CHAPTER 5 Think & Discuss (p. 247) 5.1 Guided Practice (p. 253) 1. parabola 1. about 1900 ft 2. Up; since a 3 and is greater than 0, the parabola opens up. 2. about 22 sec; Sample answer: The graph charts the lava fragment in the air from its initial point at zero until there are no longer fragments in the air at 22 sec. 3. intercept form 4. 5. y Skill Review (p. 248) x 4. 3. 2x 1 x 7 4x 12 3x 6 x 3 x2 5 3 5. y 1 x (2, 3) y 2(x 1)2 4 1 x 1 x2 6. x 1 x 0.5 y (0.5, 2.25) 1 x 1 1 y (x 2)(x 1) 3x 2y 12 1 1 1 x 6. 7. y y y 2x 1 1 x 1 7. y x 2 (0, 2) 1 1 1 9. y y 3 1 1 y 3 x 2 2x 3 (3, 0) x 1 1 1 y x 3 1 1 x 3 x 8. y (4, 6) 3 y 5 (x 4)2 6 (1, 4) 1 1 x y 1 1 1 (1, 4) x 1 1 y 1 1 y5x 8. 1 y x 2 4x 7 1. 3x 5 0 2. 4x 24 12 3x 5 y (3, 0) x y 2x 1 4 1 Lesson 5.1 x 1 1 x4 Activity (p. 29) 9. 1. 2. y 1 1 1 x 1 5 y 2 x(x 3) (1.5, 5.625) 3. 0, 0; x 0 4. The graph opens up if a > 0, the graph x 1.5 opens down if a < 0. 124 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 10. y x 1x 2 11. y 2x 4x 3 24. x 4 y y 2x2 x 12 y x2 3x 2 y 2x2 2x 24 12. y 4x 12 5 y 4x2 2x 1 5 y x2 4x 4 7 y 4x2 8x 9 y x2 4x 11 12x 6x 8 12x2 14x 48 12x2 7x 24 2 2 3 x 9 4 2 2 3 x 18x 81 2 2 3 x 12x 50 14. y y y 15. y y y 16. males: x 1 13. y x 22 7 x 1 1 1 y 2 x 2 4x 5 25. x 3 18. A 20. y 1 (3, 1.5) y 1 6 x 2 1 1 x3 1 x 4 612.6 908.9 71.4F; females: x 73F 8.58 12.448 26. 27. y x2 y 1 y (x 1)2 2 5.1 Practice and Applications (pp. 253–255) 17. C (4, 3) 1 1 y x1 (2, 1) 1 x y (x 2)2 1 (1, 2) 1 19. B 1 x x1 28. x 3 y 1 y x 2 2x 1 x 1 1 1 1 1 y 2(x 3)2 4 (3, 4) x (1, 2) 21. y 29. y y 2x 2 12x 19 1 x3 x 4 1 1 x2 y (2, 2) y x 2 4x 2 1 1 (4, 5) x 1 1 22. y 3(x 4)2 5 (3, 1) 30. y (1, 3) 1 y 3 (x 1)2 3 x 1 x 1 1 23. x x 1 y 31. x0 y (0, 5) y 3x 2 5 5 y 4 (x 3)2 1 1 1 1 x Copyright © McDougal Littell Inc. All rights reserved. 1 1 (3, 0) x x3 Algebra 2 Chapter 5 Worked-out Solution Key 125 Chapter 5 continued 32. 41. y 3x 7x 4 y x4 1 y 3x2 7x 4x 28 (2, 0) y 3x2 9x 84 x (6, 0) 1 42. y 5x 84x 1 y (x 2)(x 6) (4, 4) 33. y 20x2 37x 8 y x2 6x 11 y x2 10x 25 11 (1, 0) y x2 10x 14 x 2 45. y 6x 2 9 y 4(x 1)(x 1) y 6x2 4x 4 9 x0 y 6x2 24x 33 34. x 4 y (x 3)(x 5) (4, 1) 9 y x2 6x 9 2 44. y x 5 11 (1, 0) (0, 4) y 20x2 32x 5x 8 2 y 1 43. y x 32 2 y 8x2 14x 49 20 1 (3, 0) (5, 0) 46. y 8x 72 20 y y 8x2 112x 372 x 1 47. y 9x 22 4x y 81x2 36x 4 4x y 81x2 32x 4 35. x 2.5 48. y 3 x 6x 3 7 y y 73x2 9x 18 y 73x2 21x 42 (1, 0) 49. y 2 8x 12 1 (4, 0) y 1 (x 3 4)(x 1) 1 x 1 y 1264x2 16x 1 32 (2.5, 0.75) 36. y 3 2 y 32x2 8x 1 1 y 2 (x 3)(x 2) 50. a. b. (0.5, 3.125) 1 (3, 0) x 1 (2, 0) x 0.5 y 3 (0, 0) x1 As c increases, the graph moves upward. The graph moves left as b increases. (1, 3) y 3x(x 2) 51. (2, 0) 1 1 x Torque (foot-pounds) 37. 38. y x 5x 2 y x2 5x 2x 10 y x2 7x 10 39. y x 3x 4 40. y 2x 1x 6 y x2 3x 4x 12 y 2x2 x 6x 6 y x2 x 12 y 2x2 14x 12 126 Algebra 2 Chapter 5 Worked-out Solution Key y 80 75 70 65 60 55 50 45 40 0 x 0 1 2 3 4 5 6 Speed (thousands of revolutions per minute) About 3093 rev per min; 74.68 foot-pounds Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 61. 6x 18 48 52. width 160 ft 6x 30 height 1.5 ft 53. 18x 11 x 11 18 x 5 y 90 Rate (calories per minute) 62. 20x 5 2x 6 63. 0.6x 0.2x 2.8 80 64. 0.4x 2.8 70 60 11x 11 40 2 x7 50 35x 24x 11 40 2 x 20 40 30 20 65. 10 0 0 50 75 100 125 150 Speed (meters per minute) 5x x 1 1 12 6 4 2 3x 3 12 4 x Sample answer: The energy use decreases until about 90 meters per minute and then increases. 54. width 6 ft x 3 66. z (0, 0, 4) height 2 ft 55. a. x xyz4 21.4 14% 1.522 (0, 4, 0) y y 0.761142 21.414 94.8 56 cm3 per gram b. x 17.7 13.6% 1.304 x y 0.65213.62 17.713.6 76.0 44 cm3 per gram c. Popping volume (cm3/gram) y 60 y 0.761x 2 21.4x 94.8 50 40 30 y 0.652x 2 17.7x 76.0 20 10 0 8 9 10 11 12 13 14 15 16 17 18 x Moisture content (% of weight) 2xh z (0, 0, 3) answer: Hotair popping produces a greater volume than hotoil popping. x y 2z 6 (0, 6, 0) y x (6, 0, 0) 68. z y ax px q 56. y ax h2 k x2 67. d. Sample Volume of Popcorn y a (4, 0, 0) k h2 y ax2 2axh ah2 k 3x 4y z 12 y ax2 xp xq pq (0, 3, 0) y ax2 axp q apq For y ax 2axh k, a a and b 2ah. b Then x (the x-coordinate of the vertex) 2a 2ah h. For y ax 2 aqx apq, a a and 2a b b ap q. Then x (then x-coordinate of the 2a ap q p q vertex) . 2a 2 2 x 69. z x2 59. 4x 28 x 7 Copyright © McDougal Littell Inc. All rights reserved. (0, 0, 5) 5x 5y 2z 10 (0, 2, 0) (2, 0, 0) 57. x 2 0 y (4, 0, 0) ah2 5.1 Mixed Review (p. 255) (0, 0, 12) y x 58. 2x 5 x 2.5 60. 4x 8 x 2 Algebra 2 Chapter 5 Worked-out Solution Key 127 Chapter 5 continued 70. z 75. A (0, 0, 14) 2x 7y 3z 42 (0, 6, 0) y x 71. z (0, 3, 0) y x 3y 3z 9 (0, 0, 3) y x (9, 0, 0) 1 72. A 5 x y 1 19 1 1 6 1 5 1 ; det A 1 5 6 1 1 19 6 1 19 3 6 19 5 4 6 z 23 1 ; det A 8 3 11 4 2 6 ; 1 4 4 1 2 2 1 6 1 1 21 4 12 8 2 24 8 8 34 2 21 21 5 3 1 4 2 4 6 1 1 21 20 24 6 8 30 12 50 34 4 21 21 5 3 1 2 4 1 4 1 1 21 5 8 12 4 20 6 1 22 1 21 21 2, 4, 1 3, 4 73. A 2 1 1 det A 5 12 6 2 30 6 21 (21, 0, 0) x 5 3 1 1 76. A 1 2 3 1 7 1 1 ; 5 5 1 2 4 20 2 x 2 11 11 det A 5 6 7 2 7 15 18 20 38 2 5 3 2 4 15 y 1 11 11 x 2, 1 74. A 71 102; det A 14 10 24 15 10 9 2 30 90 x 5 24 24 7 15 1 9 63 15 y 2 24 24 5, 2 y z 5 7 28 3 1 7 38 1 1 5 25 84 49 28 35 105 60 98 1 38 38 1 1 2 5 7 28 38 1 1 5 35 10 28 14 28 25 17 17 0 38 38 1 1 2 3 1 7 38 5 7 28 28 42 35 10 49 84 105 123 6 38 38 1, 0, 6 128 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 3 1 2 2 77. A 6 9 9 1 ; 4 det A 8 27 108 81 4 72 x 143 149 292 3 9 1 1 2 4 292 11 45 56 6. x2 16 x 4x 4 7. y2 2y 1 y 1y 1 8. p2 4p 4 p 2p 2 9. q2 q qq 1 x40 y 11 9 45 1 56 4 292 2 6 9 360 99 3024 3645 112 264 292 2763 3493 2.5 292 z 2 6 9 3 11 1 45 2 56 292 12. 3x 1x 3 0 3x 1 x 3 x 13 14. v2 14v 49 0 x 2 4u2 13. 10 2u 12u 1 0 2u 1 2u 1 1 2 u 12 u 15. 