UILU-WRC-83-0177 Research Report 177 UNDISTURBED CORE METHOD FOR DETERMINING AND EVALUATING THE HYDRAULIC CONDUCTIVITY OF UNSATURATED SEDIMENTS A t e f E l zeftawy and Keros C a r t w r i g h t Hydrogeol ogy and Geophysics Section I 1 1 i n o i s S t a t e Geological Survey, Champaign A p r i l 1983 P r o j e c t A-097-ILL Matching Grant Agreement No. 14-34-0001-0115 F'inal Technical Completion Report to U.S. Department o f t h e I n t e r i o r Washington, D.C. 20240 CONTENTS ...... Keywords . . . . . Acknowledgments . . Introduction . . . . ........................ 1 ........................ 1 ........................ 1 ........................ 1 S o i l water p o t e n t i a l ........................ 2 S o i l water c h a r a c t e r i s t i c f u n c t i o n . . . . . . . . . . . . . . . . . . . 7 Hydraulic conductivity function . . . . . . . . . . . . . . . . . . . . 8 U n i t s f o r s o i l water p o t e n t i a l . . . . . . . . . . . . . . . . . . . . . 12 M a t e r i a l s and methods . . . . . . . . . . . . . . . . . . . . . . . . . 13 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 L i s t o f p u b l i c a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Abstract . . . . . . . . . . TABLES . . . . . . . . . 13 . . . . . . . . . . . . . . . . . . 14 1 P o t e n t i a l expressed i n t h e major measurement systems . 3. Conversions f o r p o t e n t i a l u n i t s 2 Location. type and p a r t i c l e s i z e data o f undisturbed samples used i n study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 . P r o p e r t i e s o f undisturbed core samples . . . . . . . . . . . . . . . 16 5 . Bulk d e n s i t y and saturated hydraul i c c o n d u c t i v i t y o f Lakeland f i n e sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 . Selected physical p r o p e r t i e s o f s o i l s used a t i n d i c a t e d depths . . . 21 FIGURES 1. 2. 3. 4. C a p i l l a r y tubes showing c o n f i g u r a t i o n o f t h e a i r w a t e r i n t e r f a c e s a t d i f f e r e n t h e i g h t s ( a f t e r Dempsey and E l z e f t a w y [231) 5 V a r i a t i o n i n pressure above and below water t a b l e ( a f t e r Dempsey and E l zeftawy [22] ) . . . 6 R e l a t i v e s o i l - w a t e r c h a r a c t e r i s t i c curves f o r a c l a y e y s o i l and . . . sandy s o i l 7 ...... ........ ..... ..... ... .. ........... .... ......... Tensiometer system ( a f t e r Dempsey and E l z e f t a w y [ 2 2 ] ) . . . . . . . 9 5. H y s t e r e s i s e f f e c t s o f d r y i n g and w e t t i n g c o n d i t i o n s on m a t r i c suction . .. . 6. Tempe pressure c e l l s set-up i n t h e 7. D e t a i l e d c r o s s s e c t i o n o f tempe c e l l ( a f t e r S o i l m o i s t u r e . Equipment Corp 1231 ) 18 8. Permeameter used f o r 18 9. Experimental and c a l c u l a t e d hydraul i c c o n d u c t i v i t y o f Lake1and . . . f i n e sand 10. Soi 1 m o i s t u r e - s u c t i o n r e l a t i o n s h i p s o f Lakeland f i n e sand and . Drummer s o i l 11. Experimental and c a l c u l a t e d h y d r a u l i c c o n d u c t i v i t y o f D r u ~ m e rs o i l 12. Experimental and c a l c u l a t e d hydraul i c c o n d u c t i v i t i e s of Ottawa sand 13. Experimental and c a l c u l a t e d hydraul i c c o n d u c t i v i t i e s o f F a y e t t e C horizon . 14. Experimental and c a l c u l a t e d ............... .... ....... 9 l a b o r a t o r y . . . . . . . . . . . 17 ..... .................. determining saturated hydraulic c o n d u c t i v i t y . . . . . . . . . . . . . . . . . . . . 20 . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 . 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 .......... . . . . . . . . . . . . . . . . . . 26 h y d r a u l i c c o n d u c t i v i t i e s o f Dana s o i l . 27 ABSTRACT This paper describes a new method developed to predict the transport of moisture and contaminants in soils. Study results indicate that this method could help simplify evaluation of municipal and industrial waste disposal s i t e s for their potential environmental impact. Saturated and unsaturated hydraulic conductivities of several Illinois soils, calculated on the basis of pore size distribution, were shown to predict reliably the experimentally measured laboratory valhes. For coarse-textured soil materi a l s a n d materials with a relatively narrow range of pore size, only one matching factor was required to calculate the hydraulic conductivity-water content re1 ation accurately enough for many purposes; however, for finetextured soil materials with a wide range of pore size distribution, two or more matching factors a t a water content in the 0.3 to 0.4 bar range may be needed to obtain a useful evaluation for the unsaturated hydraulic conductivity. KEY WORDS unsaturated hydraulic conductivity, soil water, matching factor, permeability, groundwater, soil water potential, water retention ACKNOWLEDGMENTS W e are grateful t o staff members of the Hydrogeology a n d Geophysics Section a t the Illinois State Geological Survey for their advice and assistance during the course of the study; to Julie Engelhart, former research assistant, for helping with the laboratory work; and to Glenn E. Stout, Director of the Water Resources Center, University of Illinois, for his cooperation and assistance. Partial funding for thi s study was provided by the U.S. Department of Interior, Office of Water Research and Development. INTRODUCTION A t 1east two basic parameters of geologic sediments-hydraul ic conductivi ty and soi 1 water characteristic functi ons-must be eval uated before predictive analyses can be made of the transport of moisture and contaminants in the unsaturated-saturated zone of a s o i l . These parameters must be measured a c c u r a t e l y b e f o r e d e t e r m i n a t i o n s can be made o f t h e p o t e n t i a l environmental impact o f m u n i c i p a l and i n d u s t r i a l waste d i s p o s a l s i t e s . R e l i a b l e measurement o f these parameters i s a l s o e s s e n t i a l t o p l a n n i n g and managing e f f i c i e n t schernes f o r i r r i g a t i o n water. T h i s r e s e a r c h p r o j e c t was undertaken t o determine t h e s o i l w a t e r parameters o f sorne nonindurated g e o l o g i c sediments i n I l l i n o i s . Our s p e c i f i c o b j e c t i v e s were: . t o determine t h e s o i l water c h a r a c t e r i s t i c f u n c t i o n s i n t h e l a b o r a t o r y , u s i n g u n d i s t u r b e d and d i s t u r b e d samples. - t o determine t h e s a t u r a t e d - u n s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y f u n c t i o n s u s i n g t h e same u n d i s t u r b e d samples. 