08-035_06_AFSM_C06_001-034.qxd 7/22/08 4:11 PM Page 13 b) y 5 sin u and y 5 tan u have no characteristics in common except for their y-intercept and zeros. 2. a) b) The maximum values occur at 0 and every 2p, since the period is 2p. tn 5 2np, nPI c) The minimum value occurs at p and every 2p, since the period is 2p. tn 5 2p 1 2np, nPI sin x 4. Here is the graph of y 5 : cos x b) u 5 25.50 Here is the graph of y 5 tan x: u 5 22.36 The two graphs appear to be identical. 5. a) The graph of y 5 tan u intersects the u-axis at 0, 6p, 62p, c tn 5 np, nPI b) The graph of y 5 tan u has vertical asymptotes p 2 at 6 , 6 u 5 0.79 tn 5 3p ,c 2 p 1 np, nPI 2 6.4 Transformations of Trigonometric Functions, pp. 343–346 u 5 3.93 c) i) The graph of y 5 sin u intersects the u-axis at 0, 6p, 62p, c tn 5 np, nPI p ii) The maximum value occurs at and every 2p, 2 since the period is 2p. p tn 5 1 2np, nPI 2 3p iii) The minimum value occurs at and every 2p, 2 since the period is 2p. 3p 1 2np, nPI tn 5 2 3. a) The graph of y 5 cos u intersects the u-axis at p 3p 6 ,6 ,c 2 2 p tn 5 1 np, nPI 2 Advanced Functions Solutions Manual 1. a) period: 2p 2p p 5 5 0k0 040 2 amplitude: 0 a 0 5 0 0.5 0 5 0.5 horizontal translation: d 5 0 equation of the axis: y 5 0 b) period: 2p 2p 5 5 2p 0k0 010 amplitude: 0 a 0 5 0 1 0 5 1 horizontal translation: d 5 p 4 equation of the axis: y 5 3 2p 2p 5 c) period: 0k0 3 amplitude: 0 a 0 5 0 2 0 5 2 horizontal translation: d 5 0 equation of the axis: y 5 21 6-13 08-035_06_AFSM_C06_001-034.qxd d) period: 7/22/08 4:11 PM 2p 2p 5 5p 0k0 0 22 0 Page 14 p 4 horizontal translation: d 5 2 units to the left amplitude: 0 a 0 5 0 5 0 5 5 p horizontal translation: d 5 6 equation of the axis: y 5 22 2. For y 5 0.5 cos (4x) equation of the axis: y 5 4 4. y 5 a sin(k(x 2 d)) 1 c a) a 5 25 period: For y 5 sin ax 2 p b13 4 2p 5p 0k0 k52 f(x) 5 25 sin(2x) 2 4 2 b) a 5 5 period: 2p 5 10 0k0 p 5 p 1 2 f(x) 5 sina xb 1 5 5 15 c) a 5 80 k5 For y 5 2 sin(3x) 2 1 period: 2p 5 6p 0k0 1 3 1 9 f(x) 5 80 sin a xb 2 3 10 d) a 5 11 k5 For y 5 5 cos a22x 1 p b22 3 period: Only the last one is cut off. 3. y 6 4 2 0 – 3p – p –p 4 2 4 x p p 3p 4 2 4 y 5 22 cosa4ax 1 period: p bb 1 4 4 2p 2p p 5 5 0k0 040 2 amplitude: 0 a 0 5 0 22 0 5 2 6-14 2p 1 5 0k0 2 k 5 4p f(x) 5 11 sin (4px) 5. a) period 5 2p, amplitude 5 18, equation of the axis is y 5 0; y 5 18 sin x b) period 5 4p, amplitude 5 6, equation of the axis is y 5 22; y 5 26 sin (0.5x) 2 2 c) period 5 6p, amplitude 5 2.5, equation of the axis is y 5 6.5; y 5 22.5 cos a xb 1 6.5 1 3 d) period 5 4p, amplitude 5 2, equation of the axis is y 5 21; y 5 22 cos a xb 2 1 1 2 Chapter 6: Trigonometric Functions 08-035_06_AFSM_C06_001-034.qxd 7/22/08 4:11 PM Page 15 6. a) vertical stretch by a factor of 4, vertical translation 3 units up c) f(x) 5 3 cos ax 2 b) reflection in the x-axis, horizontal stretch by a factor of 4 d) f(x) 5 cos a2ax 1 c) horizontal translation p to the right, vertical translation 1 unit down 8. a) 6 4 2 p b 2 p bb 2 y 0 –2 x p 2 p 3p 2 2p d) horizontal compression by a factor of 14, horizontal p translation to the left 6 b) 7. a) f(x) 