 2 31 (c) PE1 r1 8.99 10 9 2.19 106 m s 9 1 1 (b) KE1 me v12 9.11 1031 kg 2.19 106 m s 2 2 1 eV 2.18 1018 J 13.6 eV -19 1.60 10 J ke e e 2 2 N m 2 C2 1.60 1019 C 0.052 9 10 9 m 2 4.35 1018 J 27.2 eV 28.9 Since the electrical force supplies the centripetal acceleration, me vn2 ke e 2 2 rn rn or vn2 k2 e 2 me rn From Ln me rnvn n , w e have rn n mevn , so vn2 k2 e 2 me vn me n w hich red uces to vn ke e2 n . 547 548 28.10 CH APTER 28 (a) The Ryd berg equation is 1 RH 1 n2f 1 ni2 , or 2 2 1 ni n f RH ni2 n2f With ni 5 and n f 3 , (b) (c) 28.11 f c 25 9 1 6 1.28110 m 1 281 nm 7 1 1.097 37 10 m 25 9 Ephoton 3.00 108 m s 2.34 1014 Hz 1 281 10 9 m hc 6.63 10 34 J s 3.00 108 m s 1 eV 9 -19 1 28110 m 1.60 10 0.970 eV J The energy of the em itted photon is Ephoton hc 6.626 10 34 J s 2.998 108 m s 1 ev 9 19 656 10 m 1.60 10 1.89 eV J This photon energy is also the d ifference in the electron’ s energy in its initial and final orbits. The energies of the electron in the various allow ed orbits w ithin the hyd rogen atom are En 13.6 eV n2 w here n 1, 2, ,3, giving E1 13.6 eV, E2 3.40 eV, E3 1.51 eV, E4 0.850 eV, Observe that Ephoton E3 E2 , so the transition w as from the n 3 orbit to the n 2 orbit . A tomic Physics 28.12 The change in the energy of the atom is 1 1 E E f Ei 13.6 eV 2 2 ni n f Transition I: 1 1 E 13.6 eV 2.86 eV (absorption) 4 25 Transition II: 1 1 E 13.6 eV 0.967 eV (em ission) 25 9 Transition III: 1 1 E 13.6 eV 0.572 eV (em ission) 49 16 Transition IV: 1 1 E 13.6 eV 0.572 eV (absorption) 16 49 (a) Since hc Ephoton hc , transition II em its the shortest w avelength photon. E (b) The atom gains the m ost energy in transition I (c) The atom loses energy in transitions II and III 28.13 The energy absorbed by the atom is 1 1 Ephoton E f Ei 13.6 eV 2 2 ni n f (a) 1 1 Ephoton 13.6 eV 2 2 2.86 eV 2 5 1 1 (b) Ephoton 13.6 eV 2 2 0.472 eV 6 4 28.14 (a) The energy absorbed is 1 1 1 1 E E f Ei 13.6 eV 2 2 13.6 eV 12.1 eV ni n f 1 9 549 550 CH APTER 28 (b) Three transitions are possible as the electron returns to the ground state. These transitions and the em itted photon energies are 1 1 ni 3 n f 1 : E 13.6 eV 2 2 12.1 eV 1 3 ni 3 n f 2 : 1 1 E 13.6 eV 2 2 3 2 1.89 eV 1 1 ni 2 n f 1: E 13.6 eV 2 2 10.2 eV 1 2 28.15 To ionize the atom , it is necessary that n f . The required energy is then 1 1 1 13.6 eV 1 E E f Ei 13.6 eV 2 2 13.6 eV 2 n f ni ni2 ni (a) If ni 1 , the required energy is E (b) If ni 3 , E 28.16 13.6 eV 13.6 eV 12 13.6 eV 1.51 eV 32 The m agnetic force supplies the centripetal acceleration, so mv 2 mv qvB , or r qB r If angular m om entum is quantized accord ing to Ln mvn rn 2n , then mvn 2n rn and the allow ed rad ii of the path are given by rn 1 2n or qB rn rn 2n qB A tomic Physics 28.17 551 (a) The energy em itted by the atom is 1 1 E E4 E2 13.6 eV 2 2 2.55 eV 2 4 The w avelength of the photon prod uced is then 6.63 1034 J s 3.00 108 m s hc hc E E 2.55 eV 1.60 1019 J eV 4.88 107 m 488 nm (b) Since m om entum m ust be conserved , the photon and the atom go in opposite d irections w ith equal m agnitud e m om enta. Thus, p matomv h or v 28.18 h matom 6.63 1034 J s 1.67 10 27 kg 4.88 107 m 0.814 m s (a) Starting from the n 4 state, there are 6 possible transitions