0, t o e v a l u a t e t h e hydraul i c c o n d u c t i v i t y f u n c t i o n s of a1 1 samples, u s i n g t h e c a p i l l a r y model and t h e pore s i z e d i s t r i b u t i o n data. Before d i s c u s s i n g t h e methodology and r e s u l t s o f o u r s t u d y we w i l l d e f i n e s e v e r a l i m p o r t a n t s o i l water concepts t h a t a r e c r i t i c a l t o unders t a n d i n g and p r e d i c t i n g s o i l water movement: s o i l water p o t e n t i a l , s o i l w a t e r c h a r a c t e r i s t i c f u n c t i o n , h y d r a u l i c c o n d u c t i v i t y f u n c t i o n , and u n i t s f o r s o i l water p o t e n t i a l . Soi 1 Water P o t e n t i a l S o i l water c o n t a i n s energy i n d i f f e r e n t forms and q u a n t i t i e s . The two p r i n c i p l e forms of energy a r e k i n e t i c energy, a f u n c t i o n o f v e l o c i t y and p o t e n t i a l energy t h a t i s a f u n c t i o n o f p o s i t i o n o f i n t e r n a l c o n d i t i o n of t h e system. Since water moves v e r y s l o w l y i n s o i l , k i n e t i c energy can g e n e r a l l y be i g n o r e d i n t h e s t u d y o f s o i l w a t e r systems; however, p o t e n t i a l energy i s o f p r i m a r y importance i n d e t e r m i n i n g t h e s t a t e and t h e movement o f water i n s o i l . The spontaneous and u n i v e r s a l tendency o f a1 1 m a t t e r i n n a t u r e i s t o move from a p o i n t o f h i g h p o t e n t i a l energy t o a p o i n t o f l o w p o t e n t i a l energy u n t i l an e q u i l i b r i u m c o n d i t i o n i s reached. S o i l water systems obey t h e same u n i v e r s a l p u r s u i t o f e q u i l i b r i u m . A s o i l water system i s s u b j e c t e d t o a number o f f o r c e f i e l d s , which causes i t s . p o t e n t i a l t o d i f f e r from t h a t o f f r e e water. commonly considered a r e g r a v i t a t i o n a l p o t e n t i a l , $I g' The f o r c e f i e l d s pressure p o t e n t i a l , , osmotic p o t e n t i a l , m0, and gas p o t e n t i a l , ma. The t o t a l p o t e n t i a l , P o f t h e s o i l water system can be considered as t h e sum o f t h e i n d i v i d u a l potentials: mT = mg + " + m0 + ma mT, (1) and pressure p o t e n t i a l , 4 , a r e t h e g' P p r i m a r y f o r c e f i e l d s i n s o i l water systems. The osmotic p o t e n t i a l , m0, i s The g r a v i t a t i o n a l p o t e n t i a l , 4 dependent upon t h e presence o f a s o l u t e i n t h e s o i l water system. ma, potential, The gas i s dependent upon e x t e r n a l o r i n t e r n a l gas pressure i n t h e I f the osmotic p o t e n t i a l and gas p o t e n t i a l a r e considered t o have system. minor i n f l u e n c e on t h e t o t a l p o t e n t i a l , then Equation 1 can be s i m p l i f i e d as f o l 1ows : . mT . = mg + mp (2) A t a h e i g h t z above an a r b i t r a r y r e f e r e n c e l e v e l , t h e g r a v i t a t i o n a l energy of water i n s o i l , E, can b e s t a t e d as follows: E =. Mgz = y I n equation 3, yw W gzv (3) i s t h e d e n s i t y o f water, g i s t h e a c c e l e r a t i o n o f g r a v i t y and V i s t h e volume o f t h e mass, M. p o t e n t i a l energy, 9 g' From Equation 3, t h e g r a v i t a t i o n a l can be expressed as f o l l o w s : = gz ( p e r . u n i t mass, M) (4 = y , gz ( p e r u n i t volume, V ) (5) g = z ( p e r u n i t weight, W ) (6 9 depends o n l y on z and i s d e f i n e d as t h e g r a v i t a t i o n a l head @ I n Equation 6, @ 9 i n s o i 1 water systems. i s n e g a t i v e f o r unsaturated s o i l water systems P' and p o s i t i v e f o r s a t u r a t e d s o i l water systems. I t can be shown t h a t t h e Pressure p o t e n t i a l , @ pressure p o t e n t i a l concept a l l o w s f o r t h e c o n s i d e r a t i o n o f t h e e n t i r e m o i s t u r e p r o f i l e i n t h e f i e l d i n terms o f a s i n g l e continuous p o t e n t i a l extending from t h e s a t u r a t e d r e g i o n t o t h e unsaturated region, below and above t h e water t a b l e . The p o s i t i v e pressure p o t e n t i a l f o r a s a t u r a t e d s o i l water system i s f a i r l y w e l l understood. The n e g a t i v e pressure-less w e l l understood-has o f t e n been termed c a p i l l a r y p o t e n t i a l , s o i 1 s u c t i o n , o r (more a c c u r a t e l y ) matrix potential. This p o t e n t i a l r e s u l t s from the c a p i l l a r y and a b s o r p t i v e forces.developed i n t h e s o i l m a t r i x . I n d i s c u s s i n g pressure p o t e n t i a l f o r unsaturated s o i l water systems, t h e c a p i l l a r y tube analogy i s useful . S o i l can be assumed t o be a porous medium composed o f c a p i l l a r y tubes o f d i f f e r e n t s i z e s . I n f i g u r e 1 the a i r water i n t e r f a c e s throughout t h e s o i l c o n s i s t s of menisci i n which t h e curvat u r e o r r a d i i i n d i c a t e t h e s t a t e o f t e n s i o n i n t h e s o i l water (much as a c a p i l l a r y tube does). As the m o i s t u r e c o n t e n t o f t h e s o i l i s reduced, t h e a i r water i n t e r f a c e s recede i n t o t h e s m a l l e r pores, t h e r a d i i o f c u r v a t u r e decrease, and t h e m o i s t u r e t e n s i o n increases. I n t h e c a p i l l a r y tube shown i n f i g u r e 2 t h e water above t h e water t a b l e w i l l be i n e q u i l i b r i u m when t h e upward component o f t h e s u r f a c e t e n s i o n f o r c e i s equal t o t h e g r a v i t a t i o n a l f o r c e a c t i n g on t h e suspended water. The height, h, t o which t h e water w i l l r i s e i n t h e c a p i l l a r y tube i s r e l a t e d m a i n l y t o t h e s u r f a c e tension, a, and radius, r, o f t h e meniscus by t h e f o l l o w i n g equation: h = 2 a cos Yw 9 r e I n f i g u r e 2 atmospheric pressure e x i s t s a t p o i n t s 1, 2, and 3. However, a t p o i n t 4, j u s t below t h e meniscus, t h e pressure i s l e s s than atmospheric pressure by an amount equal t o hywg. Assuming t h a t c o s i n e e I 1 f o r water i n s o i l , and t h a t t h e c u r v a t u r e o f t h e water i n t h e s o i l m a t r i x i s s i m i l a r t o t h a t i n a c a p i l l a r y tube o f t h e same s i z e ( f i g u r e 2 ) , t h e pressure potent i a l p e r u n i t mass can be expressed from Equation 7 as f o l l o w s : The n e g a t i v e s i g n i s used i n Equation 8 because t h e pressure p o t e n t i a l i n an unsaturated s o i l water system i s l e s s than atmospheric pressure and because h would have a n e g a t i v e value i n an unsaturated system. From Equations 2, 4, and 8 t h e t o t a l p o t e n t i a l p e r u n i t mass, excludi n g t h e osmotic p o t e n t i a l and gas p o t e n t i a l , can be s t a t e d as f o l l o w s : On a u n i t weight basis, n o r m a l l y used i n s o i l water s t u d i e s , Equation 9 can be shown i n t h e f o l l o w i n g form: r --.