5 1 cos x 1 3 2 4 y 2 0 –2 –4 –6 x p 2 p 3p 2 2p 1 b) f(x) 5 cos a2 xb 2 Advanced Functions Solutions Manual 6-15 08-035_06_AFSM_C06_001-034.qxd c) 6 4 2 7/23/08 11:11 AM Page 16 y x 0 –2 p 2 p 3p 2 2p 9. a) period: 2p 5p 5 0k0 3 6 5 The period of the function is 65. This represents the time between one beat of a person’s heart and the next beat. 5p b) P(60) 5 220 cos a (60)b 1 100 5 80 3 c) y 120 110 100 90 80 x 0 1 2 3 4 –20 k5 6 4 2 y x 0 –2 p 2 p 3p 2 y e) 0 –2 –4 –6 2p d) The range for the function is between 80 and 120. The range means the lowest blood pressure is 80 and the highest blood pressure is 120. y 10. a) 30 x p 2 p 3p 2 2p Horizontal distance from centre (cm) d) 20 10 0 –10 x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 –20 –30 Time (s) y f) 0 –2 –4 –6 x p 2 p 3p 2 2p b) There is a vertical stretch by a factor of 20. The period is 0.8 s. 2p 5 0.8 k 5p k5 2 There is a horizontal compression by a factor of 1 2 5 . 0k0 5p There is a horizontal translation 0.2 to the left. c) y 5 20 sin a 6-16 5p (x 1 0.2)b 2 Chapter 6: Trigonometric Functions 08-035_06_AFSM_C06_001-034.qxd 11. a) Distance above the ground (cm) 60 50 40 30 20 10 0 7/23/08 11:12 AM Page 17 y 15. Reflect in the x-axis and stretch vertically by a factor of 2 to produce graph of y 5 22 sin x. x 1 2 3 4 5 6 Stretch horizontally by a factor of 2 to produce graph of y 5 22 sin (0.5 x). Time (s) b) vertical stretch by a factor of 25, reflection in the x-axis, vertical translation 27 units up; the period is 3 s. 2p 53 k 2p k5 3 3 1 5 horizontal compression by a factor of 0k0 2p 2p c) y 5 225 cos a xb 1 27 3 12. By looking at the difference in the x-values of 5p 3p the two maximums, 2 and 2 , we see that the period is 2p . 7 7 14p , 5b. 13 Since the maximum is 4 units above y 5 9, the minimum would be at y 5 5. If the period of the function is 2p, then the minimum would be at of p Translate units to the right to 4 produce graph of y 5 22 sin Q 0.5 Qx 2 RR . p 4 Translate 3 units up to produce graph of y 5 22 sin Q 0.5 Qx 2 RR 1 3. 4 p 7 13. Answers may vary. For example, a p 1p 13 Start with graph of y 5 sin x. 14p . 13 14. a) This is a cosine function with amplitude 5 1. 2p 5 4p period 5 0.5 y 5 cos (4px) b) This is a sine function with a reflection in the x-axis and an amplitude 5 2. p 2p 5 period 5 8 4 p y 5 22 sin a xb 4 c) The y-axis is y 5 21 and the amplitude is 4. The function is shifted horizontally to the right by 10. p 2p 5 period 5 40 20 p y 5 4 sin a (x 2 10)b 2 1 20 Advanced Functions Solutions Manual 16. a) The car starts at the closest distance to the pole which is 100 m. b) The centre of the track is 400 m from the pole because it is half the distance between the closest and furthest point. c) The radius is 400 2 100 5 300 m. d) The period of the function is 80 s. This is how long it takes to complete one lap. 2p(300) m /s 8 23.561 94 m/s e) 80 Mid-Chapter Review, p. 349 p 180° radians 3 a b 5 22.5° 8 p radians 180° b 5 720° b) 4p radians 3 a p radians 180° b 8 286.5° c) 5 radians 3 a p radians 11p 180° radians 3 a b 5 165° d) 12 p radians 1. a) 6-17
© Copyright 2026 Paperzz