as the electron returns to the ground (n 1) state. These transitions are: n 4 n 1, n 4 n 2, n 4 n 3, n 3 n 1, n 3 n 2, and n 2 n 1. Since there is a d ifferent change in energy associated w ith each of these transitions there w ill be 6 different wavelengths observed in the em ission spectrum of these atom s. (b) The longest observed w avelength is prod uced by the transition involving the sm allest change in energy. This is the n 4 n 3 transition, and the w avelength is max 6.626 1034 J s 2.998 108 m s hc 1 eV -19 E4 E3 1 1 1.602 10 13.6 eV 2 2 4 3 1 nm J 10-9 m or max 1.88 103 nm . Since this transition term inates on the n 3 level, this is part of the Paschen series . 552 28.19 CH APTER 28 For m inim um initial kinetic energy, KEtotal 0 after collision. H ence, the tw o atom s m ust have equal and opposite m om enta before im pact. The atom s then have the sam e initial kinetic energy, and that energy is converted into excitation energy of the atom d uring the collision. Therefore, 1 KEatom matom v 2 E2 E1 10.2 eV 2 or 28.20 (a) 2 10.2 eV v matom 2 10.2 eV 1.60 1019 J eV 1.67 10 27 kg 4.42 104 m s 2 r L mvr m r T (b) n 2 7.36 1022 kg 3.84 108 m 2.36 106 s L 2 2.89 1034 kg m 2 s 34 2 2 L 2 2.89 10 kg m s 2.74 1068 h 6.63 1034 J s (c) The gravitational force supplies the centripetal accelerat ion so mv 2 GM E m , or rv2 GM E 2 r r Then, from Ln mvn rn n or vn n , mrn 2 2 n 2 r n n 2 r1 w e have rn w hich gives GM n E 2 GM m mr E n Therefore, w hen n increases by 1, the fractional change in the rad ius is 2 r rn1 rn n 1 r1 n r1 2n 1 2 2 r rn n n2 r1 n 2 r 2 7.30 1069 r 2.74 1068 28.21 (a) rn n2 a0 n2 (0.052 9 nm) r3 32 (0.052 9 nm) 0.476 nm A tomic Physics 553 (b) In the Bohr m od el, the circum ference of an allow ed orbits m ust be an integral m ultiple of the d e Broglie w avelength for the electron in that orbit, or 2 rn n . Thus, the w avelength of the electron w hen in the n 3 orbit in hyd rogen is 28.22 2 r3 2 0.476 nm 0.997 nm 3 3 (a) The Coulom b force supplies the necessary centripetal force to hold the electron in orbit so mevn2 rn kee2 rn2 , or mevn2 kee2 rn . But mevn2 2KEn and kee2 rn PEn , w here PEn is the electrical potential energy of the electron -proton system w hen the electron is in an orbit of rad ius rn . We then have 2KEn PEn , or KEn 12 PEn . (b) When the atom absorbs energy, E, and the electron m oves to a higher level, both the kinetic and p otential energy w ill change. Conservation of energy requires that E KE PE . But, from the result of part (a), KE 12 PE and w e have (c) 28.23 28.24 rn 1 1 E PE PE PE 2 2 or PE 2E 1 1 KE PE 2 E 2 2 or KE E 2 n2 a0 n2 Z me ke e2 Z so r1 a0 0.052 9 nm Z Z (a) For He+ , Z 2 and r 0.052 9 nm 2 0.026 5 nm . (b) For Li2+ , Z 3 and r 0.052 9 nm 3 0.017 6 nm . (c) For Be3+ , Z 4 and r 0.052 9 nm 4 0.013 2 nm . (a) The energy levels in a single electron atom w ith nuclear charge Ze are En Z 2 (13.6 eV) n2 . For d oubly-ionized Lithium , Z 3 , giving En (122 eV) n2 . (b) E4 122 eV 7.63 eV 42 E2 122 eV 30.5 eV 22 (c) 554 CH APTER 28 (d ) Ephoton Ei E f 7.63 eV 30.5 eV 22.9 eV 1.60 1019 J 18 Ephoton 22.9 eV 3.66 10 J 1 eV (e) f (f) 28.25 Ephoton h 3.66 1018 J 5.52 1015 Hz -34 6.63 10 J s c 3.00 108 m s 5.43 108 