CHAP TE R O B J EC TIVES
t -FBSO UIF NFBOJOHT PG BNQMJUVEF
QFSJPE QIBTF EJTQMBDFNFOU BOE DZDMF
Stresses in the earth compress rock
formations and cause them to buckle
into sinusoidal shapes. It is important for
geologists to be able to predict the depth
of a rock formation at a given point. Such
information can be very
ry useful
useful for structural
engineers as well. In this chapter you’ll
learn about the circular functions, which
are closely related to the trigonometric
functions. Geologists and engineers use
these functions as mathematical models to
perfor
rf m calculations for such
rfor
ch wa
wavy rock
formations.
y
t (JWFO BOZ POF PG UIFTF TFUT PG
JOGPSNBUJPO BCPVU B TJOVTPJE ĕOE UIF
PUIFS UXP UIF FRVBUJPO UIF HSBQI UIF
BNQMJUVEF QFSJPE PS GSFRVFODZ QIBTF
EJTQMBDFNFOU BOE TJOVTPJEBM BYJT
t 1MPU UIF HSBQIT PG UIF UBOHFOU
DPUBOHFOU TFDBOU BOE DPTFDBOU
GVODUJPOT TIPXJOH UIFJS CFIBWJPS
XIFO UIF GVODUJPO WBMVF JT VOEFĕOFE
t (JWFO BO BOHMF NFBTVSF JO EFHSFFT
DPOWFSU JU UP SBEJBOT BOE WJDF WFSTB
TEAChER’S EDITION
Applications of Trigonometric
and Circular Functions
PG B TJOVTPJEBM HSBQI
t (JWFO BO BOHMF NFBTVSF JO SBEJBOT
ĕOE USJHPOPNFUSJD GVODUJPO WBMVFT
t -FBSO BCPVU UIF DJSDVMBS GVODUJPOT BOE
UIFJS SFMBUJPOTIJQT UP USJHPOPNFUSJD
GVODUJPOT
t (JWFO UIF FRVBUJPO GPS B DJSDVMBS
PS USJHPOPNFUSJD GVODUJPO BOE B
QBSUJDVMBS WBMVF PG y
y ĕOE TQFDJĕFE
WBMVFT PG x PS V HSBQIJDBMMZ
OVNFSJDBMMZ BOE BMHFCSBJDBMMZ
t (JWFO B WFSCBM EFTDSJQUJPO PG B QFSJPEJD
x
QIFOPNFOPO XSJUF BO FRVBUJPO VTJOH
UIF TJOF PS DPTJOF GVODUJPO BOE VTF UIF
FRVBUJPO BT B NBUIFNBUJDBM NPEFM UP
NBLF QSFEJDUJPOT BOE JOUFSQSFUBUJPOT
BCPVU UIF SFBM XPSME
t (JWFO JOGPSNBUJPO BCPVU B SPUBUJOH
PCKFDU PS DPOOFDUFE SPUBUJOH PCKFDUT
ĕOE MJOFBS BOE BOHVMBS WFMPDJUJFT PG
QPJOUT PO UIF PCKFDUT
281
Precalculus with Trigonometry Course Sampler
69
Chapter 6
Applications of Trigonometric
and Circular Functions
Overview
TEAChER’S EDITION
*O UIJT DIBQUFS TUVEFOUT MFBSO UP TLFUDI B HSBQI PG BOZ TJOVTPJE
GSPN JUT FRVBUJPO #Z SFWFSTJOH UIF HSBQITLFUDI QSPDFTT TUVEFOUT
MFBSO UP XSJUF BO FRVBUJPO GPS B TJOVTPJE XJUI BOZ HJWFO QFSJPE
BNQMJUVEF QIBTF EJTQMBDFNFOU PS WFSUJDBM QPTJUJPO ćVT UIFZ
DBO VTF TJOVTPJEBM GVODUJPOT BT NBUIFNBUJDBM NPEFMT PG QFSJPEJD
GVODUJPOT JO UIF SFBM XPSME *OUSPEVDJOH DJSDVMBS GVODUJPOT XJUI
BSHVNFOUT JO SBEJBOT NBLFT USJHPOPNFUSJD GVODUJPOT NPSF VTFGVM
JO BQQMJDBUJPOT XIFSF UIF JOEFQFOEFOU WBSJBCMF JT UJNF PS EJTUBODF