5w2 30w 0 v 7v 7 0 5ww 6 0 v7 w0 w6 16. y x 1x 5; 17. y x 2x 4; 2, 4 1, 5 18. y x 1x 1; 1, 1 19. y x 52; 5 20. y 2x 4x 3; 21. y 3x 2x 2; 2 3, 4, 3 2 22. 2x 122x 8 96 96 4x2 40x 96 112 1215 132 99 180 1008 292 x20 x4 44 168 810 504 22 540 292 1022 1022 7 292 11. x 4x 2 0 10. x 3 x 1 4x2 10x 24 0 4x 12x 2 0 1235 1089 146 0.5 292 292 The width of the border is 2 ft. 5.2 Practice and Applications (pp. 260–263) 7, 2.5, 0.5 1 22 7 15 1 ft per hr 78. 14 14 14 23. x2 5x 4 x 4x 1 24. x2 9x 14 x 7x 2 25. x2 13x 40 x 5x 8 Lesson 5.2 26. x2 4x 3 x 3x 1 5.2 Guided Practice (p. 260) 27. x2 8x 12 x 6x 2 1. Sample answer: numbers where the value of the function is zero 2. The x-term is negative and its absolute value is greater than the absolute value of the constant term. 3. The student did not set the factors equal to zero. x2 4x 3 8 x2 4x 5 0 28. x2 16x 51 cannot be factored 29. a2 3a 10 a 5a 2 30. b2 6b 27 b 9b 3 31. c2 2c 80 c 10c 8 32. p2 5p 6 p 6p 1 33. q2 7q 10 cannot be factored 14r 72 r 18r 4 34. r2 x 1x 5 0 35. 2x2 x10 36. 3x2 17x 10 3x 2x 5 x1 x50 x 5 4. x2 x 2 x 1(x 2 7x 3 2x 1x 3 37. 8x2 18x 9 4x 32x 3 38. 5x2 7x 2 5x 2x 1 5. 2x x 3 2x 3x 1 2 Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 129 Chapter 5 continued 39. 6x2 9x 5 79. w2 12w 36 3w 36 w2 0 cannot be factored 19x 6 5x 22x 3 2w2 9w 0 41. 3k2 32k 11 3k 1k 11 w2w 9 0 40. 42. 10x2 14m 16 11m 8m 2 11m2 43. 18n2 9n 14 3n 26n 7 w 0 w 92 80. y x 2x 1; 4u 3 7u 3u 1 44. 7u2 45. 12v2 25v 7 3v 74v 1 46. 4w2 13w 27 cannot be factored 82. y x 7x 5; 2, 2 6x 9 x 3 0, 3 86. y 3 x2 4x 5 50. 4r2 4r 1 2r 12 y 3x 5x 1; 51. 9s2 12s 4 3s 22 5, 1 52. 16t2 9 4t 34t 3 53. 49 54. 7 10a7 10a 1 2, 56. 5 x 2 5x 2x 1 57. 2 1 23x 13x 1 9x2 4 mn 9 b. If m n 0, then m n. Substituting in mn 9, nn 9, n2 9, and n2 9. There is no such number such that n2 9. Therefore, x2 9 is not factorable. 58. 3x2 18x 81 3x 92 59. 42y2 7y 15 42y 3y 5 4 2x5 2x 20 10 90. 60. 716a2 24a 9 74a 32 20 8x 4x2 20 10 0 61. uu 7 4x2 18x 10 0 62. 6tt 6 2x 102x 1 0 63. v2 2v 1 v 12 x 64. 2d2 6d 8 65. x 4x 1 0 m 53 72. 4a10a 1 0 74. x2 9x 20 0 x 4x 5 0 76. 3y 8y 1 0 130 2x2 x 105 93. 3x 40 0 2x2 x 105 0 x 5x 8 0 2x 15x 7 0 x5 x7 1 2 2 3x 94. 3x2 x 22 95. x 44 0 1 2 6x 3x2 2x 114 x 114 0 3x 11x 4 0 3x 19x 6 0 x4 x6 p 7 p 7 3y2 5y 8 0 y p2 49 0 p 7p 7 0 x 14 x2 3x 40 x2 1 a 0 a 10 4x 12 0 8 3 60 ft 92. x 4 x 5 77. x 60 70. 3m 52 0 b 5 b 6 75. 16x2 8x 1 0 x 60x 675 0 x 54 x 12 n 49 n 49 73. 3b 5b 6 0 x2 615x 40,500 0 68. 4x 52x 1 0 k 12 71. 9n 49n 4 0 91. 375 x240 x 90,000 40,500 x 11 x 8 x 35 x 2 69. k 122 0 1 2 0.5 ft 66. x 11x 8 0 x 4 x 1 67. 5x 3x 2 0 8 89. a. m n 0 2 55. 81c2 198c 121 9c 112 x2 87. y x 82; 88. y 2x 1x 4; 60b 36 5b 6 25b2 85. y xx 3; 10 2 100a2 83. y x 2x 2; 7, 5 84. y x 102; 48. x2 4x 4 x 22 49. 4, 3 2, 1 47. x2 25 x 5x 5 x2 81. y x 4x 3; y 1 78. 5q2 11q 2 0 5q 1q 2 0 q 15 q 2 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 96. a. Sample answer: There is only one square that is x by x, 5 strips of x units, and 6 unit squares. The rectangle measures x 3 by x 2. b. x 102. C x 2x 2 x2 4x 4 x2 4x c 103. 2x2 11x 16 x2 3x 1 1 1 x2 8x 16 0 x 4x 4 0 x x4 D 1 1 1 1 0 342 b4 8 104. 8 48 4b 40 4b x2 7x 12 x 3x 4 10 b 1500 30 2x50 2x 375 97. B 1500 1500 160x 4x2 375 0 4x2 160x 375 0 105. 2x 52x 75 0 x2 x x 2.5 The border width is 2.5 ft. x4 60x x2 800 98. x2 x2 60x 800 0 x2 x2 8x 16 x2 4x 4 x 20x 40 0 0 x2 12x 20 x 20 0 x 2x 10 20 ft by 40 ft x 10 99. R 200 2x60 x The door is 8 ch' ih by 6 ch' ih. R 2x 10060 x 100, 60 5.2 Mixed Review (p. 263) 100 60 20 2 106. 70 5x680 20x R 108. 1.37 35 20.0196 y 0.0196352 1.3735 y 24 4x 11 or x 1.75 or 109. x 2.75 5x 4 14 5x 4 14 or 5x 4 14 $57,600 R x x8 4x 9 2 4x 7 1002424 R 101. y 0.0196x2 1.37x x 2 6 or x 2 6 4x 9 2 or 4x 9 2 34, 14 Price for each camera should be $480 and the maximum revenue is $57,600. 107. x 2 6 x 4 or 100x 34x 14 R 34 14 10 2 x 3 x 3 x 3 To maximize revenue, charge $80. Maximum revenue is $12,800. 100. x 42 x 22 5x 18 or x 3.6 110. 111. 5x 10 or 7 3x 8; no solution x 1 < 3 112. 3 < x 1 < 3 4 < x < 2 x 2 2x 5 ≤ 1 1 ≤ 2x 5 ≤ 1 4 ≤ 2x ≤ 6 2 ≤ x ≤ 3 Big Bertha could fire a shell about 70 miles with a maximum height of about 24 miles. Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 131 Chapter 5 continued 113. x 4 > 7 127. 128. y y 1 x 4 < 7 or x 4 > 7 114. x < 3 or 1 3x 1 ≥ 2 1 3 x 1 ≤ 2 1 3 x ≤ 3 y x2 2 1 3x or (0, 2) 1 ≥ 2 1 3x or x ≤ 9 or 115. x0 x ≥ 3 129. 116. y yx1 y 1 x0 y (0, 3) 1 x 1 x 2 y x 2 3 1 1 1 x 130. y y 2x 3 1 (0, 5) x0 ≥ 1 3 1 y 2x 2 5 x 1 x 1 1 1 x > 11 1 1 y (x 1)2 4 (1, 4) x 1 x 1 131. 117. 118. y y 1 1 1 1 x 1 (2, 1) y (x 2)2 1 x 1 5 y 2x 7 y 3x 5 x2 y 1 1 1 x 1 132. x 3 y (3, 7) y 3(x 3)2 7 119. 120. y y 1 1 1 xy4 x 1 1 1 1 1 2 2x y 6 x 1 133. 121. 122. y 1 1 y y 5x 3y 15 1 x 1 x 1 x 1 (0, 1) y 4 x 2 1 1 3x 4y 12 1 1 x0 1 x 134. 123. 124. y y y2 x4 y 1 x 1 1 1 1 1 1 1 1 1 x x 1 y 3 1 (4, 6) 125. 126. y 135. y y x 1 1 1 x4 1 1 x 1 1 1 Algebra 2 x y 22 2x 3y 50 2 y 3 (x 1)(x 3) x 1 x x1 Chapter 5 Worked-out Solution Key 136. 2 3 (1, 2 ) 1 132 y 2 (x 4)2 6 222 y 3y 50 44 2y 3y 50 y6 You can take the bus only 6 times. Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued Lesson 5.3 5.3 Practice and Applications (pp. 267–269) Activity (p. 264) 19. 3 1. a. 36 6 21. 3 b. 8 22 2.8 9 6 4 2 4 22 2.8 23. 25. c. 30 1.7 10 1.7 3 27. 1. a.–c. Sample answer: ab a 2. a. 49 32 4 9 c. b. 29. 252 3.5 25 2 3 b 31. 33. 3.5 2 36. 19 39. 1.6 2. a.–c. Sample answer: ab a 42. b 44. 5.3 Guided Practice (p. 267) 1. Sample answer: to eliminate a radical from the denomi- nator of a fraction 2. Sample answer: The product property says that the square root of a product equals the product of the square roots. The quotient property says that the square root of a quotient equals the quotient of the square roots. 4. 7 3. 2; 1; 0 6. 5 8. 11. 9 35 16 4 25 5 52 2 77 2 9. 7. 3 7 3 10 2 3 3 9 9 7 10. 