Experimental characterization and unit cell modeling of structurally stitched NCF laminates M. Magin, N. Motsch, H. Schmidt, H. Heß Institut für Verbundwerkstoffe GmbH Erwin-Schrödinger-Str. 58 67663 Kaiserslautern Germany www.ivw.uni-kl.de FACC Technical Colloquium, July 5th, 2012 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 1 Content • • • • • • • • • • Introduction History of investigation of structurally stitched C-NCF laminates at IVW FE based 2D unit cell model In-plane stiffness and strength Compression after impact (CAI) strength 3D enhancement of unit cell model Out-of-plane stiffness and strength Mode-I behavior Qualitative effect of structural stitching Conclusion © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 2 Effects of structural stitching on characteristics of C-NCF laminates Fabrication x z z z y z x, y x, y x, y Void characterization Modeling In-plane tension, compression, shear y void due to unit-cell model Parameters: structural stitching (FEA) • stitching pattern yarn • diameter of yarn y • stitching direction NCF void • test direction x fiber Results: Results: misalignment Reduction of in-plane stiffness Void geometry and strength properties for the UD-layer most part x Identification of stitching configurations with a maximum increase of out-ofplane and a minimum decrease of in-plane properties of structurally stitched C-NCF laminates © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 3 History of investigation of structurally stitched C-NCF laminates at IVW LuFo II, 1.7.99 – 31.12.02 • in-plane stiffness (tension, compression) of unstitched and structurally stitched C-NCF laminates LuFo III, 1.1.03 – 30.6.07 • in-plane strength (tension, compression) of unstitched and structurally stitched C-NCF laminates DFG, Schubbelastete MAG, 1.5.06 – 30.06.10 • in-plane shear stiffness and strength of unstitched and structurally stitched C-NCF laminates LuFo IV, first Call - HIT, 1.1.07 – 31.12.10 • out-of-plane stiffness and in-plane stress/strain characteristics of unstitched and structurally stitched C-NCF laminates LuFo IV, second Call - HIGHER, 1.1.09 – 31.12.12 • out-of-plane strength of unstitched and structurally stitched CNCF laminates • simulation of the mode-I behavior • simulation of the behavior of unstitched and structurally stitched T-joints under T-pull load © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 4 LuFo II: Stitching parameters • linear yarn density upper thread: 68 tex or 136 tex E-glass yarn lower: 68 tex E-glass yarn • loading and stitching direction parallel x (0° to fiber direction) parallel y (90° to fiber direction) upper yarn • stitching patterns spacing si and pitch length pi stitching direction x y © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 10 mm 4.00 6.06 9.18 6.06 reinforcement density in cm-2 minimum and maximum reinforcement densities: 10 mm 10 mm s1 = 5.0 mm s3 = 3.3 mm p1= 5.0 mm p3= 3.3 mm lower yarn x=0° s1; p1 s3; p3 5 LuFo II: Characterization of voids due to stitching yarn Micrograph through a -45°-layer of a structurally stitched [A1-B-A2] CFRP laminate parallel to laminate plane y structural stitching yarn (E-glass, 68 tex) global fiber orientation in single layer void width (w) void crosssection (A) Results • area of void > area of NCF void • area of void >> area of yarn • area, width and length of voids decrease from the surface towards the center of the laminate • area, width and length of voids increase with an increasing yarn thickness x NCF void void length (l) © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 6 LuFo II: FE based unit cell model Model definition Parameters taken into account y z x • thickness, fiber orientation and number of layers stitching direction y pitch length p • stitching direction (x; y) suppressed single layers © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß • spacing and pitch length (5.0 mm; 3.3 mm) • linear yarn density (68 tex; 136 tex) • loading direction (x; y) voids due to stitching yarn 7 LuFo