Cox rings of K3 surfaces Michela Artebani Departamento de Matemática Universidad de Concepción elENA IV (La Falda, Sierras de Córdoba) August 4, 2008 Michela Artebani (UdeC) Cox rings 1 / 22 Outline 1 Cox rings Definition Relations 2 K3 surfaces Motivations K3 surfaces with finitely generated NE(X) 3 Cox rings of K3 surfaces rk Pic(X) = 2 Non symplectic involutions Michela Artebani (UdeC) Cox rings 2 / 22 Cox rings Let X be a smooth algebraic variety over C and L1 , . . . , Lρ be divisors whose classes freely generate Pic(X). The Cox ring of X is: Cox(X) := M H 0 (X, a1 L1 + · · · + aρ Lρ ) a∈Zn Michela Artebani (UdeC) Cox rings 3 / 22 Cox rings Observation. Cox(X) is graded by Pic(X): M Cox(X) ∼ Cox(X)D = D∈Pic(X) Cox(X)D = H 0 (X, D), Cox(X)D1 · Cox(X)D2 ⊆ Cox(X)D1 +D2 . Michela Artebani (UdeC) Cox rings 4 / 22 Cox rings Questions. When is Cox(X) finitely generated? How do we find its generators and relations? 0 / IX Michela Artebani (UdeC) / C[x1 , . . . , xr ] Cox rings / Cox(X) / 0. 5 / 22 Cox rings Theorem (D. Cox, 1992). Let X be a toric variety with E1 , . . . , Er integral invariant divisors, then Cox(X) = C[x1 , . . . , xr ] where xi is a defining section for Ei . Michela Artebani (UdeC) Cox rings 6 / 22 Cox rings Example: Let F0 be a quadric surface: a2 b2 b1 Cox(X) ∼ = C[a1 , a2 , b1 , b2 ] a1 Michela Artebani (UdeC) Cox rings 7 / 22 Cox rings Examples of smooth surfaces with finitely generated Cox ring: toric, Del Pezzo, blow-up of P2 at points lying on a conic, some K3 surfaces. Michela Artebani (UdeC) Cox rings 8 / 22 Cox rings: relations Theorem (A. Laface, M. Velasco, 2007). Let E1 , E2 be two generators of Cox(X) with E1 · E2 = 0, if the map: 2 M H 0 (X, D − Ek − Ei ) H 0 (X, D − Ei ) k=1 (a, b) ax1 + bx2 is surjective for any i > 2 then IX has no generators in degree D. Observation. This happens if H 1 (X, D − E1 − E2 − Ei ) = 0 Michela Artebani (UdeC) Cox rings for each i > 2. 9 / 22 K3 surfaces A K3 surface X is a simply connected compact complex surface which admits a nowhere vanishing holomorphic two form ωX . Examples: Quartic surfaces of P3 . Double covers of Del Pezzo surfaces branched along B ∈ | − 2KY |. Remark: P ic(X) is a lattice. Michela Artebani (UdeC) Cox rings 10 / 22 K3 surfaces Given an integral divisor D ⊂ X on a K3 surface, the graded algebra: M R(X, D) := H 0 (X, iD) i∈Z is finitely generated by elements of degree i ≤ 3. Remark: Cox(X) f.g implies that R(X, D) is f.g. Michela Artebani (UdeC) Cox rings 11 / 22 K3 surfaces Which K3’s have a f.g. Cox ring? NE(X) must be finitely generated. A theorem of Kovács (1994) describes the generators of NE(X): either an ample class or rational curves with self-intersections 0 and −2. Michela Artebani (UdeC) Cox rings 12 / 22 Cox rings of K3 surfaces (with J. Hausen and A. Laface) We deal with two classes of K3 surfaces: with rk Pic(X) = 2, admitting a non-symplectic involution. Michela Artebani (UdeC) Cox rings 13 / 22 K3 surfaces with ρ = 2 X is a K3 surface with rk Pic(X) = 2 and cone of curves NE(X) = hE1 , E2 i. The intersection matrix of Pic(X) is: 0 k k 0 0 k k −2 = U (k) with k ≥ 2 −2 k k −2 with k ≥ 1 with k ≥ 3 Michela Artebani (UdeC) Cox rings 14 / 22 K3 surfaces with ρ = 2 Theorem. Let X be a K3 surface with Pic(X) ∼ = U (k) and k ≥ 2, then the degrees of generators and relations of Cox(X) are: k 2 ≥3 Michela Artebani (UdeC) deg. gen. (1, 0), (0, 1), (2, 2) (1, 0), (0, 1), (1, 1) Cox rings deg. rel. (4, 4) (2, 2) 15 / 22 K3 surfaces with ρ = 2 Example. If X is a K3 surface with Pic(X) ∼ = U (2) then Cox(X) ∼ = Michela Artebani (UdeC) C[a1 , a2 , b1 , b2 , c] . (c2 − f4,4 (a, b)) Cox rings 16 / 22 K3 surfaces with non-symplectic involution Proposition. Let (X, σ) be a generic pair of a K3 surface together with a non-symplectic involution and π : X −→ X/ < σ >= Y be the induced double cover. Then Y is either smooth rational or an Enriques surface, π ∗ Pic(Y ) has index 2r in Pic(X), where r − 1 is the number of components of the branch locus of π. Michela Artebani (UdeC) Cox rings 17 / 22 K3 surfaces with non-symplectic involution Let R be the fixed locus of σ and B = π(R). Lemma. For any divisor D of Y : H 0 (X, π ∗ D) ∼ = π ∗ H 0 (X, D) ⊕ xR · π ∗ H 0 (X, D − B/2) where xR is the section defining R. Michela Artebani (UdeC) Cox rings 18 / 22 K3 surfaces with non-symplectic involution Theorem. Let (X, Y, σ) as before. If the branch divisor B of π is irreducible then Cox(X) ∼ = Cox(Y )[xR ] . (x2R − xB ) Corollary. Cox(X) is known if Y is a Del Pezzo surface. Michela Artebani (UdeC) Cox rings 19 / 22 K3 surfaces with non-symplectic involution ρ(X) 2 3 4 5 6 Michela Artebani (UdeC) Pic(X) U U (2) (2) ⊕ A1 U ⊕ A1 U (2) ⊕ A1 U ⊕ 2A1 U (2) ⊕ 2A1 U ⊕ 3A1 U (2) ⊕ 3A1 U ⊕ 4A1 U (2) ⊕ 4A1 U ⊕ D4 U (2) ⊕ D4 Y F4 F0 P2 F4 F0 F4 F0 F4 F0 F4 F0 F4 F0 Cox rings Blow-up at: 1 pt. 1 pt. 1 pt. 2 pts. 2 pts. 3 pts. 3 pts. 4 pts. 4 pts. 20 / 22 References V. Batyrev, O. Popov The Cox ring of a del Pezzo surface. Progr. Math. 226, Birkhauser Boston, Boston, MA, 85–103, (2004). F. Berchtold, J. Hausen Homogeneous coordinates for algebraic varieties. J. Algebra 266(2), 636–670, (2003). D. Cox The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4(1), 17–50, (1995). Michela Artebani (UdeC) Cox rings 21 / 22 References S. Kovács The cone of curves of a K3 surface. Math. Ann., 300, 681 - 691, (1994). A. Laface, M. Velasco Picard-graded Betti numbers and the defining ideal of Cox rings. arXiv:0707.3251v1 Michela Artebani (UdeC) Cox rings 22 / 22
© Copyright 2026 Paperzz