3 3 3 3 12. x2 64 13. x2 25 x ±8 x ±5 14. 4x2 16 3 48. 50. x ± 23 4 3 40 169 x ± 10 1 16t2 50 8 16t2 50 42 16t 2 21 8 36 37. 3 25 40. 4 210 13 11 64 43. 6 5 38. 11 8 23 3 3 20 7 x2 17 235 7 517 17 45. 9 100 81 41. 1 3 10 9 75 36 53 6 23 3 5 52. x2 90 x ± 11 x ± 310 54. 2x2 36 36 x2 6 51. x2 121 x2 18 x ± 32 x ±6 55. 1 35. 5 30 5 5 144 11 7 2 14 1211 47. 11 4 11 11 8 2 18 13 45 2 310 326 49. 8 13 13 13 32 2 517 17 75 x2 75 x ± 53 56. 10u2 6 17. x 82 28 x 1 ± 10 2 7 u2 16. x 12 10 h 16 x ±2 18. 49 53. 3x2 108 3 15. x2 12 x2 4 46. 3 23 5. 4 2 2 2 3 3 12 34. 2 197 1.6 7 3 2 32 20. 2 2 2 2 3 43 3 3 33 22. 2 2 13 213 9 2 4 62 24. 25 7 57 49 2 72 26. 121 5 115 2 7 14 28. 4 2 2 4 3 3 4 6 30. 34 5 65 180 4 3 2 26 32. 2 3 2 5 215 43 3 7 127 6 10 u± x 8 ± 27 x ± 27 8 57. v2 25 60 10 12 ± 15 5 58. p2 10 8 v2 12 25 p2 8 10 v ± 103 p ± 45 t2 t 21 8 1.6 sec t Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 133 Chapter 5 continued 59. q2 72 2 2 q 144 60. 2x2 6x 9 8 0 68. s 12 24 75 s 12 99 2x2 12x 18 8 0 q ± 12 s 1 ± 311 2x2 12x 10 0 s 1 ± 311; 2x 2 6x 5 0 1 311, 1 311 2x 1x 5 0 0 16t2 177 69. 1, 5 16t2 177 61. 4x2 2x 1 100 0 4x2 8x 4 100 0 4x2 8x 96 0 70. a. h 16t2 20 4x 6x 4 0 b. 6, 4 62. 3x 22 18 x 22 6 x 2 ± 6 x 2 ± 6 2 6, 2 6 63. 5x 72 135 t 0 0.1 0.2 0.3 0.4 0.5 0.6 h 20 19.84 19.36 18.56 17.44 16 14.24 t 0.7 0.8 0.9 1.0 h 12.16 9.76 7.04 4 t 1.4 t2 7 33, 7 33 64. 8x 42 9 t 9 8 4, 4 a 62 49 a 6 ±7 a 6 ± 7; 20 5 16 4 5 2 Mars 0 16t 200 2 66. b 82 28 b 8 ± 27 b 8 ± 27; 8 27, 8 27 13, 1 67. 2r 5 81 2 2r 5 ± 9 2r 5 ± 9 r 16 71. Earth 4 65. 2a 62 98 7.04 t 1.1 sec 32 x 4 ± ; 4 4 0.64 3.04 1.3 16t2 20 x 7 ± 33; 32 1.2 0 16t2 20 x 7 ± 33 1.1 1.5 h 11.36 x 72 27 32 4 t 3.3 sec 4x2 2x 24 0 x4± 177 t 5±9 ; 2 16t2 200 t 52 2 t 3.5 sec 6t2 200 t 203 6 t 5.8 sec Jupiter Neptune 81 0 t 2 200 2 81t2 400 0 18t2 200 18t2 200 t 400 81 t 200 18 t 20 9 t 20 6 t 2.2 sec 7, 2 0 6t2 200 t 3.3 sec —CONTINUED— 134 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 71. —CONTINUED— 0 12.5 b. Pluto 2.1 2 t 200 2 2 2.1t 400 0 t 400 2.1 t 202.1 2.1 0 12.5 2 83 t 1800 180012.5 83 t 180012.5 t 83 146.2 t t 13.8 sec about 146.2 sec 15 0.019s2 72. 2223 t 60 30 c. Sample answer: The water drains more slowly as the time increases. 15 s 0.019 76. y y 77. 28.1 knots s (2, 3) 73. 272 4x2 3x2 (1, 2) 1 272 16x2 9x2 1 x 1 272 25x2 272 x2 52 78. y 79. y 27 x 5 x 1 1 x 1 (1, 4) 21.6 in. by 16.2 in. 20 0.00256s2 74. a. 1 80. 88.4 s y 81. y 4 2 about 88.4 mih b. (3, 5) 2 x 20 s 0.00256 (4, 0) 40 0.00256s2 x x 2 1 40 s 0.00256 (6, 2) 125 s No; Sample answer: When P 40 lbft2, speed is 125 mih which is not 2 88.4. c. Sample answer: The wind speed value is squared in the formula and squaring increases the pressure value quickly. 75. a. 12.5 25 12.5 5 22 t 60 30 83 t 1800 23 2 83 12.5 5 t 1800 6364 9000 83t 2636 83t 2 5 0 1 1 82. 181 84. 16 85. 20 105 77 81 57 24 40 18 0 49 40 31 83. 11 13 12 20 4 16 32 86. y x2 5x 2x 10 87. y x2 x 8x 8 y x2 3x 10 y x2 9x 8 88. y 2x2 7x 8x 28 y 2x2 15x 28 89. y 16x2 36x 36x 81 y 16x2 81 2636 t 83 60.6 t about 60.6 sec Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 135 Chapter 5 continued 90. y x2 3x 3x 9 1 2. y y x2 6x 10 91. y 5x2 6x 6x 36 12 y y 5x2 60x 180 12 20.52 2 20.5222 x 16 32 0.252 2 0.252 x 16 8 y 0.1542x2 0.3084 y 5x2 60x 168 y Quiz 1 (p. 270) 1. x0 2. y y 1 1 x 2 x1 x 2 y 1 3 (x y 0.1542x 2 0.3084 1 1 1 1 x 0 2 fx fR2xf fR 2 fx fR x (2, 3) 5)(x 1) 1 x x 4. x 3x 9 0 x30 x 3 4t2 4t 1 0 6. 2t 12t 1 0; x40 x 54 x 4 2t 1 0 t 12 10. 6 36 8. 72 2 5 145 365 365 55 6 5 5 4 3 R2 2 43 23 6 3 1. 1.53, 1.53 2. 1.73, 1.73 3. 2.45, 2.45 4. 2.87, 2.87 5. 2.73, 0.73 6. 0.90, 8.90 7. 3.65, 1.65 8. 0.85, 2.35 9. 6r2 48 8 r2 2.8 in. r 4 Technology Activity 5.3 (p. 271) x9 5. 4x 5x 4 0 7. 54 9 fR 2 f No, the x-intercepts are in terms of the radius only. x90 4x 5 0 fR R2 2 2 f 2fx fR 1 9. 0 22f 2x2 2f 2R2 3. y 1 1 x 1 (0, 0.3) y 2(x 2)2 1 (2, 1) y x 2 2x 3 (1, 4) 3. (1.4, 0) (1.4, 0) x 10 1.35s2 11. Lesson 5.4 5.4 Guided Practice (p. 277) 10 s 2.7 mih 1.35 1. 3, 7i 2. Sample answer: The real part should be the same and the imaginary part should be the opposite of the given imaginary part; 5 2i. Math and History (p. 270) 1. y 0; it is the x-axis. 3. Sample answer: distance from origin 4. x2 9 x ± 3i 5. 2x2 16 x2 8 x ± 2i2 136 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 6. x 1 ± i7 37. 2 3i 7 i 9 4i 7. 7 3i 38. 6 2i 5 i 11 i x 1 ± i7 4 3i 2 4i 6 i 39. 4 7i 4 7i 8 9. 7 7i 2i 2 9 5i 40. 1 i 9 3i 8 4i 8. 10. 41. 8 5i 1 2i 7 3i 3 4i 1 i 3 4 7i 1 7i 1i 1i 2 2 11. 1 1 2 2 42. 2 6i 10 4i 12 10i 12. 0 3 3 2 2 2 43. 0.4 0.9i 0.6 i 0.2 0.1i 13. 22 32 4 9 13 44. 25 15i 25 6i 21i 14. 52 52 25 25 52 45. i 8 2i 5 9i 3 6i 15. 16. imaginary 2 + 3i 3i 1+i i 1 i 1 c 12 12 c 2 Sample answer: It does not because the absolute values become infinitely larger. real 55. 225 120i 120i 64 161 240i 20. 2x2 50 x2 25 x ± 5i 22. x2 18 15 50. 40 8i 5i 1 39 13i 54. 9 30i 30i 100 91 60i x ± i11 x ± 3i3 21. 49. 40i 70 70 40i 53. 49 35i 35i 25 74 18. x2 11 x ± 2i 5x2 48. 4i6 i 24i 4 4 24i 52. 18 12i 81i 54 36 93i 5.4 Practice and Applications (pp. 277–280) 19. x2 27 47. i3 i 3i 1 1 3i 51. 11 22i i 2 9 23i 5 – 5i 17. x2 4 46. 30 i 18 6i 30i 12 23i x2 3 56. 8 8i 4 4i 11 57. 2i 2 i 1 1 i 11 58. 5 3i 4i 20i 12 5i 3 3 5 i 4i 4i 16 4 4 4 4 59. 3 i 3 i 9 6i 1 8 6i 4 3 i 3i 3i 91 10 5 5 60. 2 5i 5 2i 10 10 25i 4i 20 21i 5 2i 5 2i 29 29 61. 7 6i 9 4i 63 26i 24 87 26 i 9 4i 9 4i 81 16 97 97 x2 18 x ± 3i2 x ± i3 23. 3r2 3 24. 4s2 1 r2 1 s2 14 r ±i s ± 12i 25. t 22 16 26. u 52 20 t 2 ± 4i u 5 ± 2i5 u 5 ± 2i5 t 2 ± 4i 27. v 3 56 28. w 42 9 1 2 w 4 v 3 ± 2i14 w 4 ± 13i v 3 ± 2i14 29.–36. 1 + 5i 4 + 2i 2 i 1 i 1 real 6 3i Copyright © McDougal Littell Inc. All rights reserved. 10 i 10 i 17 62 i 19 19 66. 22 12 4 1 5 67. 72 12 49 1 50 52 3 4i 65. 52 122 25 144 169 13 5 + 4i i 10 i 64. 