Graph of Tangent Today • Wed. May 17 MATH 128 3 2 x= x= 2 3 Trigonometric Graphs • • 4 Tangent Cosecant • Choose Base Function • Applications 6 , 3 3 , ⇥ ,1 x= ⇥ 3 x= 2 3 2 ⇥ Ryan Hansen • Section 8.7–8.8 Sinusoidal Modeling • Transformations • Equation To Graph • Graph To Equation Graph of Cosecant x= x= 2 x=0 6 Harmonic Motion 6 Domain: no odd multiples of 2 Range:R 3 , ⇥ ⇥ 3 3 , 4 ⇥ , 1 ⇥ ⇥ 3 Amplitude Sinusoidal Graphs x=2 x= ⇥ ,2 • x-intercepts multiples of Amplitude = A 2 2 1.5 1.5 1 Any graph of sine or cosine 0.5 -7 1 , 6 2 ⇥ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -0.5 1 0.5 -1 2 -1.5 -7 1.5 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -2 1 -0.5 0.5 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -1 7 -0.5 -1.5 -1 -1.5 -2 -2 Period Amplitude, Period, Phase Shift and Vertical Shift 2 Period = ⇥ 2 1.5 1 -6 -5 -4 -3 -2 -1 0 -0.5 -1 -1.5 -2 p)] + B = ±A sin [!x !p)] + B best format! 0.5 -7 y = ±A sin [!(x 1 2 3 4 5 6 7 where Amplitude = A Phase Shift = p >0 2 ⇥ = B Vertical Shift Period = T = Example Find amplitude, period and phase shift. Then graph. y= 3 sin( x + 2) y = ±A sin [! (x ⇤ y = 3 sin x Amplitude= A = 3 p)] 2 ⇥⇥⌅ 2 Phase Shift= p = 2⇡ ⇡ =2 Period = ! Graph Graph 3 3 2 2 2 1 1 1 2 0 2 y= sin x Graph 3 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 0 1 -1 -1 -1 -2 -2 -2 y= -3 sin ⇡x Graph y= -3 How To Choose 3 3 sin ⇡x 2 3 4 5 6 -3 How To Choose 2 -6 -5 -4 -3 -2 -1 0 sin (x) x) s( co 1 1 2 3 4 5 6 -1 -3 (x ) cos y= (x) sin -2 ✓ ◆ 2 3 sin ⇡ x + ⇡ Find A Formula Find A Formula Where To Find A and T 3 3 2 Amplitude and Period can be found in several places 2 1 1 -7 -6 -5 -4 -3 -2 -1 0 -1 Red: Amplitude (A) Blue: Period (T) -2 -2 -1 0 -1 -2 1 2 3 4 5 6 7 8 -3 -4 -5 -6 Also, Amplitude = (Max-Min)/2 -3 -7 -8 1 2 3 4 5 6 7 8 9 10 11 Find A Formula Find A Formula 3 1 ⇥ 1 ,0 2 0 1 2 -6 -5 -4 -3 -2 -1 3 2 ⇥ 1 + ,0 2 3 4 5 2 1 Applications 6 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -1 -1 -2 -2 -3 -3 ✓ 1 , 1 2 ◆ ✓ 9 , 1 2 ◆ Spring/Pendulum Spring/Pendulum An object attached to a spring is pulled down a distance of 5 units from equilibrium and then released. The time for one complete oscillation is 4 seconds. Find an equation modeling the position of the object at time t . ⇣⇡ ⌘ 5 cos t 2 p(t) = What is the objects position at time 3/2?p 5 cos Period: 29.53 days What is the frequency of its oscillation? 5 2 2 = 1 1 = T 4 Summary Piston Motion Amplitude, Period, Sinusoidal Graphs Where HowToToFind Choose A and T Phase and AmplitudeShift and Period can beVertical found in several Shift places 11 2 y = ±A sin [!(x Anyp)] +B graph of 1 x) s( A piston oscillates a total of 75 mm (37.5 above and below equilibrium) at 3250 rpm. 1.5 0.5 -7 -6 -5 -4 -3 -2 -1 0 -0.5 1 2 3 4 5 6 7 best format! sine or cosine -1 = ±A sin [!x -2 Amplitude = A -6 (x ) Phase Shift = -7 2 p 1.5 >0 1 2 ⇥ = B Vertical Shift Also, Don’tAmplitude forget about homework!!! = (Max-Min)/2 -5 -4 -3 -2 -1 0 1 2 3 Period = T = -1 -1.5 -1 -1 Blue: Period (T) 0.5 -0.5 cos Graph the function that gives the piston’s position as a function of time (in minutes). Write a formula for the function. where (x) sin How long is one cycle of the piston in minutes? Red:+ Amplitude !p)] B (A) 00 -1.5 What is the moon’s intensity 12 days after a full moon? per second co Graph the function. Write a formula. Full Moon: 100 New Moon: 0 3⇡ 4 ◆ sin (x) Phases of the Moon ✓ -2 4 5 6 7
© Copyright 2026 Paperzz