m 54.3 nm f 5.52 1015 Hz This w avelength is in the deep ultraviolet region of the spectrum . From L mevn rn n and rn n2 a0 w e find that pn mvn n n(h 2 ) h 2 rn 2 a0 n n a0 Thus, the d e Broglie w avelength of the electron in the n th orbit is h pn 2 a0 n . For n 4 , this yield s 8 a0 8 0.052 9 nm 1.33 nm 28.26 (a) For stand ing w aves in a string fixed at both end s, L or n 2 2L h . Accord ing to the d e Broglie hypothesis, p n Com bining these expressions gives p mv nh 2L 1 p2 (b) Using E mv 2 , w ith p as found in (a) above: 2 2m En 28.27 n2 h2 h2 2 n E where E 0 0 4 L2 2m 8mL2 In the 3d subshell, n 3 and 2. The 10 possible quantum states are A tomic Physics 28.28 n3 2 m 2 ms 12 n3 2 m 2 ms 12 n3 2 m 1 ms 12 n3 2 m 1 ms 12 n3 2 m 0 ms 12 n3 2 m 0 ms 12 n3 2 m 1 ms 12 n3 2 m 1 ms 12 n3 2 m 2 ms 12 n3 2 m 2 ms 12 555 (a) For a given value of the principle quantum num ber n, the orbital quantu m num ber varies from 0 to n 1 in integer steps. Thus, if n 4 , there are 4 possible values of : 0, 1, 2, and 3 (b) For each possible value of the orbital quantum num ber , the orbital m agnetic quantum num ber m ranges from to + in integer steps. When the principle quantum num ber is n 4 and the largest allow ed value of the orbital quantum num ber is 3 , there are 7 d istinct possible values for m . These values are: m 3, 2, 1, 0, +1, +2, and +3 28.29 The 3d subshell has n 3 and 2 . For -m esons, w e also have s 1 . Thus, there are 15 possible quantum states as sum m arized in the table below . 2(6 1) 14 m ms 3 3 2 2 +2 +2 +1 0 3 2 +2 1 3 3 2 2 +1 +1 +1 0 3 2 +1 1 3 2 0 +1 3 2 0 0 3 2 0 1 3 2 1 +1 3 2 1 0 3 2 1 1 3 2 2 +1 3 2 2 0 3 2 2 1 556 28.30 CH APTER 28 (a) The electronic configuration for nitrogen (Z 7) is 1s 2 2s 2 2 p3 . (b) The quantum num bers for the 7 electrons can be: 1s states n 1 2(2 1) 2s states n2 2(2 1) ms 12 2(4 1) 10 ms 12 ms 12 m 0 ms 12 ms 12 m 1 ms 12 ms 12 n 3: 2n2 n184: 2n2 32 m 0 2 p states ms 12 ms 12 m 1 28.31 ms 12 (a) For Electron #1 and also for Electron #2, n 3 and 1 . The other quantum num bers for each of the 30 allow ed states are listed in the tables below . 2 m m 2 13.6 eV 2 2 1 2 E6K3 8528 979 Z8d 028 1s2 2s2E2 p6 3EsL2 3 p d 10951 4s2 4eV p64Zd s2E=KeV [Kr]4 5s eV 2 ms m ms 1 +1 1 2 +1 m ms EM Z 9 1 +1 2 2 Electron #1 +1 Electron #2 +1 12 0 12 1 m ms 12 m ms 12 m Electron #1 Electron #2 0 +1 1 2 0 0 1 2 32.0 ms 12 +1 +1 Germanium 1 2 0 1 12 ms 12 m ms 12 m 0 1 2 +1 m 0 ms 12 0 13.6 eV 3 2 4 1.05 1019 photons 6.63 1034 J s 3.00 108 m s hc 16 3 E E mm 0 8.82 10 photons 1 10 1210-19 J eV +1 limit 12 0152010 1 2 1 m 1 1.60 2 4.200mm 6.00mm 557 A tomic Physics m ms m ms m ms Electron #1 1 Electron #2 +1 m 10 J s 3.00 10 hcm s 6.63 10 J s 3.00 10 hc m s 6.626 10 6.631.09 609 nm E 10 nm E 0J eV 1 eV 2.04 1 eV 1.60 E1 10 1 2.04 eV 1.60 1 10 J eV1.602 10 0.904 34 34 8 8 3 short 310.0 nmE 4.000 eV 400.0 nm 1 0 1 +1 -19 -19 2 2 0 12 1 12 There are 30 allowed states , since Electron #1 can have any of three possible values of E I A t for both spin up and spin d ow n, totaling six possible states. For each of these states, Electron #2 can be in either of the rem aining five states. (b) Were it not for the exclusion principle, there w ould be 36 possible states, six for each electron ind epend ently. 