SBUIFS UIBO BOHMF 4UVEFOUT UIFO BQQMZ UIFJS LOPXMFEHF PG BOHMFT
BOE DJSDVMBS GVODUJPOT UP ĕOE BOHVMBS BOE MJOFBS WFMPDJUJFT JO
SPUBSZ NPUJPO
Using This Chapter
Blackline Masters
4FDUJPOT BOE Supplementary Problems
4FDUJPOT BOE UP Assessment Resources
5FTU 4FDUJPOT UP 'PSNT " BOE #
5FTU 4FDUJPOT UP 'PSNT " BOE #
5FTU $IBQUFS 'PSNT " BOE #
ćJT DIBQUFS FYQBOET PO $IBQUFS XJUI HSBQIT PG BMM TJY
USJHPOPNFUSJD GVODUJPOT BOE UIFJS USBOTGPSNBUJPOT 6QPO
DPNQMFUJOH UIJT DIBQUFS TUVEFOUT TIPVME CF BCMF UP VTF EFHSFFT
BOE SBEJBOT JOUFSDIBOHFBCMZ EFQFOEJOH PO UIF DPOUFYU PG UIF
QSPCMFN 4UVEFOUT XJMM BMTP IBWF UIF UIF UPPMT UP DSFBUF BOE VTF
NBUIFNBUJDBM NPEFMT GSPN WFSCBM EFTDSJQUJPOT PG B QFSJPEJD
QIFOPNFOPO UP NBLF QSFEJDUJPOT BOE JOUFSQSFUBUJPOT BCPVU SFBM
XPSME TJUVBUJPOT ćF TFDUJPO PO SPUBSZ NPUJPO NBZ CF PNJUUFE
Technology Resources
Teaching Resources
Sketchpad Presentation Sketches
Explorations
&YQMPSBUJPO B 4JOF BOE $PTJOF (SBQIT .BOVBMMZ
&YQMPSBUJPO 1FSJPEJD %BJMZ 5FNQFSBUVSFT
&YQMPSBUJPO B 5SBOTGPSNFE 4JOVTPJE (SBQIT
&YQMPSBUJPO C 4JOVTPJEBM &RVBUJPOT GSPN (SBQIT
&YQMPSBUJPO B 5BOHFOU BOE 4FDBOU (SBQIT
&YQMPSBUJPO C 5SBOTGPSNFE 5BOHFOU BOE 4FDBOU (SBQIT
&YQMPSBUJPO *OUSPEVDUJPO UP 3BEJBOT
&YQMPSBUJPO B 3BEJBO .FBTVSF PG "OHMFT
&YQMPSBUJPO B $JSDVMBS 'VODUJPO 1BSFOU (SBQIT
&YQMPSBUJPO B 4JOVTPJET (JWFO y 'JOE x /VNFSJDBMMZ
&YQMPSBUJPO C (JWFO y
y 'JOE x "MHFCSBJDBMMZ
&YQMPSBUJPO $IFNPUIFSBQZ 1SPCMFN
&YQMPSBUJPO B 0JM 8FMM 1SPCMFN
&YQMPSBUJPO "OHVMBS BOE -JOFBS 7FMPDJUZ
281A
70
&YQMPSBUJPO B "EBN "OU 1SPCMFN
&YQMPSBUJPO C .PUPSDZDMF 1SPCMFN
&YQMPSBUJPO B $BSCPO %JPYJEF 'PMMPX6Q
&YQMPSBUJPO C 3FIFBSTBM GPS 4JOVTPJET 5FTU
Dynamic Precalculus Explorations
7BSJBUJPO PG 5BOHFOU BOE 4FDBOU
4JOVTPJE 5SBOTMBUJPO
4JOVTPJE %JMBUJPO
ćF *OFRVBMJUZ TJO x x UBO x
8BUFSXIFFM
5SJH 5SBDFST 1SFTFOUHTQ
3BEJBOT 1SFTFOUHTQ
$JSDVMBS 'VODUJPOT 1SFTFOUHTQ
$JSDVMBS 5SBOTGPSNT 1SFTFOUHTQ
4JOF $IBMMFOHF 1SFTFOUHTQ
Activities
4LFUDIQBE 5SJHPOPNFUSZ 5SBDFST
4LFUDIQBE 5SBOTGPSNBUJPOT PG $JSDVMBS 'VODUJPOT
$"4 "DUJWJUZ B *OWFSTF 5SJHPOPNFUSJD 'VODUJPOT
$"4 "DUJWJUZ B &QJDFOUFS PG BO &BSUIRVBLF
Chapter 6 Interleaf: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
Standard Schedule Pacing Guide
Section
Suggested Assignment
4JOVTPJET "NQMJUVEF 1FSJPE BOE $ZDMFT
(FOFSBM 4JOVTPJEBM (SBQIT
(SBQIT PG 5BOHFOU $PUBOHFOU 4FDBOU
BOE $PTFDBOU 'VODUJPOT
3" 2o2 o o 3BEJBO .FBTVSF PG "OHMFT
3" 2o2 o o PEE
$JSDVMBS 'VODUJPOT