-- -- M ~ g n iled f roil --.(/ particles Pressure change across meniscus (= roil rnolsture s u c l ~ o n t = 8 6 Iblsq in p F 2.78 - -- ------ - R a d ~ u sof tncnlscub 0.0001 In. Pressure change across menlscus Redtus of rnentrcuc Figure 1. Capillary tubes showing configuration of the air water interfaces at different heights (after Dernpsey and Elzeftawy [22]). Figure 2. Variation in pressure above and below water table (after Dempsey and Elzeftawy [221 ). H = z + h (10) I n Equation 10, H i s t h e t o t a l s o i l water head, z i s t h e g r a v i t a t i o n a l head, and h i s t h e pressure head. The pressure head i s negative ( s u c t i o n ) i n unsaturated s o i l water systems and p o s i t i v e f o r s a t u r a t e d s o i l water systems. To summarize, t h e c r i t e r i o n f o r t h e e q u i l i b r i u m i n s o i l water systems i s t h a t t h e t o t a l water p o t e n t i a l be equal throughout t h e system. To f a c i l i t a t e t h e a n a l y s i s o f p a r t i c u l a r systems, t h e t o t a l water p o t e n t i a l i s p a r t i t i o n e d i n t o various components t h a t can be measured. Typically, the g r a v i t a t i o n a l p o t e n t i a l i s determined by use o f a measuring tape, t h e pressure p o t e n t i a l by a pietometer f o r saturated systems and a tensiometer f o r unsaturated systems, and t h e gas p o t e n t i a l by a pressure gauge. Soil Water Characteristic Function The relationship expressed in a soil water characteristic function i s a soil property of fundamental importance in the analysis of water equilibrium and flow behavior in s o i l . Figure 3 shows relative soil water charact e r i s t i c curves for two different s o i l s . Physically, the curve t e l l s ( a t any given moisture content) how much energy (per unit quantity of water removed) i s required to remove a small quantity of water from the s o i l . I t indicates how tightly water i s held in the s o i l . Hillel ( I ) , Taylor and Ashcroft (2), Kirkham and Powers ( 3 ) , and Rose ( 4 ) have presented detailed explanations of how water i s held in s o i l . Childs ( 5 ) has considered the mechanisms of water held in both swelling and non-swell ing s o i l s in great detail. Crorney, Coleman, and Bridge ( 6 ) have described the methods used to determine the soil water characteristic curve-those used most frequently are the tensiometer, direct suction, pressure plate, and centrifuge methods. Because no single method can cover the entire moisture tension range, several measurement methods are generally used in determining these curves. Water content Figure 3. Relative soil-water characterisitic curves for a clayey soil and sandy soil. Figure 4 shows a simple type of tensiometer system t h a t can be used f o r t h e low moisture-tension range ( < 100 kN/m 2 , or < 1 bar). The apparatus shown i n f i g u r e 4 c o n s i s t s o f a porous p l a t e w i t h i t s pores f i l l e d w i t h water. The chamber beneath t h e porous p l a t e i s f i l l e d w i t h water and connected t o a f l e x i b l e tube t h a t i s a l s o f i l l e d w i t h water. The negative head i s equal t o t h e distance, h, between t h e s o i l sample and t h e o u t f l o w end o f t h e f l e x i b l e tube i n f i g u r e 4. The s o i l water c h a r a c t e r i s t i c curve i s determined frorn t h e r e l a t i o n s h i p between t h e water content o f t h e s o i l sample and t h e magnitude of t h e negative pressure head o f t h e water. Hysteresis e f f e c t s ( f i g u r e 5 ) w i 11 o f t e n occur between s o i 1 water c h a r a c t e r i s t i c curves f o r d r y i n g and w e t t i n g . The h y s t e r e s i s f o r t h e d r y i n g and w e t t i n g c o n d i t i o n s a r i s e s frorn the i n f l u e n c e o f pore s i z e d i s t r i b u t i o n on water h e l d i n t h e s o i l . A complete moisture c h a r a c t e r i s - t i c curve should c o n s i s t of a d r y i n g (desorption) curve and a w e t t i n g ( s o r p t i o n ) curve. The d r y i n g curve should s t a r t a t s a t u r a t e d water content a t c l o s e t o zero s u c t i o n and continue t o a low water content a t a h i g h l e v e l o f suction. The w e t t i n g curve should s t a r t a t t h e h i g h l e v e l o f s u c t i o n and low water content and proceed t o s a t u r a t i o n . This would c h a r a c t e r i z e an envelope f o r water content and s u c t i o n values i n t h e given range. The i n f l u e n c e o f small moisture content changes on s o i l s u c t i o n i s shown by t h e smaller h y s t e r e t i c curves i n s i d e t h e desorption and s o r p t i o n curves i n f i g u r e 5. A useful simp1 i f i c a t i o n occurs when t h e s o i l s u c t i o n i s given i n u n i t s o f water head. A s u c t i o n of 20 cm w i l l l i f t a column o f water 20 cm above a f r e e water surface. Therefore, t h e s u c t i o n on t h e m o i s t u r e c h a r a c t e r i s t i c s curve can be equated t o the distance above a water t a b l e f o r e q u i l i b r i u m conditions. Also, by use of the s o i l water c h a r a c t e r i s t i c curve i t i s p o s s i b l e t o estimate t h e e q u i l i b i r u m water content a t v a r i o u s p o s i t i o n s above the water t a b l e . Hydraul i c C o n d u c t i v i t y Function The f l o w of water through s o i l s i s o f t e n unsteady and unsaturated. Examples o f such flows are t h e i n f i l t r a t i o n o f water from t h e ground surface, t h e f l o w through t h e c a p i l l a r y f r i n g e of an unconfined aquifer, t h e d r a i n i n g o f s o i l s , t h e evaporation from an a q u i f e r c l o s e t o t h e ground surface, t h e '( [ZZ] A ~ e y a z l gpue Aasdwaa l a y e ) UIaJsAs JaIalrro!sual ' p a l n 6 ! j f l u c t u a t i o n s o f groundwater l e v e l , t h e i n f l o w of water from i r r i g a t i o n channels, and t h e l a n d disposal o f 1 i q u i d wastes. The general nonl i n e a r p a r t i a l d i f f e r e n t i a l equation t h a t describes t h e t r a n s p o r t o f groundwater can be w r i t t e n as f o l l ows : where e i s t h e v o l u m e t r i c water c o n t e n t d e f i n e d as t h e r a t i o o f t h e volume o f water, V operator. t o t h e t o t a l volume of s o i l , V, v i s t h e v e c t o r d i f f e r e n t i a l K i s t h e h y d r a u l i c c o n d u c t i v i t y , and $ i s t h e t o t a l p o t e n t i a l . For a complete d e r i v a t i o n o f Equation 11 ( 5 o r 6 ) . An equation o f t h i s t y p e a p p l i e s t o any nonreactive l i q u i d i n t h e porous medium; s i n c e we l i m i t ourselves i