BC Calculus ‘14 Integration Techniques Test name Score 1. 1 ⌠ dx = ⎮ 2 ⌡ x − 6x + 8 (a) 1 x−4 ln +c 2 x−2 (d) ⌠ x−3 dx = ⎮ ⌡ x (a) 1− 3ln x + c (d) (b) 3x 2 ⌠ dx = ⎮ 2 ⌡ x + 3x + 2 (a) 2 x + 2) ( ln ( x + 4) (d) +c 2 x + 2) ( 2 ln x +1 (e) (c) 1 ln ( x − 4 ) ( x − 2 ) + c 2 ln ( x − 4 ) ( x − 2 ) + c x − 3ln x + c x 2 − 3x +c x2 3. 1 x−2 ln +c 2 x−4 1 ln ( x − 4 ) ( x + 2 ) + c 2 2. (b) (e) (c) 1+ 3 +c x2 1 2 x − 3ln x + c 2 (b) x +1 ln + c (c) x+2 +c (e) 2 x + 1) ( ln x+2 +c None of these 1 4. ∫0 x tan (a) π 4 −1 x dx = (b) (c) π 2 (d) π −2 2 (e) π −2 4 π 2 e x cos x dx 0 5. ∫ (a) 1 π /4 ( e + 1) 2 (d) π −2 = (b) 1 π /2 ( e + 1) 2 1 π /4 ( e − 1) 4 (e) (c) 1 π /2 ( e − 1) 2 1 π /2 ( e + 1) 4 dP , of the number of people on a particular beach is dt modeled by a logistic growth equation. The maximum number of people on the beach is 1200. At 10:00 am, the number of people on the beach is 200 and the rate is increasing at 400 people per hour. Which of the following differential equations models the situation? 6. The rate of growth, (a) dP 1 = (1200 − P ) + 200 dt 400 dP 2 = (1200 − P ) dt 5 dP 1 = P (1200 − P ) dt 500 dP 1 = P (1200 − P ) dt 400 dP = 400P (1200 − P ) dt (b) (c) (d) (e) −2x 3 7. , x = 1 , x = 2 , and the x-axis. Find 2x 2 + 7x + 3 the volume of a solid where R is the base of the solid and the cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in region R. Show the anti-differentiation. A region R is bounded by y = 8. −1 2 ∫ 2x sin ( x ) dx
© Copyright 2025 Paperzz