3" 2o2 o *OWFSTF $JSDVMBS 3FMBUJPOT (JWFO y, 'JOE x 3" 2o2 o PEE
4JOVTPJEBM 'VODUJPOT BT .BUIFNBUJDBM
.PEFMT
3PUBSZ .PUJPO
$IBQUFS 3FWJFX BOE 5FTU
o
3" 2o2 o PEE
o o PEE 3" 2o2 TEAChER’S EDITION
Day
3" 22 o PEE o
3o3 5o5
&JUIFS $ PS $ PS 1SPCMFN 4FU Block Schedule Pacing Guide
Day
Section
Suggested Assignment
(FOFSBM 4JOVTPJEBM (SBQIT
3" 2o2 o PEE (SBQIT PG 5BOHFOU $PUBOHFOU 4FDBOU
BOE $PTFDBOU 'VODUJPOT
3" 2o2 o o
3BEJBO .FBTVSF PG "OHMFT
3" 2o2 o 3BEJBO .FBTVSF PG "OHMFT
o PEE
$JSDVMBS 'VODUJPOT
3" 2o2 o $JSDVMBS 'VODUJPOT
*OWFSTF $JSDVMBS 3FMBUJPOT (JWFO y, 'JOE x 3" 2o2 o PEE
4JOVTPJEBM 'VODUJPOT BT .BUIFNBUJDBM
.PEFMT
3" 2o2 3PUBSZ .PUJPO
3" 2o2 o PEE o
$IBQUFS 3FWJFX BOE 5FTU
3o3 5o5
$IBQUFS 3FWJFX BOE 5FTU
*OUSPEVDUJPO UP UIF 1ZUIBHPSFBO 1SPQFSUZ o
3
Chapter 6 Interleaf
281B
Precalculus with Trigonometry Course Sampler
71
Sec tion 6 -1
Mathematical Overview
"#!!!
y
y " "# "!&!#!
! &!#!! ! "
! "
$! !!%! "
! ! ! " !!%"'!!!%$ !"! $!
y#" #%%
PL AN N ING
Class Time
__ EBZ
Homework Assignment
GRAPHICALLY
1SPCMFNT o
Teaching Resources
&YQMPSBUJPO B 4JOF BOE $PTJOF
(SBQIT .BOVBMMZ
TE ACH ING
ALGEBRAICALLY
TEAChER’S EDITION
Important Terms and Concepts
NUMERICALLY
$ZDMF
"NQMJUVEF
1FSJPE
"SHVNFOU
1IBTF EJTQMBDFNFOU
4JOVTPJEBM BYJT
" !! "!! !"#!
&!! ! ! !# x
x !
x
! !!%"'! " !
!"! !!!## y
*
x
)
(
x !""!: y x
y
)
,
+
*
Section Notes
VERBALLY
4FDUJPO JT BO FYQMPSBUPSZ BDUJWJUZ
JO XIJDI TUVEFOUT JOWFTUJHBUF IPX UIF
BNQMJUVEF QFSJPE QIBTF EJTQMBDFNFOU
WFSUJDBM USBOTMBUJPO BOE DZDMF PG
B TJOVTPJEBM HSBQI BSF SFMBUFE UP
USBOTGPSNBUJPOT PG UIF QBSFOU TJOVTPJE
:PV DBO BTTJHO 4FDUJPO GPS IPNFXPSL
BęFS UIF $IBQUFS UFTU PS BT B HSPVQ
BDUJWJUZ UP CF DPNQMFUFE JO DMBTT /P
DMBTTSPPN EJTDVTTJPO JT OFFEFE CFGPSF
TUVEFOUT CFHJO UIF BDUJWJUZ "ęFS
UIFZ IBWF DPNQMFUFE 4FDUJPO IBWF TUVEFOUT XPSL JO HSPVQT PO
Exploration 6-1a
Exploration Notes
Exploration 6-1a SFRVJSFT TUVEFOUT UP
QMPU UIF TJOF BOE DPTJOF HSBQIT PO HSBQI
QBQFS 1SPCMFN SFRVJSFT TUVEFOUT UP
ĕOE WBMVFT PG JOWFSTF USJHPOPNFUSJD
GVODUJPOT :PV NBZ XJTI UP VTF UIJT
FYQMPSBUJPO BT B RVJ[ BęFS 4FDUJPO JOTUFBE PG VTJOH JU XJUI 4FDUJPO 282
72
Th circ
The
ci rcular
rc ular func
fu ncti
nc tion
ti ons
on s ar
aree ju
just
st like the
th trig
tr onom
on omet
om etri
et ric
ri c func
fu ncti
nc tion
ti ons
on s except
ce
cept
th the
that
th independent
independen vari
va riab
ri able is an ar
arc of a unit circ
ci le inst
in stea
stea
eadd of an
an gle.