n t h i s study t o water, i t i s convenient t o t a k e t h e l e n g t h of water column as t h e u n i t o f p o t e n t i a l . P o t e n t i a l g r a d i e n t s a r e then dimensionless, and i f t h e time, t, i s expressed i n hours, t h e u n i t o f h y d r a u l i c c o n d u c t i v i t y i s centimeters per hour. When t h e t o t a l p o t e n t i a l i s composed o f o n l y g r a v i t a t i o n a l and n e g a t i v e pressure ( c a p i l l a r y ) components, Equation 11 may be w r i t t e n : where h i s t h e s u c t i o n ( n e g a t i v e pressure) p o t e n t i a l , and z i s t h e v e r t i c a l o r d i n a t e , p o s i t i v e upward. When h and K a r e s i n g l e - v a l u e d f u n c t i o n s o f 9, Equation 12 becomes where C h i l d s and Collis-George ( 7 ) c a l l e d D t h e d i f f u s i v i t y o f s o i l water a r ~ dfound i t t o be a f u n c t i o n o f 9. Rogers and K l u t e ( 8 ) have shown t h a t h y d r a u l i c c o n d u c t i v i t y , K, i s u n i q u e l y r e l a t e d t o s o i l m o i s t u r e content, e. Two p h y s i c a l p r o p e r t i e s of t h e s o i l t h a t e n t e r i n t o a saturated-unsaturated f l o w problem a r e hydraul i c c o n d u c t i v i t y , K(e), and s o i 1 moi s t u r e r e t e n t i o n h ( e ) ; these p r o p e r t i e s must be known i f a s o l u t i o n o f Equation 13 i s t o be obtained. C h i l d s and C o l l is-George (7), M i l 1i n g t o n and Q u i r k ( 9 ) , Green and Corey ( l o ) , and o t h e r s have explored t h e p o s s i b i l i t y of p r e d i c t i n g t h e h y d r a u l i c c o n d u c t i v i t y o f s o i l s and o t h e r porous m a t e r i a l s on t h e b a s i s o f pore s i z e d i s t r i b u t i o n . Such p r e d i c t i o n s a r e of i n t e r e s t because t h e h y d r a u l i c c o n d u c t i v i t y f u n c t i o n , K(e), i s r e l a t i v e l y d i f f i c u l t t o measure, whereas pore s i z e d i s t r i b u t i o n i s e a s i l y o b t a i n a b l e by t h e standard measurement o f moisture content versus s u c t i o n ( n e g a t i v e pressure). The h y d r a u l i c c o n d u c t i v i t y i s obtained by d i v i d i n g t h e r e l a t i o n of m o i s t u r e content and suction, h(e), i n t o n equal water c o n t e n t increments, o b t a i n i n g t h e s u c t i o n , h, a t t h e m i d p o i n t o f each increment, and c a l c u l a t i n g t h e c o n d u c t i v i t y by using t h e f o l l o w i n g equation (see r e f . 7 f o r more details): where K(e)i = c a l c u l a t e d c o n d u c t i v i t y f o r a s p e c i f i e d m o i s t u r e c o n t e n t c o r responding t o t h e i t h increment, crn/min; e 3 3 = m o i s t u r e content, cm /cm ; y = s u r f a c e t e n s i o n o f water, N/cm; p = d e n s i t y o f water, g/cm3; g = g r a v i t a t i o n a l constant, cm/s2; I-I s E = kinematic v i s c o s i t y o f water, cm2/s; = s a t u r a t e d moisture 'content, cm3/cm 3., 3 = water-saturated p o r o s i t y (cm /cm p = 3 ), t h a t i s , E = e - s, constant whose value depends on t h e method o f c a l c u l a t i o n 6, i s equal t o 2 i n these c a l c u l a t i o n s ; '0 = lowest moisture c o n t e n t on t h e experimental h ( e ) curve; n = t o t a l number of pore classes between e = (eS - e and 0 9, n = mBS/ go); i = l a s t moisture-content increment on t h e wet end ( f o r example, i - 1 i d e n t i f i e s t h e pore c l a s s corresponding t o eo); h. = suction (negative pressure) for a given class o f moistureJ f i l l e d pores ( c e n t i m e t e r s o f water head); and 30 = t h e composite o f t h e c o n s t a n t 1/8 from P o i s e u i l l e ' s equation, 4 f r o m t h e square of r = 2y/h, where r i s t h e pore r a d i u s and 60 c o n v e r t s from seconds t o minutes. Green and Corey (10) c o n ~ l u d e dt h a t Equation 15 y i e l d s reasonable values o f t h e h y d r a u l i c c o n d u c t i v i t i e s f o r a range o f s o i l types i f a matching f a c t o r i s used. E l z e f t a w y and Mansell (11) and E l z e f t a w y and Dempsey (12) s t a t e d t h a t a matching f a c t o r a t water s a t u r a t i o n ( t h e r a t i o of t h e measured t o t h e c a l c u l a t e d , s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y ) has a d l s t i n c t advantage o v e r match p o i n t s because i n a c c u r a c i e s i n c a l c u l a t e d and experimental l y e v a l u a t e d K(e) can be more e a s i l y t o 1 e r a t e d a t 1ower moisture content. f a c t o r KS/KSc, Equation 15 can t h e n be w r i t t e n by u s i n g t h e matching i n t h e f o l l o w i n g form: m c [(2j j=i ~ ( 0 =) ~ + 1 - 2i)h;] (16 where Ks i s t h e measured s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y , and KSc i s t h e calculated saturated conductivity. U n i t s f o r S o i l Water P o t e n t i a l The normal methods o f e x p r e s s i n g p o t e n t i a l i n s o i l water systems a r e shown i n t a b l e 1 f o r t h e v a r i o u s measurement systems. t h e measurement systems a r e shown i n t a b l e 2. Relationships f o r For p o t e n t i a l s expressed on a p e r u n i t w e i g h t b a s i s o r on a p e r u n i t volume b a s i s , t h e dimensions a r e those o f l e n g t h ( c e n t i m e t e r , meter, o r f o o t ) o r o f pressure (dyne/ square c e n t i m e t e r , newton/square meter, o r pound/square f o o t ) , r e p e c t i v e l y . Equations f o r c o n v e r t i n g between t h e t h r e e forms o f p o t e n t i a l a r e s t a t e d as f o l l o w s : energy -mass energy weight energy volume - Y~ energy mass energy -v o l urne "w energy weight (19) Table 1. Potential P o t e n t i a l expressed i n t h e m a j o r measurement systems. cgs system mks system English sys tem energy mass dyne cm -- erg gm Qm Newton meter -- -J o u l e kg kg energy weight dyne = crcm Newton meter Newton - meter -ft- 1b - ft %% dyne cm 3 cm - dyne Newton meter 3 meter - Newton -ft- -1b - 1b dyne - 2 cm meter2 ft 1b slug 1b ft3 ft2 1 bar 14.5 p s i 33.4 ft w a t e r 1020 cm w a t e r I n making analyses of s o i l w a t e r systems, i t i s convenient t o use one of t h e s e methods c o n s i s t e n t l y f o r e x p r e s s i n g p o t e n t i a l r a t h e r than t o use more t h a n one method i n t h e same analyses. O f t h e t h r e e methods, p o t e n t i a l s expressed as energy per u n i t w e i g h t appear t o be u t i l i z e d most i n t h e 1 i t e r a t u r e and a r e used i n t h i s paper. MATERIALS AND METHODS Determinations o f s o i l w a t e r c h a r a c t e r i s t i c and hydraul i c c o n d u c t i v i t y functi.ons were made o f t r i p 1 i c a t e u n d i s t u r b e d and d i s t u r b e d s o i l samples. The u n d i s t u r b e d c o r e samples (5.4 cm i n diameter and 3 cm i n h e i g h t ) were c o l l e c t e d from s i t e s i n I l l i n o i s . The s o i l cores used i n t h i s s t u d y were o b t a i n e d d u r i n g p r e v i o u s s t u d i e s and taken from storage. A l l t h e samples htad been a l l o w e d t o dry, b u t o t h e r w i s e were undisturbed. The l o c a t i o n s and some p h y s i c a l p r o p e r t i e s o f t h e u n d i s t u r b e d c o r e samples a r e shown i n t a b l e 3. The d i s t u r b e d s o i l samples ( t a b l e 4 ) were passed through a 2-mm seive, oven d r i e d , and hand packed i n t h e "Tempe" t e s t c e l l s . A1 1 samples were placed i n "Tempe" pressure c e l l s and s a t u r a t e d w i t h water. The Tempe" pressure c e l l operates under t h e same p h y s i c a l p r i n c i - p l e s as does t h e porous p l a t e apparatus o f t h e ASTM T e s t f o r C a p i l l a r y , w r r 0 N O r 0 W * . . P O w w 9 P r o . O O r " ON 9 w w P r N . O O W p m l- O o m UY W W W W g N S 0 o W W m r r 0 u U Y o W W r r 1 ON m O ~ m r 0 r 0 0 W W . O O 0 r o o 03 ' W 5 . N rt -h 03 N W IC 03 U Y O U Y 0 0 0 3 0 0 0 YE Y " . w 0 w UY o w w 0 r r . o S W 0 0 O 0 N w 0 0 03 03 r r o O O O W o o r UY m o ~ a 0 O O W r . . 0 w w ZNF $IH N3 N N ? . Y O N o z mZ W 03 a . r n w 0 o w o W W r a W UY N l- u w 0 W N W o W W m r 0 0 . C' 0 r W 0 w S l- . o S 00 o - 3 0 S N . . . . . . 5 8 8 S w " o8 m O O 0 o 0 0 0 0 r u UY w 0 03 O r 0 0 r o o o o o N UY 0 - . w N O w ~ 0 N . . . . . . . g Z 8P °O o 0o 0o r o o ow o O w N O m % l- r S 8 W 0 O r r z s . . . . 0 P W r 0 O m K O 0 W 0 r 0 r 0 r W o ZO % w 0 N r N o g r g P 0 0 I O U P 0 N 0 UY r ID 0 w UY . . . . . . . . . r 0 r 0 W 0 o 0 o o o 0 0 l 0 - 0 0 0 z g o0 w Z W 0 0 0 8 G Z Zg 0 0 U Y o r UY l- W O W 2 % u 8:: , 0 . . . . . . . . . . w w o Oo o o o ~ S u o g $o 8 8 - o 0 W S ~ ~ w ~ ~ 2 w ~! ii8 ~ g 5 W T) g ID 1 03 u 2 Cahokia (a1 luvium overbank o r / backwater) a l l Alexander County l o c a t i o n s a l l C l a r k County l o c a t i o n s A1 exander A1 exander A1 exander A1 exander A1 exander A1 exander A1 exander Alexander Alexander ' ~ c ~ a y ,e t a l . [25]: ' ~ o l l m e r [241: 1 2 3 4 5 6 7 8 9 no. no. no. no. no. no. no. no. no. Parkland (eolian sand and silt) 13 14 15 16 17 19 20 no. no. no. no. no. no. no. Ogle Ogle Ogle Ogle Ogle Ogle Ggl e Vandal i a T i 1 1 Berry Clay B e r r y Clay Peoria Loess Berry Clay B e r r y Clay Peoria Loess Roxana S i l t Roxana S i l t Roxana S i l t ~l ark1 Clark Clark Clark Clark Clark Clark Clark Clark Clark 11 12 21 22 25 26 27 28 29 30 no. no. no. no. no. no. no. no. no. no. Material Peoria Loess Peoria Loess Peoria Loess(?) R. Piatt Piatt Piatt Twp. 0-12" P i a t t 12-36" P i a t t 30-60" P i a t t Sec. E q u a l i t y Fm. E q u a l i t y Fm. County Depth(cm) Soi 1 Horizon Location, type and p a r t i c l e s i z e data o f undisturbed s a m ~ l e sused i n study. Champaign Adams Sampl e No. Table 3. P a r t i c l e Size (%) Sand Silt Clay Table 4. P r o p e r t i e s of d i s t u r b e d samples. p a r t i c l e size (%) s o i l sample sand silt clay Fine Ottawa Sand 100 - Coarse Ottawa Sand 100 - Ground Ottawa Sand 100 - - 4 86 10 11 61 28 R i c h l a n d Loess Roxana S i l t M o i s t u r e R e l a t i o n s h i p s f o r Coarse and Medium-Textured S o i l s by PorousP l a t e Apparatus D 2325-68 ( 1 9 7 4 ) ~ w i t h maximum 1 atm pressure. Figures 6 and 7 show t h e l a b o r a t o r y setup and a schematic o f t h e pressure c e l l . A constant temperature was maintained a t a l l times i n t h e l a b o r a t o r y . The s a t u r a t e d h y d r a u l i c c o n d u c t i v i t i e s o f a l l samples were determined u t i l i z i n g an apparatus ( f i g u r e 8 ) s i m i l a r t o t h a t used i n t h e ASTM Test f o r Permeabil it y o f Granular S o i l s (Constant Head) D 2434-68 (1974). The samples were then subjected t o a i r pressure. A f t e r t h e i r s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y was determined, t h e samples were allowed t o d r a i n f o l l o w i n g sequential s u b j e c t i o n t o a i r pressures of 100, 200, 300, 500, 800, and 1000 cm o f water. They were then placed i n a 15-bar porous-plate apparatus t o determine t h e e q u i l i b r i u m m o i s t u r e c o n t e n t r e t a i n e d i n t h e s o i l sarr~plesf o r a i r pressures o f 1, 3, 5, and 15 atm ( u s i n g procedures s i m i l a r t o ASTM D 2325-68 o r ASTM Test f o r C a p i l l a r y - M o i s t u r e R e l a t i o n s h i p s f o r Fine-Textured S o i l s by Pressure-Membrane Apparatus D 3152-72 I1977)). The water c o n t e n t (by volume) was determined from t h e weight o f t h e pressure c e l l corresponding t o each s t a t e e q u i l ibrium pressure and t h e oven-dry weight of t h e s o i l samples. The measured hydraul i c c o n d u c t i v i t y f u n c t i o n , K(e) , o f a1 1 samples was evaluated by t h e instantaneous p r o f i l e method suggested by Watson (13) and described by Rogers and K l u t e ( 8 ) . Another method, described by Elzeftawy and Mansell ( l l ) , was a l s o used t o determine K(e) o f each sample. This method i s based on t h e u t i l i z a t i o n o f a u n i t h y d r a u l i c g r a d i e n t t o p r o v i d e a steady-state, downward, unsaturated flow o f water across t h e s o i l core. The computer program developed by Elzeftawy and Dempsey (12) was used t o clamping wing nut enlarged soil partical in sample soil core sample held in retaining cylinder "0"ring cylinder seal porous ceramic plate "0"ring porous plate seal pore in porous plate Figure 7. Detailed cross section of Tempe cell (after Soilmoisture Equipment Corp. 1231 ). fl - to 40 psi air pressure source d e - a ~ r e dwater inflow isolat~on valve J lLk beaker Figure 8. Permeameter used for determining saturated hydraulic conductivity. c a l c u l a t e t h e h y d r a u l i c c o n d u c t i v i t i e s , u s i n g Equation 16 and t h e s o i l w a t e r - r e t e n t i o n curves. The Lakeland f i n e sand samples were taken a t t h r e e depth i n t e r v a l s from t h e A g r i c u l t u r a l Experiment S t a t i o n farm o f t h e U n i v e r s i t y of F l o r i d a a t Quincy, F l o r i d a (Elzeftawy and Manse1 1 (11)). RESULTS Amerman (14) and P h i l i p (15) have pointed o u t t h e importance o f i n c l u d i n g i n f o r m a t i o n about t h e unsaturated s o i l p r o p e r t i e s i n l a r g e - s c a l e hydrogeol o g i c i n v e s t i g a t i o n s . For example, t o i n c o r p o r a t e p r i n c i p l e s of s o i l physics i n t o a r a i n f a l l - r u n o f f model, i t i s p o s s i b l e t o use e i t h e r a n u n ~ e r i c a ls o l u t i o n o f t h e unsaturated f l o w equation o r a simple i n f i l t r a t i o n