28.32 (a) For n 1, 0 and there are 2(2 1) states 2(1) 2 sets of quantum num bers (b) For n 2, 0 for 2(2 1) states 2(0 1) 2 sets 1 for 2(2 1) states 2(2 1) 6 sets and total num ber of sets = 8 (c) For n 3, and and 34 6.63 s 3.00 108 m hc10 hcJ hc hc E5 E1 8.18eV 0.325 eV long10 E 10Ei E E3 f1.60 4 E2 10-19 J 1583 m 0 for 2(2 1) states 2(0 1) 2 sets 1 for 2(2 1) states 2(2 1) 6 sets 2 for 2(2 1) states 2(4 1) 10 sets total num ber of sets = 18 (d ) For n 4, 0 for 2(2 1 for 2(2 and 2 for 2(2 and and 3 for 2(2 1) states 2(0 1) 2 sets 1) states 2(2 1) 6 sets 1) states 2(4 1) 10 sets 1) states 2(6 1) 14 sets total num ber of sets = 32 34 558 CH APTER 28 (e) For n 5, and and and and 0 for 2(2 1 for 2(2 2 for 2(2 3 for 2(2 4 for 2(2 1) states 2(0 1) 2 sets 1) states 2(2 1) 6 sets 1) states 2(4 1) 10 sets 1) states 2(6 1) 14 sets 1) states 2(8 1) 18 sets total num ber of sets = 50 For n 1: 2n2 2 For n 2: 2n2 8 For n 3: 2n2 18 For n 4: 2n2 32 For n 5: 2n2 50 Thus, the total num ber of sets of quantum states agrees w ith the 2n2 rule. 28.33 (a) Zirconium , w ith 40 electrons, has 4 electrons outsid e a closed Krypton core. The Krypton core, w ith 36 electrons, has all states up through the 4 p subshell filled . N orm ally, one w ould expect the next 4 electrons to go into the 4d subshell. H ow ever, an exception to the rule occurs at this point, and the 5s subshell fills (w ith 2 electrons) before the 4d subshell starts filling. The tw o rem aining electrons in Zirconium are in an incom plete 4d subshell. Thus, n 4, and 2 for each of these electrons. (b) For electrons in the 4d subshell, w ith 2 , the possible values of m are m 0, 1, 2 and those for ms are ms 1 2 (c) We have 40 electrons, so the electron configuration is: 1s 2 2s 2 2 p6 3s 2 3 p6 3d 10 4s 2 4 p6 4d 2 5s 2 = [Kr]4d 2 5s 2 28.34 The photon energy is Ephoton EL EK 951 eV 8 979 eV 8 028 eV , and the w avelength is hc Ephoton 6.63 10 34 J s 3.00 108 m s 8 028 eV 1.60 10 19 J eV 1.55 10 10 m 0.155 nm To prod uce the K line, an electron from the K-shell m ust be excited to the L-shell or higher. Thus, a m inim um energy of 8 028 eV m ust be given to the atom . A m inim um accelerating voltage of V 8 028 V 8.03 kV is required . A tomic Physics 28.35 For nickel, Z 28 and EK Z 1 2 EL Z 3 13.6 eV 1 2 2 13.6 eV 2 2 27 13.6 eV 9.91 103 eV 2 25 2 13.6 eV 2.13 103 eV 4 Thus, Ephoton EL EK 2.13 keV 9.91 keV 7.78 keV and 28.36 hc Ephoton 6.63 10 34 J s 3.00 108 m s 7.78 keV 1.60 10 16 J keV 1.60 10 10 m 0.160 nm The energies in the K and M shells are EK Z 1 Thus, Ephoton and Ephoton 2 13.6 eV 1 2 and EM Z 9 2 13.6 eV 3 2 Z 9 2 2 8 EM EK 13.6 eV Z 1 13.6 eV Z 2 8 9 9 9 hc gives Z 2 8 , or 8 13.6 eV hc 9 6.63 1034 J s 3.00 108 m s 1 eV Z 9 32.0 19 9 8 13.6 eV 0.101 10 m 1.60 10 J The elem ent is Germanium . 