angl
gl e. Angl
An gles
gl es in radian
ra dians
dian s form the
th link betw
be twee
tw een
ee n angl
an gles
gl es in degr
de gree
grees
ee s and
an
numbers
ers of unit
er
units of arc
ar lengt
len gth.
gt h.
Chapter 6:
CAS Suggestions
$POTJEFS IBWJOH TUVEFOUT XIP VTF
5*/TQJSF HSBQIFST EFĕOF GVODUJPOT PO B
$"4 BOE VTF GVODUJPO OPUBUJPO UP SFJOGPSDF
UIF DPOOFDUJPO CFUXFFO UIF BMHFCSBJD BOE
HSBQIJDBM GPSNT PG USBOTGPSNBUJPOT
ćF OFYU ĕHVSF TIPXT UIF HSBQIT JO
1SPCMFN BęFS EFĕOJOH f
f x
x DPT x PO B
$BMDVMBUPS QBHF
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
"MUFSOBUJWFMZ TUVEFOUT XIP VTF 5*/TQJSF
HSBQIFST DBO HSBQI y DPT x EJSFDUMZ BOE
NBOJQVMBUF UIF HSBQI VOUJM UIF FRVBUJPO
CFDPNFT UIF EFTJSFE y DPT x *O UIJT XBZ
TUVEFOUT iQIZTJDBMMZw USBOTGPSN UIF QBSFOU
GVODUJPO TUSFOHUIFOJOH UIF DPOOFDUJPO GPS
LJOFTUIJD BOE WJTVBM MFBSOFST
Sinusoids: Amplitude, Period,
6 -1 Sinuso
and Cy
Cycles
y
Figure 6-1a shows a dilated and
translated sinusoid and some of its
graphical features. In this section you
will learn how these features relate to
transfor
sf mations you’ve already learned.
sfor
PRO BLE M N OTES
Problems 2–5, 7, and 9 can be
solved using the approaches described in
the CAS Suggestions.
Phase displacement
(horizontal translation)
Period
2. Amplitude 5
y
Amplitude
plitude
2
Sinusoidal axis
One cycle
180°
2
360°
Fi re 6-1a
Figu
Objective
Learn
earn the meanings of amplitude
amplitude,, period, phase displacement, and cycle
cy of a
sinus
sinusoidal graph.
The absolute value of the vertical dilation
of a sinusoid equals the amplitude.
3. 360 for both functions
4. 120
Exploratory Problem Set 6-1
2. Plot the graph of the transf
transfor
ormed cosine
function y 5 cos . What is the amplitude of
this graph? What is the relationship between the
amplitude and the vertical
rtical dila
dilation of a sinusoid?
y
5. Plot the graph of y cos( 60°). What
transformation is caused by the 60°?
6. The ( 60°) in Problem 5 is called the
ar ment of the cosine. The phase displacement
argu
is the value of that makes the argument equal
zero. What is the phase displacement for this
function? How is the phase displacement related
to the horizontal translation?
7. Plot the graph of y 6 cos . What
transformation is caused by the 6?
4. Plot the graph of y cos 3. What is the period
of this transf
transfor
ormed function graph? How is the
3 related
d to the transf
transformation? How could you
calculate the period using the 3?
360°
2
The 3 is the reciprocal of the horizontal
dilation. The period equals 360 divided
by 3.
5.
8. The sinusoidal axis runs along the middle of the
graph of a sinusoid. It is the dashed centerline in
Figure 6-1a. What transformation of the function
y cos x does the location of the sinusoidal axis
indicate?