equation such as t h a t given by Green and Ampt (16) o r d e r i v e d by P h i l i p (17). I n t h e f i r s t approach, t h e s o i 1 water c h a r a c t e r i s t i c ( t h e re1a t i o n s h i p between s o i l s u c t i o n head, h, and v o l u m e t r i c water content, e ) and t h e c o n d u c t i v i t y f u n c t i o n ( t h e re1a t i o n s h i p between t h e unsaturated hydraul ic c o n d u c t i v i t y K and e ) must be known. I n t h e second approach, composite h y d r a u l i c parameters, s p e c i f i c a l l y t h e Green-Ampt (16) w e t t i n g f r o n t s u c t i o n , hf, and P h i l i p (17) s o r p t i v i t y , S, must be estimated o r computed d i r e c t l y from s p e c i f i e d f u n c t i o n s of h, K, and e. The need t o s p e c i f y r e l a t i o n s h i p s among h, K, and e presents a s i g n i f i c a n t problem i n hydrology because o f t h e d i f f i c u l t y o f o b t a i n i n g measurements o f these parameters and o f p r e s e n t i n g t h e c o l l e c t e d data. Gardner, e t a1 . (18), Campbell (19), and Clapp and Hornberger (20) have attempted t o use power curves t o describe t h e s o i l moisture c h a r a c t e r i s t i c of s o i l s and have had o n l y l i m i t e d success i n e s t i m a t i n g t h e h y d r a u l i c c o n d u c t i v i t i e s from these power curves; however, Elzeftawy and Manse1 1 (11) have shown t h a t t h e c a l c u l a t e d hydraul i c c o n d u c t i v i t y using Equation 16 provided a good e s t i m a t i o n of t h e K(e) function o f Lakeland f i n e sand. The measured and c a l c u l a t e d values of h y d r a u l i c c o n d u c t i v i t y o f Lakel a n d f i n e sand a r e presented i n Figure 9 f o r t h r e e d i f f e r e n t p r o f i l e depths. The measured h y d r a u l i c c o n d u c t i v i t y values a t water s a t u r a t i o n , KS, were used as t h e o n l y matching f a c t o r t o determine t h e c a l c u l a t e d curves o f t h e K(e) f u n c t i o n . I t i s w e l l known t h a t i t i s q u i c k e r and s i m p l e r t o determine Ks e x p e r i m e n t a l l y then i t i s t o measure unsaturated h y d r a u l i c c o n d u c t i v i t i e s Lakeland Fine Sand : , 'I jt 0 0.10 c 0-15 30-45 0.20 K Measured a 0.30 K Calculated --- 0.40 0.50 0.60 0.70 ISGS Soil Moisture Content, 0 , cm3/cm3 Figure 9. Experimental and calculated hydraulic conductivity of Lakeland fine sand. a t any m o i s t u r e c o n t e n t below t h e s a t u r a t i o n value. But t h e pronounced d e v i a t i o n between t h e c a l c u l a t e d and measured K ( e ) values f o r v o l u m e t r i c water contents l e s s than 10 percent suggests t h a t a second matching p o i n t somewhat w i t h i n t h e " f i e l d c a p a c i t y " range o f water c o n t e n t may be needed. The average d e n s i t i e s and water-saturated h y d r a u l i c c o n d u c t i v i t i e s o f t h e undisturbed samples of Lakeland sand a r e shown i n t a b l e 5. The v a r i a - t i o n o f b u l k d e n s i t y w i t h depth of t h e s o i l p r o f i l e i s almost n e g l i g i b l e ; however, t h e h y d r a u l i c c o n d u c t i v i t y o f t h e bottom l a y e r (60 t o 90 cm) i s much h i g h e r than t h a t f o r t h e s u r f a c e l a y e r ( 0 t o 15 cm). Selected p h y s i c a l p r o p e r t i e s o f t h e undisturbed (Drummer and Dana) and d i s t u r b e d (Ottawa sand and Fayette C h o r i z o n ) samples used a r e presented i n t a b l e 6. The s a t u r a t e d h y d r a u l i c c o n d u c t i v i t i e s o f t h e F a y e t t e C and Dana s o i l s a r e l a r g e r than expected, which might be a t t r i b u t a b l e t o t h e low bul k ayq uodn spuadap (uokq3ns j o w3 0001 pue 0 uaaMqaq 'aldwexa JOJ) uokq3ns j o sanleh M O ~A l a ~ k q e l aqe ~ paukeqaJ J q e M j o qunowe ayq qeyq q u e 3 k j ~ u 6 k ssk 21 'pues a u i j p u e l a y e i j o (w3 51 oq 0) JaLeL a 3 e j ~ n sayq pue [kos JauaunJa j o syqdap a l k j o ~ daaJyq ayq ~ o 01j a ~ n 6 k uk j u ~ o y saJe a 6 e u k e ~ p ~ e ~ q u a n b -as Lq paukeqqo s a ~ ~ n3 ~3 q s k ~ a q 3 e ~ euyo3k q ~ n squaquo3 aJnqskow 1 ~ 0 s - s a ~ n q ~ n ~~qk so sLeJnqeu quaJajjLp j o q 3 a j j a ayq saqe3kpuk L ~ q e q o ~yd3 k y ~' q ~ e d eapnq~u6ewj o JapJo 1 aJe sakqi~kq3npuo33 k ~ n e ~ p L y paqeulnqes Jkayq 'JaAaMoy :Aqksuap y l n q pue sksLleue azks u k e ~ 6u; ~ e l k u ~ ; s aJe l e p a q e w s l k o s aqqaLej pue euea a y 1 *apnqku6ew j o JapJo 1 sk sanlen 6 u k p u o d s a ~ ~ oJ3Layq uaaMqaq a 3 u a ~ a jkp j ayq s L ~ a ~ k q 3 a d s'a w3/w6 ~ 52 1 pue E 2 5 ' ~aJe u o z k ~ o y3 aqqaLej pue (w3 O& 03 0) ~ a L e al 3 e j ~ n sJawwnJa ayq j o sakqksuap y lnq ayq 'a3ueqsu; ~ o j'sakqk~~q3npuo:,31 ~ n e ~ p A 1pue 4 sakq ksuap y l n q Jkayq uk L ~ a p Jk a~j j k p s l k o s asayq 'JaAaMoy r ~ e l k w k ssk (aqqaLej pue 'euea ' ~ a w w n ~ aLekJaqew ) s l k o s LeJnqeu ayq j o uokqnqkJqskp azks u k e ~ 6 ayl ,SZ'1 00.81 OO'SL OO'L -quaquo3 Jaqqew 3 k u e 6 ~ oy 6 ~ yayq 00'001 UU Z 0'4 1.9 -- 58'0 pues e ~ e l l o EP.1 OS'O1 09-28 00'9 c~~~~ OE'1 OZ'E1 OS '08 00'9 euea ayq uk 'pue sakqksuap 25.1 08'91 OZ'LL 00'9 E us16 'Allsuap YLnq % 'Aels % 'Ilks % 'pues Us 01 0'4 0 euea .syldap pa?eskpuL l e pasn silos 60'1 7 O1'LT E6'O 7 OO'ET JO 50.0 T L5'1 EO'O -S Y/M:, ,'3 + I ~q !A kqsnpuo:, - E ? s a g ~ a d o ~~de s l s X y dp a l s a l a s .g a l q e l 06 03 09 St7 03 OE 7 L5'1 w3/6 ,'q cSd 'd w3 ' yqdap ~ k o s cLqksuap y l n q ~ *pups a u k j p u e l a y e i j o L 3 k ~ l ~ 3 n p u o33k ~ n e ~ p Lpaqwnqes y pue Lqksuap 1p-q '5 a l q e l c a p i l l a r y e f f e c t and t h e pore s i z e d i s t r i b u t i o n and t h e r e f o r e i s s t r o n g l y a f f e c t e d by t h e s o i l s t r u c t u r e . On t h e o t h e r hand, water r e t e n t i o n i n t h e h i g h e r s u c t i o n range i s due i n c r e a s i n g l y t o a d s o r p t i o r ~and i s thus i n f l u e n c e d l e s s by t h e s t r u c t u r e and more by t h e t e x t u r e and s p e c i f i c s u r f a c e o f t h e s o i l material. F i g u r e 10 i n d i c a t e s t h a t , i n general, t h e g r e a t e r t h e c l a y content, t h e g r e a t e r t h e water content, a t any p a r t i c u l a r s u c t i o n (compare Lakeland sand and Drummer s i l t y loam) and t h e more gradual t h e slope o f t h e curve. The e f f e c t of compaction upon a s o i l i s t o decrease i t s t o t a l p o r o s i t y , and e s p e c i a l l y t o decrease t h e volume of t h e l a r g e i n t e r a g g r e g a t e pores; t h i s means t h a t water content a t s a t u r a t i o n and t h e i n i t i a l decrease o f water c o n t e n t w i t h t h e a p p l i c a t i o n of low s u c t i o n a r e reduced. The data presented i n t a b l e 6 and f i g u r e 10 