32 42 9 16 25 5 imaginary 1 + i 1 ± 3i 10 10 i10 10 10 i 10 1 11 11 6 i2 6 i2 36 2 12i2 63. 36 2 6 i2 6 i2 62. 68. 22 52 4 25 29 69. 42 82 16 64 80 45 70. 92 62 81 36 117 313 Algebra 2 Chapter 5 Worked-out Solution Key 137 Chapter 5 continued 71. 112 52 11 5 16 4 72. f z z2 1 z0 0 z1 f 1 12 1 2 z2 f 2 5 1 6 z3 f 5 25 1 26 z0 0 z1 2 z2 26 z3 626 Sample answer: No, because the absolute values become infinitely large. z1 f 0 1 z2 f 1 1 1 0 z3 f 0 1 z0 0 z1 1 z2 0 z3 1 Sample answer: It does because the absolute values are equal to or less than N 1. 74. f z z2 i z0 0 z1 f 0 i z2 f i 0 z3 f 0 i z0 0 z1 1 z2 0 z3 1 75. f z z2 1 i z1 f 0 1 i z2 f 1 i 2i z3 f 2i 4 1 i z1 0.5 z2 0.25 z3 0.4375 z4 0.3086 Sample answer: It does because the absolute values are less than N 1. z1 0.5i z2 0.25 0.5i z3 0.1875 0.25i Sample answer: It does because the absolute values are less than N 1. z0 0 z1 2 z2 2 z3 26 81. false; Sample answer: 3 is irrational but not complex. 82. true 83. false; Sample answer: 6 3i 5 3i 1 which is not imaginary. 84. false; Sample answer: Let the real number 4 5 i 2; its complex conjugate is 5 i2 which is equal to 6; 4 6. 85. true 86. a. 76. f z imaginary 5 6i 5i i Sample answer: It does not because the absolute values become infinitely large. z2 z0 0 z1 0.5 z2 0.3125 z3 0.3125 z0 0 80. true Sample answer: It does because the absolute values are less than N 2. z0 0 z0 0 z1 0.5 z2 0.25 z3 0.4375 z4 0.3086 z0 0 79. f z z2 0.5i 73. f z z2 1 z0 0 78. f z z2 0.5 1 i 1 3 5 real 2 2 z0 0 z1 2 z2 6 z3 38 z4 1446 z0 0 z1 2 z2 6 z3 38 z4 1446 Sample answer: It does not because the absolute values become infinitely large. 77. f z z2 1 i z0 0 z1 1 i z2 2i z3 5 i z4 24 10i z0 0 z1 2 z2 2 z3 26 z4 26 2 i 3 5i 5 6i b. imaginary 7 4i 6i 6 2i 1 i 1 real 1 6i 7 4i 6 2i 87. true; true 88. true; false 90. true; true 91. false; false 89. false; false 92. no Sample answer: It does not because the absolute values become infinitely large. 138 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 5.4 Mixed Review (p. 280) 93. Sample answer: Geometric: in both definitions, the absolute value is the distance from the point to the origin; algebraic: a real number can be written as a 0i. Then z a2 02 a2 a. The absolute value of a real number a is 0, a, or a and always positive. 3 3i b. 3 i; 10 1i 94. a. 1 i; 2 c. 2 8i; 101. f 3 43 1 12 1 11 102. f 4 42 54 8 16 20 8 44 104. f 30 2 105. A 2 8i 1 2 i 68 34 17 35 A1 95. a. 2 5i 7i 2 2i b. 12 8i 15i 12 7i 1 2 1 2 6 5 5 18 8 18i 26 18i Z 9 2i 9 2i 106. A 17 A1 Z 270 110i 54 22 i 85 17 17 xy 78 Z 40 27 21i 67 21i 13 6i 13 6i Z 67 21i 13 6i 871 126 129 13 6i 13 6i 169 36 107. A Z 10 28 6i 38 6i 7 3i 7 3i Z 38 6i 7 3i 7 3i 7 3i 108. 97. 25 16 41 or 9 36 45 35 1 1 212 57 2 0.52 3 0.25 3.25 i5 i6 i7 A 8 i 1 5 1 10 10 4 0 3 109. x2 4x 4 36 0 x2 8x 15 0 x2 4x 32 0 x 3x 5 0 x 4x 8 0 3, 5 110. B x2 4, 8 22x 121 25 0 x2 22x 96 0 111. x 52 10 x 5 ± 10 x 5 ± 10 112. x 72 12 x 7 ± 23 x 7 ± 23 113. 3x 6 21 2 i 1 i 1 b. Sample answer: The pattern is i, 1, i, 1; i9 i, i10 1, i11 i, i12 1 c. i26 i2 1; i83 i3 i 2 5 3 10 1 5 1 10 2 6, 16 99. 22 22 4 4 22 or Simplified form i 1 i 1 2 5 3 1 10 x 6x 16 0 C i4 x 42 1 0 98. 36 64 100 10 or Copyright © McDougal Littell Inc. All rights reserved. 4, 3 266 18 156i 248 156i 124 78 Z i 49 9 58 29 29 Power of i 1 1 1 4 4 6 3 xy c. Z1 2 4i, Z2 5 7i i3 1 8 1 7 2 4 13 A1 997 129i Z 205 i2 1 8 8 7 7 5, 7 b. Z1 5 3i, Z2 8 9i i1 59 12 26 18i 9 2i 234 36 110i 9 2i 9 2i 81 4 100. a. 1 8 Z 1 3 1, 2 96.a. Z1 3 4i, Z2 6 2i 3 1 2 3 5 1 3 xy 52 c. 2i 8 6i 4i 8 4i 102 100 10 103. f 9 9 6 3 3 x 62 7 x 6 ± 7 x 6 ± 7 Algebra 2 Chapter 5 Worked-out Solution Key 139 Chapter 5 continued Number of DVD players sold (in thousands) 114. y 35.33x 14.58 N 450 12. x2 16x 64 12 0 x 82 12 350 x 8 ± 2i3 x 8 ± 2i3 250 13. x2 8x 16 7 0 150 50 0 x 42 7 N 35.33t 14.58 0 3 6 9 x 4 ± 7 12 t x 4 ± 7 Time (in months) x2 6x 2 0 14. Lesson 5.5 x2 6x 9 11 0 Developing Concepts Activity 5.5 (p. 281) 1. Expression x2 x2 x2 x2 x2 2x 1 4x 4 6x 9 8x 16 10x 25 1 2. a. d 2 b Number of 1-tiles needed to complete the square 1 4 9 16 25 x 32 11 Expression written as a square x 12 x 22 x 32 x 42 x 52 x 3 ± 11 x 3 ± 11 15. x2 4x 4 27 x 22 27 x 2 ± 3i3 x 2 ± 3i3 y x2 12x 16. y 36 x2 12x 36 b. c d2 y x 62 36; c. Find the square of half of the coefficient of the second 6, 36 term. 17. 5.5 Guided Practice (p. 286) y 7 x2 4x y 7 4 x2 4x 4 1. Sample answer: Write the expression as a square of a y x 22 3; binomial. 2, 3 2. Sample answer: completing the square since not every y 31 x2 8x 18. quadratic equation can be solved by factoring y 31 16 x2 8x 16 3. Sample answer: The number 9 should have been added to the left side since 19 9; y x 3 13. 2 4. 1; x 1 5. 49; x 7 6. 9; x 3 7. 25; x 5 2 y x 42 15; 2 2 2 8. 25 4; x 10. x2 4x 1 0 x2 4x 4 3 5 2 2 9. 169 4 ; x 4, 15 y 17 x2 10x 19. 13 2 2 y 17 25 x2 10x 25 y x 52 8; 5, 8 x 2 3 2 y 45 x2 14x 20. x 2 ± 3 y 45 49 x2 14x 49 x 2 ± 3 x2 11. 2x 4 0 x 2x 1 5 0 2 x 12 5 x 1 ± 5 x 1 ± 5 140 y x 72 4; Algebra 2 Chapter 5 Worked-out Solution Key 7, 4 21. y 4 2x2 2x y 4 2 2x2 2x 1 y 2x 12 6; 1, 6 Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued x60 2x 140 22. 51. u2 6u 9 35 9 u 32 44 60x 2x2 140 u 3 ± 211 x2 30x 70 x2 u 3 ± 211 30x 225 70 225 x 15 155 52. v2 30v 225 243 225 2 v 152 18 x 15 ± 155 v 15 ± 3i2 x 15 ± 155 v 15 ± 3i2 x 27.5 or x 2.6 53. m2 1.8m 0.81 1.5 0.81 60 55 5 m 0.92 2.31 27.5 ft by 5 ft m 0.9 ± 2.31 m 0.9 ± 2.31 5.5 Practice and Applications (pp. 286–289) 23. x 82 24. x 102 27. x 0.5 30. x 25. x 122 29. x 28. x 0.7 2 2 31.x 1 2 12 33. 81; x 9 2 2 9 2 x 92 2 x 232 2 81 4; 529 4 ; 37. 39. 121 4 ; 225 4 ; x 112 2 x 152 2 41. 8.41; x 2.92 42. 0.64; x 0.82 43. 22.09; x 4.72 46. x 17 2 2 x 17 16 1 49 ; 289 256 ; 45. 25 9; 2 n 23 n 23 56. x2 x2 x2 14x 49 50 49 x 7 ±i x 7 ± i 58. 