3. What is the period of the transf
transfor
ormed function
in Problem 2? What is the period of the parent
function y cos ?
2
9. What are the amplitude, period, phase
displacement, and sinusoidal axis location of the
graph of y 6 5 cos 3( 60°)? Check by
plotting on your grapher.
y
2
360°
2
Horizontal translation by 60
6. Phase displacement 60. The phase
displacement equals the horizontal
translation.
7.
y
2
360°
2
Section 6-1:
Vertical translation by 6
1. Amplitude 1
8. The vertical translation corresponds
to the sinusoidal axis.
y
2
2
TEAChER’S EDITION
1. Sketch one cycle of the graph
graph of the parent
parent
sinusoid y cos , starting at 0°. What is
the amplitude of this graph?
360°
9. Amplitude 5; Period 120; Phase
displacement 60; Sinusoidal axis 6
y
8
360°
Section 6-1: Sinusoids: Amplitude, Period, and Cycles
283
Precalculus with Trigonometry Course Sampler
73
General Sinusoidal Graphs
6 -2 Genera
Sec tion 6 -2
!
period, amplitude, cycle, phase
displacement,
ment sinusoidal axis.
ment,
!
"
!#
! $!
!
! !
PL AN N ING
Class Time
EBZT
Homework Assignment
Objective
Day 1 3" 2o2 1SPCMFNT o PEE
Day 2: 1SPCMFNT o o PEE Teaching Resources
TEAChER’S EDITION
&YQMPSBUJPO 1FSJPEJD %BJMZ
5FNQFSBUVSFT
&YQMPSBUJPO B 5SBOTGPSNFE 4JOVTPJE
(SBQIT
&YQMPSBUJPO C 4JOVTPJEBM &RVBUJPOT
GSPN (SBQIT
#MBDLMJOF .BTUFST
1SPCMFNT o BOE 6! !
!
E XPLOR ATION 6 -2: Periodic Daily Temperatures
!
/!
)+!
32!
!
!
)1!
! !
Technology Resources
&YQMPSBUJPO 1FSJPEJD %BJMZ
5FNQFSBUVSFT
((
y/81
1.
1 y
!
*(8&%'
!
)87"!
! !
4 55
*( 4
!0
$
$.
y
TE ACH ING
,(
Important Terms and Concepts
1FSJPE
'SFRVFODZ
(FOFSBM TJOVTPJEBM FRVBUJPO
6QQFS CPVOE
-PXFS CPVOE
$SJUJDBM QPJOUT
)
-
3x
)+
)8
)+8
Exploration Notes
Exploration 6-2 QSFWJFXT CPUI UIF
TJOVTPJEBM HSBQI USBOTGPSNBUJPOT JO
4FDUJPO BOE UIF SFBMXPSME QSPCMFNT
JO 4FDUJPO *U JT POF PG UIF NPTU
JNQPSUBOU FYQMPSBUJPOT JO $IBQUFS GPS
UIFTF SFBTPOT
t 1MPUUJOH QPJOUT VTJOH QFODJM BOE QBQFS
IFMQT TUVEFOUT JOUFSOBMJ[F UIF QBUUFSO
PG TJOVTPJEBM HSBQIT
continued
Chapter 6:
"O BMUFSOBUF WFSTJPO PG UIJT FYQMPSBUJPO DBO
CF GPVOE JO UIF Instructor’s Resource Book
"MMPX o NJOVUFT GPS BMM TJY RVFTUJPOT
1. yDPTV
(SBQIBHSFFTXJUIUIFHJWFOĕHVSF
#FTVSFUPVTFEFHSFFNPEF
4FF QBHF GPS OPUFT PO BEEJUJPOBM
FYQMPSBUJPOT
2. yDPTV
(SBQIBHSFFTXJUIHJWFOĕHVSF
t ćF VTF PG SFBMXPSME EBUB EFNPOTUSBUFT
UIBU TJOVTPJEBM HSBQIT BSF SFMFWBOU
BOE VTFGVM QSPWJEJOH NPUJWBUJPO GPS
TUVEFOUT UP MFBSO BCPVU UIFN
284
74
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
3. yDPTV
(SBQIBHSFFTXJUIUIFHJWFOĕHVSF
Section Notes
2. &
! !#!!"" 1"%!+5!"!
9!! !%+!"!