559 560 28.37 CH APTER 28 The transitions that prod uce the three longest w avelengths in the K series are show n at the right. The energy of the K shell is EK 69.5 keV . Thus, the energy of the L shell is EL EK or hc 3 EL 69.5 keV 6.63 10 34 J s 3.00 108 m s 0.0215 10 9 m 1 keV 69.5 keV 9.25 1015 J -16 1.60 10 J 69.5 keV 57.8 keV 11.7 keV Sim ilarly, the energies of the M and N shells are EM E K hc 2 69.5 keV 6.63 10 34 0.020 9 10 9 m 1.60 10 J s 3.00 108 m s 16 10.0 keV 2.30 keV J keV and E N EK hc 1 69.5 keV 6.63 10 34 0.018 5 10 9 m 1.60 10 J s 3.00 108 m s 16 The ionization energies of the L, M, and N shells are 11.7 keV, 10.0 keV, and 2.30 keV respectively J keV A tomic Physics 28.38 Accord ing to the Bohr m od el, the rad ii of the electron orbits in hyd rogen are given by rn n2 a0 w ith a0 0.052 9 nm 5.29 1011 m Then, if rn 1.00 m 1.00 106 m , the quantum num ber is n 28.39 (a) rn 1.00 106 m 137 a0 5.29 1011 m E E2 E1 13.6 eV (2)2 13.6 eV (1)2 10.2 eV (b) The average kinetic energy of the atom s m ust equal or exceed the need ed excitation energy, or 32 kBT E w hich gives T 28.40 2 E 3kB 2 10.2 eV 1.60 1019 J eV 3 1.38 10 -23 JK 7.88 10 4 K (a) L c t 3.00 108 m s 14.0 1012 s 4.20 103 m 4.20 mm (b) N (c) n Epulse Ephoton Epulse hc 694.3 10 6.63 10 34 m 3.00 J J s 3.00 10 m s N N V L d2 4 9 8 1.05 1019 photons 4 1.05 1019 photons 4.20 mm 6.00 mm 2 8.82 1016 photons mm3 561 562 28.41 CH APTER 28 (a) With one vacancy in the K shell, an electron in the L shell has one electron shield ing it from the nuclear charge, so Zeff Z 1 24 1 23. The estim ated energy the atom gives up d uring a transition from the L shell to the K shell is then E Ei E f 2 Zeff 13.6 eV Zeff2 13.6 eV Z 2 13.6 eV 1 1 2 2 eff ni2 n2f n f ni or 2 1 1 E 23 13.6 eV 2 2 5.40 103 eV 5.40 keV 1 2 (b) With a vacancy in the K shell, w e assum e that Z 2 24 2 22 electrons shield the outerm ost electron (in a 4s state) from the nuclear charge. Thus, for this outer electron, Zeff 24 22 2 and the estim ated energy required to rem ove this electron from the atom is Z 2 13.6 ev 22 13.6 ev Eionization E f Ei 0 Ei eff 2 3.40 eV ni 42 (c) 28.42 KE E Eionization 5.40 keV 3.40 eV 5.40 keV (a) The energy levels of a hyd rogen -like ion w hose charge num ber is Z are given by En 13.6 eV Z2 n2 For H elium , Z 2 and the energy levels are En 54.4 eV n2 n 1, 2, 3, . . . (b) For He , Z 2 , so w e see that the ionization energy (the energy required to take the electron from the n 1 to the n state) is 13.6 eV 2 E E E1 0 2 1 28.43 (a) 2 54.4 eV 3 -9 P E t 4 3.00 10 J 1.00 10 s I 4.24 1015 W m2 2 2 -6 A d 4 30.0 10 m A tomic Physics 563 (b) E I A t 2 W 4.24 1015 2 0.600 109 m 1.00 109 s 1.20 1012 J m 4 28.44 (a) Given that the d e Broglie w avelength is 2a0 , the m om entum is p h h 2 a 0 . The kinetic energy of this non -relativistic electron is KE p2 h2 2 me 8 me a 20 6.63 10 8 9.11 10 34 1 eV 1.60 10 J 135 eV kg 0.052 9 10 m J s 31 2 -19 9 2 (b) The kinetic energy of this electron is 10 times the m agnitud e of the ground state energy of the hyd rogen atom w hich is –13.6 eV. 28.45 In the Bohr m od el, f E En En 1 h h 1 me ke2 e 4 1 1 4 2 me ke2 e 4 h 2 2 n 2 n 12 2 h3 w hich red uces to f 2 2 me ke2 e4 2n 1 n 12 n 2 h3 1 1 2 2 n n 1 564 28.46 CH APTER 28 Ephoton hc 6.626 10 1.602 10 34 1 240 eV nm E m nm J s 2.998 108 m s 19 J eV 10 9 For: 310.0 nm , E 4.000 eV 400.0 nm , E 3.100 eV and 1378 nm , E 0.900 0 eV The ionization energy is 4.100 eV. The energy level d iagram having the few est num ber of levels and consistent w ith these energy d ifferences is show n below .
© Copyright 2026 Paperzz