3 x 2 x 13 4 3 ± 13 2 2 x 3 ± 13 10x 70 x 52 45 x 5 ± 3i5 x 102 4 2 x2 x2 10x 25 70 25 20x 100 104 100 9 9 1 4 4 14x 50 x 72 1 x 6 ± 22 50. x2 3x x 3 ± 2 x 4 ± 7 x 6 ± 22 x 10 ± 2i x 32 2 x 4 ± 7 x 1 ± 10 x 10 ± 2i ± 2 6x 9 7 9 8x 16 9 16 x 53 2 x 1 ± 10 49. 2 x2 x 42 7 x 12 10 x2 x2 6x 7 55. 8x 9 x2 57. x 62 8 4 14 9 9 x 3 ± 2 47. x2 2x 1 9 1 48. x2 12x 36 28 36 4 9 n 23 ± 2 40. 0.01; x 0.12 44. 32. 36; x 62 35. 484; x 222 38. 4 54. n2 3 n 34. 169; x 13 2 36. 26. x 192 3 2 2 59. x 5 ± 3i5 13 r2 5r 4 r2 5r 13 25 25 4 4 4 r 25 r 2 3 5 ± 3 2 r 5 ± 23 2 2 Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 141 Chapter 5 continued 2s2 26s 1 60. k2 169 1 169 4 2 4 s2 13s 5k2 10k 155 69. 2k 1 31 1 k 12 32 s 132 171 4 2 k 1 ± 42 13 319 s ± 2 2 s 61. t2 t t 21 70. b 35 p2 22p 290 71. p2 22p 121 290 121 p 112 169 1 4 p 11 ± 13i 1 i t ± 2 2 r 30b 9 0 5b 35b 3 0; 13 ± 319 2 1 1 1 4 2 4 2 k 1 ± 42 25b2 p 11 ± 13i 72. 1 ± i 2 5q2 9q2 360 4q2 360 q2 w2 12w 52 62. w2 12w 36 52 36 73. w 62 16 y x 32 2; w 6 ± 4i 3, 2 6, 2 74. 64. x2 6x 9 15 9 y x 12 10; x 3 ± 26 1, 10 x 3 ± 26 75. 65. 9x2 23 y 14 x2 16x y 14 64 x2 16x 64 23 9 x± y 9 x2 2x y 9 1 x2 2x 1 x 32 24 x2 y 11 x2 6x y 11 9 x2 6x 9 w 6 ± 4i 63. x 6x 2 0; 90 q ± 3i10 y x 82 50; 8, 50 23 3 76. 66. 2x 7x 1 0; 72, 1 y 68 x2 26x y 68 169 x2 26x 169 3x x 6 2 67. 1 1 72 1 x2 x 3 36 36 36 1 x 6 2 y x 132 101; 13, 101 77. 71 36 9 9 y 2 4 x2 3x 4 1± i71 6 68. x 82 36 x 8 ±6 y x 32 17 4; 2 i71 1 x ± 6 6 x y 2 x2 3x 32, 174 78. y 1 x2 7x y1 49 4 x2 7x 49 4 y x 72 53 4; 2 72, 534 x 8 ± 6; 14, 2 142 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued y 80 x2 20x 79. 88. y 80 100 x2 20x 100 x2 5x y x 102 20; 10, 20 y 47 x 14x y 47 49 x2 14x 49 x y x 7 2; 2 7, 2 y 1 12 3x2 4x 4 y 3x 22 11; s2 13.75s 1000 s2 13.75s 47.3 1047.3 s 6.8752 1047.3 y 2x 12 2 13 2 s 6.875 ± 1047.3 s 6.8751047.3 s 25.5 y 3 5.6 1.4x2 4x 4 y 1.4x 22 2.6; 2, 2.6 2 3 2 3 2 3 y 65x 9 y x2 65x 25 2 6 y x 35 25 ; 3 6 5 , 25 85. d 0.08302 1.130 105 ft y 3 1.4x2 4x 83. x2 256 5 241 2 80 0.08s2 1.1s y 7 2x2 x 12, 132 241 4 241 5 ± 2 2 89. y 7 12 2x2 x 14 84. x 10.26 2, 11 82. 2 x y 1 3x2 4x 81. 25 25 54 4 4 x 25 2 80. xx 5 54 about 25.5 mi h 90. 0.0241x 2 41.5x 228.2 0 0.0241x 2 41.5x 430.6 658.8 0 0.0241x 20.752 15.9 x 20.752 659.75 x 20.75 ± 659.75 100 xx 10 x 20.75 659.75 100 25 x2 10x 25 x 46.4 125 x 52 ± 55 x 5 x 5 55 x 6.18 40 12x 8x 86. 80 x2 8x 80 16 x 8x 16 2 96 x 42 Her throw was about 46.4 ft. 91. y 0.003x2 0.62x 3 25 3 0.003x2 206.7x 10,681 7333 x2 206.7x 10,681 3348 x 103.352 ± 3348 x 103.35 ± 693 103.35 x x 45.5 ft or x 161.2 ft ± 46 x 4 46 4 x x 5.8 87. 1 2 4xx 4 70 2x2 8x 70 x2 4x 4 35 4 x 22 39 x 2 ± 39 x 2 39 x 4.24 Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 143 Chapter 5 continued 92. a. 4l 3w 240 3w 240 4l w 80 y 3 8 2x2 4x 4 y 2x 22 5; 4l 3 A 4l2 1000 80l 3 b. y 3 2x2 4x 98. 99. a. b. y y y (x 2)2 4 1000 l2 60l 3 1 1 4 1000 1200 l2 60l 900 3 1 y x 2 2x y x 2 4x c. ± 150 l 30 30 ± 150 l y y (x 3)2 42.25 ft by 23.67 ft or 17.75 ft by 56.33 ft 2 2 2 l 42.25 ft or l 17.75 ft 200 x 329 329 x x 1 x 1 4 200 l 302 3 93. y (x 1)2 x 2 y x 2 6x 200 9x2 6x 9 99 x 200 9x2 6x 9 9 x 100. Sample answer: The vertex moves down from the position of the other vertex. 200 9x2 7x 200 49 49 x2 7x 9 4 4 800 441 7 x 36 2 ± 4.4 x 2 101. 52 412 25 8 17 102. 82 437 64 84 20 103. 02 452.6 202.6 52 7 2 104. 42 4111 16 44 60 x 3.5 4.4 0.9 about 1 cm 105. 242 4169 576 576 0 106. 22 41.40.5 4 2.8 1.2 y 0.0267x2 30x 94. 5.5 Mixed Review (p. 289) y 6 0.0267x2 30x 225 107. y 1 2x 3 108. y 4 x 2 y 2x 5 yx6 y 6 0.0267x 152 y 0.0267x 15 6 2 vertex 15, 6 The kangaroo can jump about 30 ft and 6 ft high. 109. y 10 5x 7 5.15q1.24 0.00002T 1015T257,556.25 2 y 3x 32 y 5x 25 111. y 9 3 x 6 112. y 2 4 x 11 y 13x 7 y 54x 47 4 5 1 q 0.00002T2 0.0203T 1.24 95. 110. y 8 3x 8 113. q 3.9 0.00002T 507.52 114. x2 y y3 y y2 q 0.00002T 507.52 3.9 1 507.5, 3.9 1 1 1 507.5 ft; 3.9 Btuft3 1 1 x x 1 y 1 96. C 97. x2 12x 36 61 36 115. xy4 x2 12x 36 25 x 62 25 x 6 ± 5i x 6 ± 5i 116. y 1 1 1 y yx2 1 x 1 1 1 x x 3y 6 1 x0 B 144 Algebra 2 Chapter 5 Worked-out Solutions Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 117. 118. y 16. h 16t2 v0t h0 y y 2x 3 1 1 x 1 0 16t2 21t 6 1 3x 2y 8 1 1 2x y 0 1 x y 2x 3 Technology Activity 5.5 (p. 290) 1. min; 4.25; 2.5 2. max; 5; 4 3. min; 4; 3 4. min; 5; 4 5. max; 8.125; 0.75 6. max; 2.125; 3.75 7. min; 2.375; 3.75 8. min; 4; 1 9. max; 8.65; 2.3 10. max at 80 cars per mile and 1997 cars per hour Lesson 5.6 5.6 Guided Practice (p. 295) 1. the discriminant 2. 2 real; 1 real; 2 imaginary 3. Sample answer: when an object is thrown upward 4 ± 42 413 4 ± 16 12 4. x 2 2 4 ± 4 4 ± 2 2 2 x 3 or 1 1 ± 1 4 1 ± 5 5. x 2 2 3 ± 9 40 3 ± 31 6. x 4 4 6 ± 36 36 1 ± 2 7. x 18 3 8 ± 64 4 8. x 4 ± 15 2 9. x 4 ± 16 4437 4 ± 576 8 8 4 ± 24i 1 ± 3i 8 2 10. 25 412 25 8 17 2 real 11. 22 415 4 20 16 2 imaginary 12. 4 441 16 16 0 2 one real 13. 3 427 9 56 47 t 21 ± 212 4166 32 t 21 ± 441 384 32 t 21 57 32 t 0.42 0.42 sec 5.6 Practice and Applications (pp. 295–297) 17. x x 5 ± 25 56 2 x 5±9 2 7, 2 18. x 14. 144 494 144 144 0 1 real 3 ± 32 412 2 x 3 ± 9 8 2 x 3 ± 17 2 19. x x 2 ± 4 414 2 2 ± 4 16 2 x 1 ± 5 20. x x 10 ± 100 88 2 10 ± 12 2 x 5 ± 3 21. x x 6 ± 36 232 2 6 ± 14i 2 x 3 ± 7i 23. x 2 2 imaginary 5 ± 52 4114 21 x 3 ± 9 20 10 3 ± 29 10 22. x 7 ± 49 76 2 x 7 ± 3i3 2 x 7 ± 3i3 2 24. x 11 ± 121 48 6 x 11 ± 13 6 4, 1 3 15. 12 4513 1 260 261 2 real Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 145 Chapter 5 continued 25. x x 1 ± 1 8 4 26. p 1 ± i7 4 p 8 ± 64 72 12 8 ± 2i2 12 2 i2 p ± 3 6 27. q 2 ± 4 252 14 28. r 16 ± 62 2 r 1 3 ± i 4 4 9 ± 81 48 8 8 ± 64 40 20 8 ± 226 v 20 2 ± 3i 3 v 2 26 ± 5 10 32. x2 4x 20 0 x 4 ± 16 80 2 x 4 ± 8i 2 x 2 ± 4i 33. x2 2x 99 0 34. 6 ± 36 24 6 x 6 ± 23 6 x 1 ± 39. 