II: FE based unit cell model Meshed 90°-layer Unit cell model fiber orientation layer 1 fiber orientation 90°-layer y z y x x undisturbed fiber orientation (20-node SOLID186 element) © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß local region of fiber dislocation 8 LuFo II: Determination of elastic constants y calculation of compliance matrix [ABD]-1 unit cell generation y unit load case calculations • normal strain ex° • normal strain ey° • shearing strain gxy° • curvature kx • curvature ky • torsional kxy B 1 A* B* *T * D B B x z y z estimation of stiffness matrix [ABD] [ ABD] 1 x z A B elastic constants (Ex, Ey, etc.) x N A B ε 0 B D κ M ABD © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 9 LuFo II: Analysis of unit load cases Nodal displacements | USUM | u x u y u z e x° = 1 % e y° = 1 % y x A11 A12 A16 B11 B12 B16 2 2 y x gxy° = 1 % A12 A22 A26 B12 B22 B26 ky = 1 % kx = 1 % z x B11 B12 B16 D11 D12 D16 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 2 y x A16 A26 A66 B16 B26 B66 kxy = 1 % z y B12 B22 B26 D12 D22 D26 z x B16 B26 y B 66 D16 D26 D66 10 LuFo II: NCF lay-up of CFRP test laminates (HTA/RTM6) NCF CFRP laminate tension test NCF CFRP laminate compression test x x x A1 A1 y [45°/0°/-45°] [45°/0°/-45°] y y 20 mm (B/2)s [0°/90°/90°/0°] x A2 [-45°/0°/45°] B [0°/90°/0°] y A1 [45°/0°/-45°] x A2 [-45°/0°/45°] z © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß (B/2)s [0°/90°/90°/0°] y A2 [-45°/0°/45°] z 11 Through the thickness stitching effect on in-plane tensile modulus of [A1-B-A2] NCF CFRP laminates relative to unstitched laminate [%] LuFo II: Experimentally and theoretically determined in-plane tensile modulus loading direction x 140 130 experiment stitching direction x analysis (FE-unit cell) stitching direction y 120 68-tex-yarn 68-tex-yarn 136-tex-yarn • through-thickness stitching generally reduces in-plane 110 modulus of CFRP laminates tensile 71.5 GPa • stitching configurations with slight modulus increase exist 100 (loading direction y) 90 • maximum reduction of in-plane tensile modulus amounting to 23 % compared to unstitched laminate (29 % loading 80 direction y) • tensile stiffness is most influenced by thickness of stitching 70 yarn • averaged discrepancy of the calculated results from 60 experimental data = 5 % 0 136-tex-yarn s [mm] un5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 p [mm] stitched 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 12 LuFo III: Strength prediction Iterative, 3D layer-by-layer failure analysis Fracture criteria for composite • Inter fiber failure (IFF): Puck‘s 3D IFF actionplane criterion stress states - Mode A, A*, B uncritical - Modus C critical for stress exposure ≥ 1.25 and fracture plane angle ≤ - 30 ° or ≥ 30 ° Fracture criterion for resin (void) Maximum principal stress criterion • Fiber failure (FF): Maximum stress criterion (tension and compression) stiffness degradation based on fracture modus and fracture plane angle analysis © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß stiffness degradation 13 Through the thickness stitching effect on in-plane compressive strength of [A1-(B/2)S-A2]2 NCF CFRP laminates relative to unstitched laminate [%] LuFo III: Experimentally and theoretically determined in-plane compressive strength • • • • • loading direction x 140 experiment analysis (FE-unit cell) 130 785 MPa 120 110 100 90 80 through-thickness stitching generally reduces in-plane compressive strength of CFRP laminates 70 stitching 60 configurations with slight strength decrease exist maximum reduction of in-plane compressive strength amounting 50 to 31 % compared to unstitched laminate 40 compressive strength is most influenced by thickness of 30 yarn stitching 20 discrepancy of calculated results from experimental averaged data10 =8% 0 s [mm] un5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 p [mm] stitched 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 © Institut für Verbundwerkstoffe GmbH, Nicole Motsch, Henrik Schmidt 14 DFG-Schub: Three-rail shear test and sample geometry In-plane shear testing of unstitched and structurally stitched laminates with the three rail shear method loading direction x or y CFRP specimen CFRP specimen rail connection to test machine © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß tab 15 Through the thickness stitching effect on inplane shear strength relative to unstitched laminate [%] DFG-Schub: Experimentally and theoretically determined in-plane shear strength [45°/0°/-45°/0°/90°/90°/0°/-45°/0°/45°]-HTS-laminate 140 loading direction x 120 222 MPa experiment analysis (FE-unit cell) 100 80 • through-thickness stitching generally reduces in-plane shear 60 of CFRP laminates strength • maximum reduction of in-plane shear strength amounting to 68-tex-yarn 136-tex-yarn 68-tex-yarn 22 % 40compared to unstitched laminate • in-plane shear strength is most influenced by thickness of stitching yarn 20 • averaged discrepancy of calculated results from experimental data = 15 % 0 136-tex-yarn s [mm] un5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 5.0 5.0 3.3 3.3 p [mm] stitched 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 16 Experimentally determined compression after impact (CAI) strength [45°/0°/-45°/0°/90°/90°/0°/-45°/0°/45°]-HTS laminate Impact energy 30 J, ca. 12 J/mm damage area delamination at impact surface length diameter of impact area compressive failure at impact area damage area at laminate opposite to impact surface delamination width m-CT photographs after impact © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 17 Normalized compression after impact (30J) strength of structurally stitched [A1-(B/2)s-A2]HTS laminates [%] Normalized compression strength after 30 J impact [45°/0°/-45°/0°/90°/90°/0°/-45°/0°/45°]-HTS laminate loading direction y loading direction x • through-thickness stitching generally raises CAI strength of CFRP laminates • stitch maximum enhancement of CAI strength amounting to density 48 % compared to unstitched laminate • reduction of damage area at laminate opposite to impact yarn surface up to 70 % yarn Reinforcement density © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 18 LuFo IV-I (HIT): NCF lay-up of CFRP test laminates (HTS/RTM6) [(+45/-45/0/90)S]2 laminates +45° -45° 0° 90° z Saertex NCF-HTS • 0°/90°, (283/267) g/m² • +45°/-45°, (267/267) g/m² • -45°/45°, (267/267) g/m² 90° 0° -45° +45° RTM6 resin stitching yarns • Amann Group Serafil 200/2 polyester yarn • Culimeta E-glass yarn • 34x2 tex • 68x2 tex © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß +45° -45° y 0° 90° 90° 0° -45° +45° [Premium Aerotec] x 19 LuFo IV-I (HIT): Parameter configurations loading directions stitching direction linear yarn density in tex spacing in mm pitch length in mm K1 x x 68 3.3 3.3 K2 x x 68 5.0 5.0 K3 x x 136 3.3 3.3 K4 x x 136 5.0 5.0 K5 x y 136 3.3 3.3 K6 y x 136 3.3 3.3 parameter configuration unstitched © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 20 LuFo IV-I (HIT): Enhancement of unit-cell model • generation of six additional load cases → 12 unit load cases for 3D stiffness prediction normal load cases bending load cases shear load cases twisting load cases © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 21 LuFo IV-I (HIT): Enhancement of unit cell model • Generation of load case for strength prediction in z-direction p displacements uz in mm 0 fracture plane angle in ° -90 s • Estimation of IFF failure by means of Puck 3D action plane criterion y z 0,0014 x 90 IFF effort NCF relation between von-Mises stress and allowable stress 0,96 in yarn and pure resin 0,230 1,00 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 0,5 22 LuFo IV-I (HIT): Out-of-plane tensile tests x- axis rotation z x y connection to testing machine clamping device y-axis rotation specimen stitch camera 1 camera 2 optical 3D displacement measurement © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 23 120 120 110 110 to unstitched reference [%] Ezt modulus of unstitched and structurally