f o r t h e 30 t o 75-cm and 75 t o 90-cm depth o f Drummer samples support t h e previous statement: note the s i m i l a r i t y i n t h e i r p a r t i c l e - s i z e a n a l y s i s and t h e d i f f e r e n c e s i n t h e i r b u l k d e n s i t i e s and t h e s a t u r a t e d water contents. The c a l c u l a t e d and experimental h y d r a u l i c c o n d u c t i v i t i e s o f t h r e e l a y e r s o f Drummer s o i l p r o f i l e s a r e shown i n f i g u r e 11. The experimental data were obtained by t h e u n i t g r a d i e n t method as published by Elzeftawy and Mansell (12). The h y d r a u l i c c o n d u c t i v i t y o f t h i s s o i l a t s a t u r a t i o n i s g e n e r a l l y about 4 orders o f magnitude l a r g e r than a t 50 percent o f saturation. The c a l c u l a t e d r e s u l t s were c o n s i s t e n t w i t h t h e experimental data; 3 3 however, t h e c a l c u l a t e d numerical values below 0.32 cm /cm water c o n t e n t were l e s s than t h e e x p e r i m e n t a l l y hydraul i c c o n d u c t i v i t i e s obtained ( n o t shown i n f i g u r e 11). H y d r a u l i c c o n d u c t i v i t i e s as a f u n c t i o n o f m o i s t u r e c o n t e n t o f Ottawa sand and Fayette C h o r i z o n a r e shown i n f i g u r e s 12 and 13. The 1 i n e s repre- sent t h e c a l c u l a t e d values of K(0) obtained by Equation 16 and t h e s o i l m o i s t u r e r e t e n t i o n curve. The c i r c l e s a r e t h e experimental data p o i n t s . These s o i l m a t e r i a l s represent a wide range o f pore s i z e d i s t r i b u t i o n s over which t h e c a l c u l a t i o n s o f h y d r a u l i c c o n d u c t i v i t i e s a r e based. F i g u r e 13 3 3 shows t h a t a change i n water content o f Fayette s o i l from 0.47 t o 0.30 cm /cm has reduced t h e h y d r a u l i c c o n d u c t i v i t y from 2.2 X 10-'cm/h t o 4.0 X 1 0 ' ~ crr~/h, r e s p e c t i v e l y . Drummer 5 10 15 20 25. 30 35 Moisture Content, Gravimetric - w (%) 40 ISGS Figure 10. Soil moisture-suction relationships of Lakeland fine sand and Drummer soil. Green and Corey (10) and others have s t a t e d t h a t using a matching f a c t o r a t water s a t u r a t i o n has a d i s t i n c t advantage, since inaccuracies i n c a l c u l a t e d values o f K ( e ) can be more e a s i l y t o l e r a t e d a t lower water cont e n t s ; however, i n studying phenomena such as evaporation, t h e e a r l y stages o f water i n f i l t r a t i o n , and t h e movement o f s o l u t e s such as contaminants i n t h e unsaturated zone, more accurate methods a r e needed t o determine t h e unsaturated h y d r a u l i c c o n d u c t i v i t i e s of s o i l s a t lower values o f water content. Bruce (21) suggested t h a t matching f a c t o r s somewhat below t h e bubbling pressure a r e s u f f i c i e n t l y accurate f o r c a l c u l a t i n g t h e unsaturated h y d r a u l i c c o n d u c t i v i t i e s o f coarse-grained s o i l s ; however, he a l s o s t a t e d t h a t t h e i n d i s c r i m i n a t e use o f such methods f o r c a l c u l a t i n g t h e h y d r a u l i c c o n d u c t i v i t i e s o f f i n e - g r a i n e d s o i l s i s inadvisable. I n our study good r e s u l t s have Drummer.Soil P Depth - 0-30 cm K, = 0.02 cm/hr Depth - 75-90 cm Depth - 30-75 cm 1 0.20 I I I 0.30 I I 0.40 I 0.50 ,,,, Soil Moisture Content, 0 , cm3/cm3 Figure 11. Experimental and calculated hydraulic conductivity of Drummer soil. been obtained f o r t h e f i n e - g r a i n e d s o i l s (Drumrner and Fayette) u s i n g s a t u r ated h y d r a u l i c c o n d u c t i v i t y as the o n l y matching f a c t o r . However, we n o t i c e d t h a t t h e c a l c u l a t e d values deviated from t h e experimental r e s u l t s , e s p e c i a l l y 3 3 w i t h i n the range of low water content ( l e s s than 0.35 cm /cm moisture content). For t h i s reason, t h e Dana loam samples were chosen t o i n v e s t i g a t e the p o s s i b i l i t y o f u s i n g two o r more matching f a c t o r s t o c a l c u l a t e t h e function. K(e) Some of t h e physical p r o p e r t i e s o f Dana s o i l a r e presented i n t a b l e 6. DISCUSSION A method of p r e d i c t i n g t h e saturated-unsaturated h y d r a u l i c c o n d u c t i v i t i e s o f some I l l i n o i s s o i l s u t i l i z e t h e s o i l moisture content-suction head I .. L Ottawa Sand 6, = 0.382 K ,= 13.40 cmlh r L E, 10'z - Calculated 2 Experimental Y >: .-> .4d 4d 0 u C S 10": .-0 3 m L u >. I - lo-' I 0 0.10 I 0.20 I I 0.30 Soil Moisture Content, 6, cm3/cm3 0.40 ISGS Figure 12. Experimental and calculated hydraulic conductivities of Ottawa sand. r e l a t i o n , h(e), t o calculate the unsaturated hydraulic conductivity of s o i l . The value of the hydraul i c conductivity a t saturation, Ks (the s o i l permea b i l i t y ) , was used as a matching f a c t o r during the calculations. The h(e) re1 ations and the saturated conductivities, KS, of soi 1 s were determined i n the laboratory using the commercially available "Tempe" c e l l . Undisturbed samples of Drummer and Dana s o i l s and disturbed samples of Fayette C s o i l , Ottawa sand, and other s o i l s were used i n t h i s study. Published data on some agricultural s o i l s were a l s o used t o validate r e s u l t s of our investigations. On the basis of our study r e s u l t s , the following conclusions can be made: 1. The model successfully predicts the hydraulic conductivity of a wide range of s o i l s . 2. The proposed simp1 i f i e d laboratory procedure i s re1 iable and can be used t o determine e a s i l y the soil moisture-suction relationships of disturbed or undisturbed s o i l samples. 3. Evaluation of the unsaturated hydraulic conductivities of s o i l s using the proposed "Tempe" c e l l method i s quick and economi cal . '" 1 lo-'- Fayette C horizon 0, = 0.47 K ,= 0.22 cmlhr -Calculated • Experimental r. E L O . m, Y .-w>: .-w>0 3 -0 6 U 10-3- .- 0 3 I >. I -0 1o --~ I o-' 0 I I I I 0.20 0.30 0.40 0.50 ISGS Soil Moisture Content, 0, cm3/cm3 Figure 13. Experimental and calculated hydraulic conductivities of Fayette C horizon. The experimental and c a l c u l a t e d h y d r a u l i c c o n d u c t i v i t i e s o f t h e Dana sample a r e shown i n f i g u r e 14; t h e c i r c l e s represent t h e experimental data and t h e 1 i n e s represent t h e c a l c u l a t e d values. The c a l c u l a t e d h y d r a u l i c c o n d u c t i v i t y f u n c t i o n u s i n g Ks as t h e o n l y matching p o i n t i s shown i n t h e f i g u r e by t h e sol i d 1 ine; n o t e t h e d e v i a t i o n between the c a l c u l a t e d and 3 3 Better results experimental data below a water content o f 0.45 cm /cm . were obtained when two matching f a c t o r s were used, p a r t i c u l a r l y when t h e s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y , Ks, and another experimental value somewhat below the bubbling pressure o f t h e s o i l were used. 1.01 X (The value K(8) = 3 3 cm/min was a r b i t r a r i l y chosen where 8 = 0.40 cm /cm .) I n t h i s case, t h e dashed l i n e represents t h e K(e) f u n c t i o n c a l c u l a t e d w i t h two matching f a c t o r s i n Equation 16. Using two matching f a c t o r s i n t h e calcu- -.