8x2 8 ± 64 32 16 x 8 ± 46 16 x 1 6 ± 2 4 40. 6x2 4x 1 0 x 4 ± 16 24 12 4 ± 210 12 x 2 ± 20 2 x x 10 ± 100 56 2 10 ± 211 2 x 5 ± 11 35. x2 8x 35 0 3 x x 10x 14 0 3 8x 1 0 2 ± 4 396 2 x 1 10 ± 3 6 41. 4x2 40x 101 0 x 40 ± 1600 1616 8 x 40 ± 4i 8 x5 ± i 2 42. 36k2 24k 5 0 x 8 ± 64 140 2 k 24 ± 576 720 72 x 8 ± 2i19 2 k 24 ± 12i 72 x 4 ± i19 146 x x x 11 or 9 x2 x 8 ± 32 38. 3x2 6x 2 0 9 ± 33 8 12 ± 54i u 18 u 37. x2 16x 46 0 x 9 7 31. v 3 ± 37 2 4 ± 12i 16 1, 12 ± 144 3060 18 x 16 ± 256 184 2 r 30. u 3 ± 9 28 2 x 2 ± 16 14 t x 4 ± 16 160 16 q 29. t 36. x2 3x 7 0 Algebra 2 Chapter 5 Worked-out Solution Key k 1 i ± 3 6 Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 54. 9v2 36v 31 0 43. 9n2 12n 5 0 n 12 ± 144 180 18 v 36 ± 1296 1116 18 n 12 ± 18 18 v 36 ± 180 18 n 1 5 or 3 3 v2 ± 44. 3d2 10d 1 0 d 10 ± 100 12 6 p 19 ± 361 168 28 d 10 ± 222 6 p 19 ± 23 28 d 5 ± 22 3 p 1 3 or p 7 2 y 56. 16 40 24; 2 imaginary 9.5 ± 90.25 127.92 7.8 9.5 ± 218.17 y 7.8 2 46. 6x 2 0 48. 57. 9 24 33; 2 real 58. 196 196 0; 1 real 59. 100 60 160; 2 real 60. 256 256 0; 1 real 61. 25 32 7; 2 imaginary x ± 2 x2 x 3 ± 9 60 2 x 3 ± 69 2 62. 0 84 84; 2 real 63. 1 20 19; 2 imaginary 64. 400 400 0 1; real 65. zero 4x 4 29 4 49. x 16x 2 0 x 22 25 68. x 2, 16 x 2 ± 5i x 2 ± 5i 50. 4 x2 7x 4x 3 55. 14p2 19p 3 0 45. 3.9y2 9.5y 8.2 0 47. 5 49 49 49 4 7 2 2 70. 0 x 7 2 51. x 42 9 x 4 ± 3i 72. x 4 ± 3i x2 66. negative 67. positive 2x c 0 69. x2 4x c a. c < 1 a. c < 4 b. c 1 b. c 4 c. c > 1 c. c > 4 x2 10x c 0 71. x2 8x c 0 a. c < 25 a. c < 16 b. c 25 b. c 16 c. c > 25 c. c > 16 x2 6x c 0 73. x2 12x c 0 a. c < 9 a. c < 36 52. 5u2 10u 5 0 b. c 9 b. c 36 u2 2u 1 0 c. c > 9 c. c > 36 u2 2u 1 1 1 u 1 2 2 u 1 ± 2 u 1 ± 2 53. 4m2 3 3 m2 4 m± 3 74. Sample answer: The initial velocity substituted into the formula can be zero. 75. 0 16t2 5t 92 t 5 ± 25 5888 32 t 5 5913 32 t 2.56 sec 2 Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 147 Chapter 5 continued 76. 1 77 7x 11 xx 3 0 x2 18x x 18 ± 77 3 0 16 324 308 3 0 2 x9 ± 77. 0 2 b. t 10 ftsec 3.16 sec 55t 10 Sample answer: If t 2 sec then v0 would need to be equal to v0 3222 112 ftsec. 5.6 Mixed Review (p. 298) 55 ± 3665 x 32 l 3x > 6 7x ≥ 21 x > 2 x ≤ 3 3s 22 0 0.1s2 s 3 ± 9 791.2 0.2 s 3 ± 800.2 0.2 2x ≤ 26 3s 1978 4x < 4 x ≥ 13 89. x < 1 4 ≤ 5x 11 ≤ 29 15 ≤ 5x ≤ 40 3 ≤ x ≤ 8 s 156.4 ftsec 90. 79. $60 0.560t2 0.488t 51 3 2x 20 ≤ 14 3 2x 0 0.56t2 0.488t 9 91. 1 > 8x or ≤ 6 x ≤ 4 0.488 ± 0.24 20.16 t 1.12 7 > x or or 7 < x 92. y 0.488 ± 20.4 1.12 in the year 1993 y 2x 1 1 x 1 93. h0 0 ft 94. y 0 16t2 350t 1 1 16t 350 1 x 1 y 3x 2 1 1 t 21.875 sec 25 16 41 82. 4k2 4 4k2 1 2.7 y 1 0 t16t 350 83. 3.6 x 1 yx 80. a. v0 350 ftsec 81. 36 4 40 y 1 1 1 t 3.6 b. 88. 4x 3 < 1 87. 2x 18 ≤ 8 2000 0.1s2 3s 22 t 86. 16 7x ≥ 5 85. 3x 6 > 12 x 0.17 sec 78. v02 160 64 3210 ftsec v0 55 ± 3025 640 x 32 0.1s2 v02 v2 0 160 1024 32 16064 v02 664 3 x 1.57 in. 16t 2 v0 ; 32 84. a. maximum height occurs when t 9 4k2 B B A 95. 2x 3y 12 1 x x 1 96. y 1 1 1 xy5 y x 1 1 7x 4y 28 148 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 97. 98. y 32 72 94 494 11. x2 2 y x 3 (0, 2) y x 2 1 1 1 (3, 0) x 1 1 58 2 x 42 2 x x 4 ± 2 x 4 ± 2 y 1 12. (0, 1) 1 2 8x 16 14 16 1 1 1 99. 10. y 2x 1 17 1 x2 x 12 16 x y 2x 1 x 1 ± 4i x 1 ± 4i 13. 100. p2 10p 25 27 p 52 27 y p 5 ± 33 p 5 ± 33 1 y 3x 4 (4, 0) 5q2 14. 1 x 1 5 q2 20q 19 4q 4 19 20 5q 22 1 101. 102. y q 22 y 1 y x 2 3 x 1 q2± 1 y 2 x 5 4 (2, 3) 1 5 5 5 1 1 1 q 2 ± (5, 4) 1 x 1. 5 16i y 1 9 x2 6x 9 2. 4 10i y x 3)2 8 3. 24 7 6i 8i 31 22i 4. 5 y 1 x2 6x 15. Quiz 2 (p. 298) 5 y 50 x2 18x 16. 1 3i 5 i 5 3 15i i 5i 5i 25 1 y 50 81 x2 18x 81 y (x 92 31 1 8i 13 y 7 2x2 4x 17. y 7 8 2x2 4x 4 y 2x 22 1 imaginary 5.–10. 2 + 4i 18. x 3 i 4 + 1i i 1 i 4 1 x real 2 ± 4 40 2 2 ± 211 2 x 1 ± 11 3 2 7 i 2 19. x 5i 5. 22 42 4 16 25 6. 52 5 8. 4 3 16 9 5 2 Copyright © McDougal Littell Inc. All rights reserved. 16 ± 6i 2 x 8 ± 3i 7. 32 12 9 1 10 2 x 16 ± 256 292 2 9. 4 4 2 Algebra 2 Chapter 5 Worked-out Solution Key 149 Chapter 5 continued 20. w2 3w 4 0 7. w 3 ± 9 16 2 w 3 ± i7 2 w y x 2 2x 4 1 1 1 x y x 2 3 3 ± i7 2 21. 25y2 40y 8 0 y y 8. 40 ± 1600 800 50 y y x 2 2x 4 1 40 ± 206 y 50 1 1 x y x 2 3 4 ± 26 y 5 22. 4 16t2 15t 3 9. 0 16t2 15t 1 y y x 2 2x 4 15 ± 225 64 t 32 1 1 1 15 ± 161 t 32 x y x 2 3 t 0.86 about 1 sec 10. x2 4 < 0 11. x2 4 ≥ 0 x2 < 4 x2 ≥ 4 Lesson 5.7 2 < x < 2 5.7 Guided Practice (p. 303) 1. Sample answer: one variable: x2 5x 7 > 0 x2 12. two variables: y ≥ x2 5x 7 x2 2. Sample answer: y ≥ x2 includes points on the graph of a dotted line; find the y-intercepts and determine where the solutions lie on the x-axis; algebraic: factor x2 3x 4 and graph the critical x-values on a number line; determine where the solutions lie on the number line. 4. 5. y 13. y 0.00211x2 1.06x 0 0.00211x2 1.06x 52 y 1 1 1 1 x 1.06 ± 1.1236 0.4389 0.00422 x 1.06 ± 0.6847 0.00422 x 55.1 m and 447.3 m 1 y 2x 2 1 3x 4 > 0 x < 1 or x > 4 1 y x2 2 x x 5.7 Practice and Applications (pp. 303–305) 14. B 15. C 17. 6. 4 > 3x x 1x 4 > 0 y x2 while y > x 2 does not. 3. Sample answer: graphical: Graph y x2 3x 4 using x ≤ 2 or x ≥ 2 16. A 18. y y 3x 2 1 1 1 1 1 x 1 y x 2 x 1 y 150 y 1 y x2 5x 4 Algebra 2 Chapter 5 Worked-out Solution Key 1 1 1 x Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 19. 20. y 31. y y y x 2 5 y x 2 6x 9 1 1 1 1 1 y x 2 6x 3 x 1 21. x 1 y x 2 3x 22. y 1 1 y x 1 y x 2 x 6 32. y x 2 4x 4 1 y x 2 8x 16 11 1 x y x 2 2x 1 1 1 1 23. 24. y y 2x 2 x 3 1 1 33. x 1 y 2 x 1 1 x 1 y 1 1 y 1 x 2 1 y 3x 2 2x 5 x 2 2 y 2x 2 2x 5 y 2x 2 1 25. y 1 1 1 x 1 34. y 3x 2 5x 4 y 2x 2 9x 8 y y x 2 6x 4 1 1 26. x 1 y 1 y 2 x 2 2x 4 35. 36. y y 1 1 1 x 1 1 1 1 27. 28. y 1 x x y y = x2 x 2 y = 2x 2 7x 3 4 y 3 x 2 12x 29 1 1 1 2 x 1 1 2 < x < 1 x y 0.6x 2 3x 2.4 37. x ≤ 38. y y x 2 2x 8 29. 