stitched [(+45/-45/0/90)S]2 laminates compared LuFo IV-I (HIT): Out-of-plane modulus Ezt: comparison experiment and FE unit cell model 100 100 90 90 • 80 80 70 70 • • experiment • experiments show stiffness increase for all configurations maximum enhancement of 7 % altogether good correlation between experiment and unit-cell model conservative prediction FE unit-cell model 0 60 unstitched unstitched K1 K1 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß K2 K2 K3 K3 K4 K4 K5 K5 24 120 120 compared to unstitched reference [%] Out-of-plane strength Rzt of unstitched and structurally stitched [(+45/-45/0/90)S]2 laminates LuFo IV-I (HIT): Out-of-plane strength Rzt • 115 • 110 110 experiments show slight strength increase for K3 and K5 significant strength reduction for K4 (largest resin areas) 105 100 100 95 90 85 80 75 70 0 unstitched 1 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß K1 2 K2 3 K3 4 K4 5 K5 6 25 Mode I interlaminar fracture behavior: TDCB test Tapered double cantilever beam test (TDCB test) load introduction element aluminum tabs FEP insert z CFRP specimen (width 25 mm) x first stitching row fiber bridging activated stitching yarns FEP insert broken stitching yarn © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß matrix and interface failure 26 Normalized Mode I energy release rate G1R of structurally stitched [A1-(B/2)s-A2]-HTS laminates [%] Normalized Mode-I energy release rate [45°/0°/-45°/0°/90°/90°/0°/-45°/0°/45°]-HTS laminate (modified beam theory) (compliance calibration method) direction of crack propagation y stitch density • through-thickness stitching generally raises energy release rate of CFRP laminatesder Restdruckfestigkeit bei strukturell vernähtem • Steigerung • maximum enhancement of energy48% release rate amounting to Laminat um maximal factor of 5.4 compared to unstitched laminate direction of crack • reduction of the differences between energy release rates of propagation x different directions of crack propagation (unstitched 42 %; structurally stitched 7 %) © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß Reinforcement density 27 Qualitative effect of structural stitching on in-plane and out-of plane properties Stitching direction Yarn diameter Spacing Pitch Property x y Tensile modulus Tensile strength Compression modulus Compression strength Shear modulus Shear strength 0 0 0 0 - 0 0 0 + 0 + --0 -- 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CAI-strength Mode I energy release rate 0 0 0 0 ++ - 0 - + + - (--) 0 + (++) increasing increasing increasing Stitch density increasing negative (strongly negative) negligible positive (strongly positive) © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 28 Conclusion Experimental and theoretical work on structurally stitched C-NCF laminates • • • • development of a 2D FE based unit cell model enhancement of unit cell model for out-of plane investigations (3D) development of G1R model for investigation of Mode I behavior modulus and strength changes due to structural stitching compared to unstitched reference • in-plane tension modulus => max. reduction 29 % • in-plane tension strength => max. reduction 36 % • in-plane compression modulus => max. reduction 11, max. increase 22 % • in-plane compression strength => max. reduction 31 % • in-plane shear modulus => max. reduction 15 % • in-plane shear strength => max. reduction 22 % • out-of-plane tension modulus => max. increase 7 % • out-of-plane tension strength => max. increase 4 % • CAI strength => max. increase 48 % • damage area after impact loading => max. reduction 70 % • mode I energy release rate => max. increase factor of 5.4 © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 29 Thanks to Airbus Deutschland GmbH Bundesministerium für Wirtschaft und Technologie (BMWi) Deutsche Forschungsgemeinschaft (DFG) for their financial support of the projects and to you for your attention. © Institut für Verbundwerkstoffe GmbH, Magin, Motsch, Schmidt, Heß 30
© Copyright 2025 Paperzz