-U I L' 3 o L u > I Dana Loam 0, = 0.50 K = 0.32 cmlmin. a Experimental Calculated with -one Matching Factor - - two Matching Factors , 16" '0-:.k5 0.30 I I 0.40 0.50 I 0.60 ISGS Soil Moisture Content, 0, cm3/cm3 Figure 14. Experimental and calculated hydraulic conductivities of Dana soil. l a t i o n s o f K ( e ) functions of many fine-grained s o i l s has reduced t h e e r r o r i n p r e d i c t i n g t h e hydraul i c c o n d u c t i v i t y values a t low s o i l water content. Results o f o u r study presented i n g r a p h i c a l form i n Appendix B, i n d i c a t e t h a t t h e method described i n t h i s r e p o r t f o r c a l c u l a t i n g t h e h y d r a u l i c c o n d u c t i v i t y o f s o i l m a t e r i a l s can be used w i t h confidence f o r many p r a c t i c a l a p p l i c a t i o n s d e s c r i b i n g t h e pore t r a n s p o r t system. REFERENCES H i l l e l , D., S o i l and Water, Physical P r i n c i p l e s and Processes, Academic Press, New York, 1973. Taylor, S. A. and G. L. Ashcroft, Physical Edaphology, The Physics o f I r r i g a t e d and N o n i r r i g a t e d S o i l s , W. H. Freeman and Company, San Francisco, Cal i f o r n i a , 1972. Kirkham, D. and W. L. Powers, Advanced S o i l Physics, John Wiley and Sons, Inc., New York, 1972. Rose, C. W., A g r i c u l t u r e Physics, Pergamon Press, New York, 1966. Childs, E. C., An I h t r o d u c t i o n t o t h e Physical Basis o f S o i l Water Phenomena, John Wiley and Sons, Inc., New York, 1969. Cromey, D., J. E. Coleman, and P. M. Bridge, Road Research Laboratory, Crowthorne, England, 1951. Childs, E. C. and N. Coll4s-George, Proceed4ngs o f t h e Royal S o c i e t y of London, Vol. A, No. 2-1, 1950, pp. 392-405. Rogers, J. S. and A. Klute, S o i l Science S o c i e t y o f America, Proceedings, Vol. 35, 1971, pp. 695-700. M i l l i n g t o n , R. J. and J. R. Q u i r k , Transactions of t h e Faraday Society, Vol. 57, 1961, pp. 1200-1207. Green, R. E. and J. C. Corey, Science S o c i e t y of America, Proceedings, Vol. 35, 1971, pp. 3-8. Elzeftawy, A. a r ~ dR. S. Mansell, S o i l Scier~ceS o c i e t y o f Arnerica, Proceedings, Vol. 39, 1975, pp. 599-603. E l zeftawy, A. and B. J. Dempsey, T r a n s p o r t a t i o n Research Record, Vol 642, pp. 30-35. Watson, K. K., . Water Resources Research, Vol. 2, 1966, pp. 509-517. Amerman, C. R., Hydrology and O i l Science, SSSA Special Pub1 i c a t i o n s Series, No. 5, S o i l Science S o c i e t y o f America, Madison, Wisconsin, 1973. i n P r e d i c t i o n i n Catchment Hydrology, C. H. M. van Bauel, P h i l i p , J. Ed., A u s t r a l i a n Acadew o f Science, 1975, pp. 23-30. R a y Green, W. Heber and G. A. Ampt, Journal o f A g r i c u l t u r a l Science, Vol. 4, 1911, pp. 1-24. P h i l i p , J. R., S o i l Science, Vol. 84, 1957, pp. 257-264. Gardner, W. R., D. H i l l e l , and Y. Benyamini, Water Resources Research, Vol. 6, 1970, pp. 851-861. 19. Campbell, G. S., S o i l Science, Vol. 117, 1974, pp. 311-314. 20. Clapp, R. B. and G. M. Hornberger, Water Resources Research, Vol. 14, 1978, pp. 601-614. 21. Bruce, R. R., S o i l Science S o c i e t y o f America, Proceedings, Vol. 36, 1972, pp. 555-561. 22. Dempsey, B. S. and A. Elzeftawy, M o i s t u r e Movement and M o i s t u r e Movement Equi 1ib r i um i n Pavement Systems Univ. o f I 11 in o i s Engineering Experimental S t a t i o n , Urbana, I 11 i n o i s , 'UILU-ENG76-2012, 1976, 147 p. 23. S o i l M o i s t u r e Equipment Corp., Tempe Pressure C e l l , Catalog No. 1400, 8 p. 24. Fol lmer, L. R., 1982, i n Thorn, C. E. [ed.] Space and Time i n Geomorphol ogy: The "Binghampton" Symposium i n Geomorphology: I n t e r n a t i o n a l Series, no. 12, London: George A l l e n and Unwin, p. 117-146. 25. McKay, E. D., A. Elzeftawy and K. C a r t w r i g h t , 1979, I l l i n o i s Geological Survey, EGN No. 85, 32 p. LIST OF PUBLICATIONS 1. Elzeftawy, A t e f . 1979. Modeling t h e Transport o f Heat, Water and S o l u t e i n Unsaturated S o i l and Earth M a t e r i a l s . ASAE Proceed- ings o f "Hydro1 o g i c Transport Model ing Symposi um. " American S o c i e t y o f A g r i c u l t u r a l Engineers, St. Joseph, Michigan, 49085. 2. Elzeftawy, A t e f . Soil. 1979. Waste Disposal and Transport Phenomena i n Proceedings o f t h e 2nd Annual Conference o f Applied Research and P r a c t i c e on Municipal and I n d u s t r i a l Waste. Madison, Wisconsin. 3. P. 583-595. Elzeftawy, A t e f and Keros C a r t w r i g h t . 1981. E v a l u a t i n g t h e Saturated and Unsaturated H y d r a u l i c C o n d u c t i v i t y o f S o i l s . ASTM Special Technical Pub1 i c a t i o n (STP) 746, P. 168-181, Phi 1adel phia, Pennsylvania. 10,000 \ 10.OM) Fine Ottawa Sand Coarse Ottawa Sand G. Soil moisture content 8 (%) Soil moisture content 6 (%) 8 Richland Loess t %. 1000- 8 s -E L C ..-2 4- 8 100- 8 .. . 10 0 Soil moisture content 6 (%I Ib d0 30 do Soil moisture content 6 * do (%I $0 70 P 1%) 0 iuaiuoa alnis!ou l!os 00 SC OC v ..-I3 1%) 1%) 0 iuaiuoa aJnis!ou IPS @@.=I OOO'OL iuaiuoa alnis!ou I!OS (%) 0 iuaiuo:, a~nis!ow(!oS (%) 0 iuaiuo:, a~nis!owI!OS z aldwes ... = OOO'OL Appendix B The hydraul i c c o n d u c t i v i t y s o i 1-moisture r e l a t i o n s h i p s f o r samples used i n t h i s study. Note, t h e r e w e t t i n g of d r y samples may have increased t h e s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y i n some samples. 10' 1 o1 Fine Ottawa Sand Coarse Ottawa Sand 1 o0- Soil moisture content 0 1o0 (%I Soil moisture content 0 lo1 Ground Ottawa Sand (%I Richland Loess id4Ks = 1 .81 x 10' cm/hr 0, = 0.420 cm3/cm3 p = 1.50 gm/cm3 , 15 20 15 do 3'5 I 40 Soil moisture content 0 (46) d5 Soil mqisturg content 0 (%I 1oO , ' Sample 21 Soil moisture content B (%) Soil moisture content B (%I Sample 25 0. Soil moisture content B (%I Soil moisture content B (%) lo0 Soil moisture content 0 (%) Soil moisture content 0 1o0 Sample 28 Sample 29 Soil moisture content 0 (%I Soil moi~ture~content 0 (%) (%) 8 iuaiuoa a~nis!owI!OS 10' Sample 19 Sample 17 .- i1 $ lo-? Soil moisture content 0 Soil moisture content 0 (%) Sample 1 I Sample 2 0 (96) 1 ° 1 I 10-51 - 4 Soil moisture content 0 (%I 0 1 Soil moisture content O (%) I
© Copyright 2026 Paperzz