30. y 1 1 2 y 3x 2 y x2 1 y y x2 x 5 1 x 1 y x2 3 1 1 or x ≥ 3 y 1 1 1 2 4 x x x Copyright © McDougal Littell Inc. All rights reserved. 1 y 2 x 2 5 x ≤ 4 or x ≥ 2 1.8 < x < 2.8 Algebra 2 Chapter 5 Worked-out Solution Key 151 Chapter 5 continued 39. 49. y w 240 200 160 120 80 40 0 y 3x 2 24x 41 x2 3x 18 ≥ 0 w 25h2 703 0 10 20 30 40 50 60 70 80 90 h Height (in.) x 3x 6 0 0.125x2 569x 448,000 ≥ 0 x 3 or x 6 b. Decreases; there is an over supply of timber. Value (dollars per million board feet) x ≤ 6 or x ≥ 3 43. 4x2 < 25 3x 1x 5 0 x2 1 x 5 or x 3 25 4 5 x ± 2 5 5 < x < 2 2 1 ≤ x ≤ 5 3 x2 2x2 12x 32 < 0 45. 475 350 125 0 425x 2 42,500x 1,011,000 > 0 4x 5 > 0 4 ± 16 40 4 39 < x < 61 x x 8 or x 4 x 0.9 or x 2.9 x < 8 or x > 4 x < 0.9 or x > 2.9 1 2 x 3x 6 ≤ 0 2 3 ± 9 12 1 no real solutions 47. Manila Rope 400 600 800 1000 1200 1400 1600 1800 2000 2200 x Volume of timber (millions of board feet) 51. 425x 2 42,500x 761,000 > 250,000 x 8x 4 0 x y 700 I 301,500 Average income (dollars) 46. 19h2 703 a. 400 ≤ x ≤ 1012.6 42. 3x2 16x 5 ≤ 0 44. w 50. 0.125x2 569x 848,000 ≥ 400,000 40. no real solutions 41. 121–160 lb Healthy Weights x Weight (lb) 1 (60, 259,000) (40, 259,000) 267,500 233,500 199,500 165,500 Wire Rope 131,500 Weight for Manila Rope 0 w 20,000 1000 0 1.5 0.5 1.0 Diameter (in.) d 15,000 52. a. 10,000 5000 0 0 1.5 0.5 1.0 Diameter (in.) 48. no; yes 20 (70, 131,500) 30 40 50 60 70 80 A Age (years) about 39 to 61 years w 8000d 2 d Reaction Times Reaction time (milliseconds) w 1480d 2 2000 Weight (lb) Weight (lb) w 3000 0 (30, 131,500) Weight for Wire Rope y 30 V(x) 0.005x 2 0.23x 22 25 20 15 10 A(x) 0.0051x 2 0.319x 15 5 0 16 21 26 31 36 41 46 51 56 61 66 71 x Driver’s Age (years) b. Sample answer: Ax is always less than Vx. c. Sample answer: siren; since audio stimuli reaction time is less than visual stimuli reaction time 152 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 53. a. y ≤ xx 4 b. y ≥ x 5x 1 0 ≤ x ≤ 4 y ≤ 3 y 22 4 h 12 y4 b7 A A 2 3 44 32 3 z A 23127 56 y3 61. A 1 y x 2 4x 1 1 1 x 5.7 Mixed Review (p. 305) 2y 10 8x y 5 4x 1 11 1 x 57. y 3 12 6 5y 9 2x y y 9 2 x 5 5 58. xy x 2 3y 27x 5 60. A 1 3 3 7 2 2 3 4 det A 140 27 4 42 30 12 231 17 3 2 6 7 3 13 2 4 x 231 1 7 5 87180140 12675232 52 4 13 13 2, 3, 4 62. 13 3i 63. 6 64. 5 2i 65. 6 5i 66. 6 48i 67. 14 15 6i 35i 29 29i 68. 1 3i 3i 3i 3i 10 69. 4 3i 9 2i 36 6 27i 8i 30 35i 85 9 2i 9 2i 81 4 476 117 24 182 102 72 231 231 1 231 5 17 2 1 6 3 3 13 4 y 231 y 9x 2 y 1 x 4 3 5 75 294 58 45 203 140 39 3 13 13 1 4 14 2 3 15 3 5 29 z 13 11 1 x 4 2 59. x 3y 28x xy 2 x 1 2 3 210 812 75 87 490 300 26 2 13 13 1 14 1 2 15 7 3 29 5 y 13 55. 8x 2y 10 56. 2x 5y 9 455 54 34 357 60 39 693 3 231 231 y x 2 4x 5 y 1 3x det A 15 84 10 9 35 40 13 14 4 1 15 3 7 29 5 5 x 13 x 54. 3x y 1 3 17 7 6 2 13 231 1, 2, 3 y y 5 1 3 7i 6 17 17 Lesson 5.8 Activity (p. 307) 1. a b c 2; 9a 3b c 0 120 153 26 36 195 68 462 2 231 231 Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 153 Chapter 5 continued 1 3 2 1 2. A 9 4 6. 100a 10b c 165 1 1 1 36a 6b c 115 det A 3 4 2 1 0 3 0 2 a 20 1 2 9 0 4 0 b 20 1 1 9 3 4 2 c 20 18 12 2 9 20 1 1 1 64 1 20 2 1 1 1 8 18 10 1 20 20 2 2 0 0 36 24 60 3 20 20 21, 21, 3; y 12x 2 y 5.8 Practice and Applications (pp. 309–312) 7. y ax 22 2 2 a22 2 4 4a y x 22 2 1 1 1 4. 4 a0 10 2 13. b c 16 1 4 2 2 4 30 1 1 1 90 3 30 16 1 4 4 1 2 30 3 4a 4 4a 34 1a a y x 22 1 12. y ax 42 5 9 a1 42 6 3 a8 42 5 3 9a 8 16a 1 3 12 a a y ax 2 y 12x 42 5 y ax 12 10 14. 12 4a 54 a3 12 10 3 a 54 a16 10 y 3x 2 30 1 30 3 a4 22 1 y 13x 42 6 2. 2; 3 det A 16 16 2 4 32 4 30 2 4 1 2 1 1 4 2 1 2 16 4 4 4 8 a 30 30 3 a1 1 11. y ax 4 6 y 2x 1x 2 4 1 2 10. y ax 22 1 2 2a 16 1 4 y 2x 12 4 y ax 12 9. 5.8 Guided Practice (p. 309) 5. A 2 a 1a 3 3. y x 12 3 y ax 12 4 2 a2 12 4 2 6 1. best-fitting quadratic model 8. y 34x 12 1 y p 1.83t2 19.55t 172.73 1 x3 2 3. y 2 x 2x 3 12x2 x 1 1 2x2 2x 16a 4b c 154.5 64 16a 4a y 4x 12 10 15. y ax 62 7 y ax 3x 3 61 36a 7 4 a1 31 3 54 36a 4 a24 32 a y 32x 62 7 17. 16. 1 2 a y 12x 3x 3 y ax 2x 1 6 a1 21 1 6 2a 32 8 4 8 64 2 30 2 2 4 64 32 4 8 64 16 60 2 30 30 3a y 3x 2x 1 18. y ax 0x 4 3 a31 1 a y x 0x 4 19. y ax 1x 4 2 a3 13 4 2 a21 1 a y x 1x 4 y x2 3x 2 154 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 20. y ax 2x 2 21. y ax 1x 6 8 a4 24 2 20 a1 11 6 8 a26 20 a25 2 3 a y 2x 2 y ax 10x 8 22. 9a 3b c 4 36a 6b c 8 y x2 5x 2 2a 2 3 x abc2 29. y 2x 1x 6 30. 4a 2b c 1 a b c 11 15 a7 107 8 4a 2b c 27 15 a31 y 3x2 7x 1 5 a y 5x 10x 8 23. y ax 3x 9 31. 16a 4b c 7 77 a14 314 9 9a 3b c 3 77 a115 9a 3b c 21 7 5 y 2x2 4x 9 a y 75x 3x 9 24. y ax 0x 5 32. 9a 3b c 4 abc0 18 a3 03 5 81a 9b c 10 18 a32 y 0.25x2 x 1.25 3 a y 3x 0x 5 25. abc2 c4 33. 36a 6b c 46 4a 2b c 14 9a 3b c 2 16a 4b c 56 y x x 4 2 y 2.5x2 6x 8 26. 4a 2b c 7 9a 3b c 2 34. h as 272 16 25a 5b c 4 40 a20 272 16 y 2x2 15x 29 24 a49 24 49 2 h 24 49 s 27 16 27. 25a 5b c 4 16a 4b c 0 c1 y 0.75x2 2.75x 1 a 35. y ax 0x 24 0.2 a1717 24 0.2 119a 0.00168 a 28. abc5 y 0.00168x 0x 24 c3 9a 3b c 9 y x2 x 3 Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 155 Chapter 5 continued 36. 66a 4b c 1.42 b. 100a 10b c 58.3 4a 2b c 0.57 900a 30b c 126.9 36a 6b c 1.42 2304a 48b c 139.3 t d 0.0738A2 6.4304A 0.6928 0.3086s 0.005 Change in finishing time (seconds) Distance (meters) 0.0119s2 160 140 120 100 80 60 40 20 0 0 Wind speed (meters per second) 37. a. 38,025a 195b c 8130 900a 30b c 122.8 160,801a 401b c 9810 2304a 48b c 137.8 Shoulder weight (grams) s 0.0807f 2 55.229f 330.38 keep increasing as the diameter increases. b. 0.0675, 0.0672, 0.0678, 0.0678, 0.0681, 0.0681, 0.068; the ratios are approximately equal. c. t 0.068d2; about 206 min b. 57,121a 239b c 8130 111,556a 334b c 9690 139,129a 373b c 8990 k 0.1422f 2 97.015f 6926.7 Kidney weight (grams) d 0.07A2 6.2284A 0.2623 39. a. 1.35, 1.68, 2.03, 2.37, 2.725, 3.07, 3.4; no, the ratios 12000 10000 8000 6000 4000 2000 0 0 100 200 300 400 500 Protein intake (grams per day) 40. n 0 1 2 3 4 5 6 R 1 2 4 7 11 16 22 abc2 9a 3b c 7 25a 5b c 16 R 0.5N 2 0.5N 1 600 500 400 300 200 100 0 5.8 Mixed Review (p. 312) 41. 