Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for

Layered Co(OH)2 Deposited Polymeric Carbon
Nitrides for Photocatalytic Water Oxidation
Guigang Zhang Shaohong Zang and Xinchen Wang*
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry,
Fuzhou University, Fuzhou, 350002, China
Email: [email protected]
1
200
g-C3N4
150
3
Vads / cm .g
-1
Co(OH)2/g-C3N4
100
50
0
0.0
0.2
0.4
0.6
P/P
0.8
1.0
o
Figure S1. N2 adsorption–desorption isotherms of g-C3N4 and 3 wt Co(OH)2/ g-C3N4.
2
30
Co(OH)2/WO3
λ > 420 nm
25
OER / µmol.h
-1
Co(OH)2/BiVO4
20
WO3
BiVO4
15
10
Co(OH)2/g-C3N4
5
g-C3N4
0
Figure S2. OER of different pure and Co(OH)2 modified semiconductors.
3
I / a.u.
10 wt Co3O4/g-C3N4
5 wt Co3O4/g-C3N4
3 wt Co3O4/g-C3N4
10
20
30
2θ/
40
50
60
o
Figure S3. XRD patterns of pure and Co3O4 modified g-C3N4 samples.
4
Figure S4. HR-TEM imagines of 3 wt Co3O4/g-C3N4 sample.
5
Co 2p
820
810
800
790
780
770
BE / eV
Ag 3d
C 1s
380
375
370
365
295
290
BE / eV
N 1s
410
285
280
BE / eV
O 1s
405
400
BE / eV
395
540
535
530
525
BE /eV
Figure S5. XPS of recycled Co(OH)2/g-C3N4 sample.
6
1 st
2 nd
OER / µmol h
-1
30
3 rd
20
4 th
10
0
Runs
Figure S6. Recycling OER ability of 3 wt Co(OH)2/g-C3N4.
7
Figure S7. TEM of of Co(OH)2 (left) and Fe(OH)3 (right) decorated g-C3N4 samples after
photocatalytic water oxidation in the presence of AgNO3 as the electrons accepter.
8
C 1s
before
after
N 1s
I / a.u.
I / a.u.
before
after
285
290
295
300
396
399
402
∆
405
411
Ag
 Co(OH)2




∆
20
30
40
2 θ/
before
after
Intensity / a.u.
I / a.u.
after
before
10
408
BE / eV
BE / eV
ο
∆
50
200
300
400
500
600
700
800
λ / nm
Figure S8. XPS, XRD patterns, and DRS of Co(OH)2/g-C3N4 sample before and after
photocatalytic water oxidation.
9