32 4 9 4 5 42. 25 2 0 100 200 300 400 500 Protein intake (grams per day) 38. a. 100a 10b c 61.2 900a 30b c 130.4 2304a 48b c 140.7 d 0.0771A2 6.5803A 2.4614 Distance (meters) 80 c. 100a 10b c 56.1 88,209a 297b c 9680 160 140 120 100 80 60 40 20 0 2 2 2 2 32 43. 34 10 364 10 192 10 182 3 44. 14 21 7 1 2 7 4 45. x y 4 xy2 46. 2x y 0 5x 3y 11 2x 6 5x 32x 11 x3 5x 6x 11 3y4 11x 11 1 y 3, 1 x1 y 21 y2 0 10 20 30 40 50 60 70 Angle (degrees) 156 20 40 60 Angle (degrees) Algebra 2 Chapter 5 Worked-out Solution Key 1, 2 Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 47. 3x 2y 2 6. 4x 7y 19 y y x 2 7x 10 3x 4x 7 1 19 2 1 1 21x 4x 7 19 2 y x 2 4x 13 x 26 2 7. y ax 52 2 x 4 3 4 2 y 1 5 a51 2a 1 a y 2x 5 2 y x 3x 1 9. 16a 4b c 8 4, 5 16a 4b c 8 4a 2b c 1 48. C 1800 15v 10p 8a 4b 2c 10 4a 2b c 5 Quiz 3 (p. 312) y ax 3x 1 8. 0 a12 2 2 y 1 6 5 1. 1 x 3c 18 24a Eq 2 4a 2b c 1 y 4a 2b c 5 8a 2c 6 Eq 1 y x2 2 1 1 1 x 1 8a 2c 6 8a 6 8a c 6 a4 3 c0 2. y 434 2b 0 5 y x 2 x 3 2b 2 1 b1 1 1 x 1 y 3 2 4x x 10. 0.00339N2 0.00143N 5.95 < 1000 3. 4. y 0.00339N2 0.42N 0.0441 < 1005.95 0.0001495 y y x2 0.00339N 0.212 < 1005.9502 1 1 1 N 0.212 < 296,740 1 x 1 N 0.21 < 544.7 x 1 1 1 y 2x 2 1 N < 544 y 2x 2 12x 15 0 < N < 544 5. y Chapter 5 Review (pp. 314–316) y x 2 2x 3 1. 1 y x 1 y x 2 2x 3 y x 2 4x 7 (2, 3) 1 x 2 Copyright © McDougal Littell Inc. All rights reserved. 1 1 1 x Algebra 2 Chapter 5 Worked-out Solution Key 157 Chapter 5 continued 2. x2 4x 3 18. x2 y x2 (2, 5) x2 10x 26 19. 4x 4 7 x2 10x 25 1 x 2 7 x 52 1 2 x 2 ± 7 y 3(x 2)2 5 1 x 1 x 5 ±i x5 ± i x 2 ± 7 20. 2w2 w70 1 1 7 1 w2 w 2 16 2 16 3. y w 41 1 1 x 1 w 2 57 16 57 1 ± 4 4 1 y 2 (x 1)(x 5) w (2, 4.5) x2 1 57 ± 4 4 y x2 8x 17 21. 4. x2 11x 24 0 y 17 16 x2 8x 16 x 3x 8 0 y x 42 1; 4, 1 x 3 or x 8 5. x2 8x 16 0 7. 2x2 3x 1 0 6. x 42 0 2x 1x 1 0 x4 x 12 or x 1 3u2 4u 15 0 8. 25v2 30v 9 0 u 33u 5 0 5v 32 0 u 3 or u 5 3 9. 2x2 200 v 10. 5x2 15 x2 100 3 5 y x2 2x 6 22. y 6 x2 2x y x2 2x 1 5 y x 12 5; 1, 5 y 4x2 16x 23 23. y 23 4x2 4x y 4x2 4x 4 7 x2 3 y 4x 22 7; x ± 3 x ± 10 11. 4t 62 160 t 62 40 t 6 ± 210 2, 7 24. x2 8x 5 0 x 8 ± 64 20 2 x 7 ± 49 36 18 x 8 ± 44 2 x 7 ± 85 18 t ± 210 6 2 12. k 1 7 43 k 12 50 k 12 50 k 1 ± 52 k 1 ± 52 13. 7 2 4i 5i 5 i 14. 2 6 11i i 4 12i 15. 12 90 40i 27i 102 13i 16. 8i 1 2i 8 2 i 16i 6 17i 1 2i 1 2i 14 5 25. 9x2 7x 1 0 x 4 ± 11 26. 4v2 10v 7 0 v 10 ± 100 112 8 v 10 ± 2i3 8 v 5 ± i3 4 17. 62 92 36 81 117 313 158 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 2. y 27. y y x 2 4x 4 1 1 1 y (x 3)2 1 x 1 1 (3, 1) x 1 1 x 3 28. 29. y y 1 y 2x 2 3 3. 1 (2, 3) y 3 (x 1)(x 5) 1 1 y x 2 6x 5 x2 30. x2 y 1 x 1 1 x 3x 4 ≤ 0 x 1 1 x 4x 1 0 x 4 or x 1 y 7 4x2 6x 9 1 ≤ x ≤ 4 y 7 4x2 24x 36 31. 2x2 7x 2 ≥ 0 x 7 ± 49 16 4 y 4x2 24x 29 5. x2 x 20 x 5x 4 7 ± 33 x 4 6. 9x2 6x 1 3x 12 7 33 7 33 or x ≥ x ≤ 4 4 5 a4 62 1 x2 49 9 7 3 x < 73 or x > 4 4a 7 3 8. y x2 10x 16 y x 8x 2; 8, 2 9. a. 5 a1 y x 62 1 34. 7. 3u2 108 3u2 36 3u 6u 6 33. y ax 62 1 32. 9x2 > 49 x ± y 4x 32 7 4. y ax 4x 3 35. 25a 5b c 1 20 a1 41 3 16a 4b c 2 20 a10 9a 3b c 5 2 a b. 5 5 2 2 105 83 83 33 10. 26 3 11. 3 1 i 5i imaginary 4 4i 4 + 2i 5 i y 0.5x2 1.5x 4 i 1 i y 2x 4x 3 1 real 3i Chapter 5 Test (p. 317) 1. y x2 12. 4 7 2i 3i 11 5i (2, 3) 13. 48 2 6i 16i 46 22i y 2x 2 8x 5 1 1 Copyright © McDougal Littell Inc. All rights reserved. x 14. 9 2i 1 4i 9 8 2i 36i 1 38i 1 4i 1 4i 1 16 17 Algebra 2 Chapter 5 Worked-out Solution Key 159 Chapter 5 continued 15. f z z2 0.5i 28. y x 2 4x 2 y 29. y z0 0 1 z1 f 0 0.5i z2 f 0.5i 0.25 0.5i z3 f 0.25 0.5i 0.1875 0.5i 1 z0 0 z1 0.5 z2 0.0625 .25 0.3125 0.56 z3 0.18752 0.52 0.53 x x 22 18. c 0.09; x 0.32 x2 x 6 0 2x2 32 x 3x 2 0 x2 16 x ±4 2 ≤ x ≤ 3 121 4 ; 2 11 2 y x2 18x 4 19. 31. 2x 2 9 > 23 x 3 or x 2 17. c 1 x y 2x 2 12x 15 x 1 x2 x 6 ≥ 0 30. Yes, the absolute values are less than N 1. 16. c 4; 1 1 2 x < 4 or x > 4 7 ± 49 16 32. x 2 x y 4 81 x2 18x 81 y x 92 85; 7 ± 33 2 7 33 7 33 < x < 2 2 9, 85 y ax 32 2 y ax 1x 8 20. 7x2 3 11 21. 5x2 60x 180 0 7x2 14 x2 12x 36 0 18 a1 32 2 2 a2 12 8 x2 2 x 6x 6 0 20 4a 2 a6 x ± 2 4x2 22. 23. 2x 152x 1 0 x or x m2 8 ± 64 12 2 m 4 ± 52 p 9 27 p 9 ± 33 26. 12 4710 t 3 ± i7 4 27. 16a 4b c 2 167 16t2 167 16 t 3.23 37. p 1.225a2 88a 1697.375 Chapter 5 Standardized Test (pp. 318–319) 1. B 2. 4x2 4x 35 2x 52x 7 y 3. y 279; x2 13x 40 0 x 5x 8 2 imaginary 1 E 4. 4x 12 28 x 12 7 x 1 ± 7 5, 8 yx21 1 1 t2 about 3.23 sec 3 ± 9 16 t 4 p 9 ± 33 0 16t2 167 36. y x2 8x 14 25. 2t2 3t 2 0 2 abc7 35. a y 13x 1x 8 2 25a 5b c 1 2 m 4 ± 13 24. 3p 92 81 1 3 y 5x 3 2 8m 3 0 m 1 2 34. 5 a x6 28 15 0 15 2 33. x 1 ± 7 D x C 5. 12 8i10 i 120 8 80i 12i 112 92i D 6. C 160 Algebra 2 Chapter 5 Worked-out Solution Key Copyright © McDougal Littell Inc. All rights reserved. Chapter 5 continued 7. 22 437 88 8. x2 7x 8 > 0 2 real solutions x2 7x 8 0 A x 8x 1 0 x 8 or x 1 x < 8 or x > 1 B 9. D 10. E 11. 32 22 9 4 13 3.61 or 12 42 1 17 18 32 4.24 B 12. 49 96 145 or 196 200 4 13. a. r 0.334302 A 400 0.334s2 b. 1197.6 s2 r 300.6 ft 34.6 s about 34.6 mih c. A 24r 14. a. h d. A 8.016s2 16t2 e. linear; quadratic 40t 3 b. h 3 16t2 40t h 3 16t2 2.5t 1.5625 h 3 16t 1.252 h 16t 1.252 3 25 h 16t 1.252 28 about 1.25 sec 8 16t 1.252 28 c. 20 t 1.252 16 5 t 1.252 4 ± 1.25 5 2 5 t 1.25 2 t about 2.37 sec 6 ≤ 16t 1.252 28 ≤ 9 d. 22 19 ≥ t 1.252 ≥ 16 16 1.375 ≥ t 1.252 ≥ 1.1875 1.173 ≥ t 1.25 ≥ 1.090 2.42 ≥ t ≥ 2.34 from about 2.34 sec to 2.42 sec e. 0 160.12 0.1v0 8 0 0.16 8 0.1v0 7.84 0.1v0 78.4 v0 78.4 feet per sec Copyright © McDougal Littell Inc. All rights reserved. Algebra 2 Chapter 5 Worked-out Solution Key 161
© Copyright 2026 Paperzz