3!!%"0 ! "!$!! $.
y
20
10
−10
y
7°
12°
24°
−20
6°
12°
18°
24°
−1
3. &
1"%#!!" -;
&
$ !#!!" ;
1"%!#!!!
'-(
+4 !
" 6666666
) "!3) !!! #!
!%!+!!%"
0 ! "!$!! .
4. &
3 #!
! !!3*%
-+'+($" +,
5!"!! ! !!
"!3*!!%"
0 ! "!$!!
3.
5. 3!!#!!"
/!2!*0%"!!
$2!.
6. 5!%" "!! 8!!!%"!7$.
!!!! " !" %&
!!"% !
frequency.! #!!" !"%$! #% !
!!!!!"!!!!! "%
% !!! %
" $! " "! $"
! ! DEFINITION: General Sinusoidal Equation
yCA B'D( yCA B'D( $
6 A !!"'A !#!!$ !#
!#(
6 B !!5!!
6 C !!! " 4 '#!! !(
: D ! !'9!! !(
4. yDPTV
(SBQIBHSFFTXJUIUIFHJWFOĕHVSF
5. 'PS.BSDINPOUIy¡
'PS.BSDINPOUIy¡UIFTBNF
6. "OTXFSTXJMMWBSZ
Section 6-2: General Sinusoidal Graphs
285
4FDUJPOJOWFTUJHBUFTFRVBUJPOT
PGTJOVTPJETVTJOHUIFDPODFQUTPG
IPSJ[POUBMBOEWFSUJDBMEJMBUJPOTBOE
USBOTMBUJPOTTUVEJFEJOUIFQSFWJPVT
DIBQUFST4UVEFOUTMFBSOUPXSJUFBO
FRVBUJPOGPSBTJOVTPJEBMGVODUJPO
HJWFOBOFOUJSFDZDMFPGUIFHSBQI
QBSUPGBDZDMFPGUIFHSBQIPSBWFSCBM
EFTDSJQUJPOPGUIFHSBQIćFZBMTPMFBSO
UPXSJUFNPSFUIBOPOFFRVBUJPOGPSUIF
TBNFHSBQICZVTJOHEJČFSFOUQIBTF
EJTQMBDFNFOUTOFHBUJWFEJMBUJPOTBOE
TJOFBTXFMMBTDPTJOF
*UJTSFDPNNFOEFEUIBUZPVTQFOE
UXPEBZTPOUIJTTFDUJPO0OUIFĕSTU
EBZEJTDVTTUIFNBUFSJBMVQUISPVHI
&YBNQMFPOQBHFBOEBTTJHO
Exploration 6-2a$PWFSUIFSFNBJOEFS
PGUIFTFDUJPOPOUIFTFDPOEEBZQPTTJCMZ
VTJOHExploration 6-2b&YBNQMFPO
QBHFJOWPMWFTXSJUJOHEJČFSFOU
FRVBUJPOTGPSUIFTBNFTJOVTPJE*GZPVS
DMBTTJTOPUWFSZTUSPOHZPVNBZPNJU
UIJTFYBNQMFBMPOHXJUI1SPCMFNT
BOE)PXFWFSFODPVSBHFZPVSCFTU
TUVEFOUTUPXPSLUISPVHIUIFTFJUFNT
8IFOZPVBTTJHOIPNFXPSLGPSUIJT
TFDUJPOCFTVSFUPJODMVEFQSPCMFNT
UIBUSFRVJSFTUVEFOUTUPXSJUFFRVBUJPOT
GPSTJOVTPJET4VDIQSPCMFNTQSFQBSF
TUVEFOUTGPSUIFSFBMXPSMEQSPCMFNT
JO4FDUJPO*GBQSPCMFNEPFTOPU
JOEJDBUFXIJDIQBSFOUGVODUJPOUPVTF
FODPVSBHFTUVEFOUTUPXSJUFUIFFRVBUJPO
VTJOHUIFDPTJOFGVODUJPO#FDBVTFDPTJOF
TUBSUTBDZDMFBUBIJHIQPJOUJUJTFBTJFS
UPHFUUIFDPSSFDUQIBTFEJTQMBDFNFOU*U
JTBMTPFBTJFSUPĕOEUIFHFOFSBMTPMVUJPO
PGBOJOWFSTFDPTJOFFRVBUJPOUIBOPGBO
JOWFSTFTJOFFRVBUJPOTPTUVEFOUTXJMM
ĕOEUIFSFBMXPSMEQSPCMFNTJOGVUVSF
TFDUJPOTFBTJFSUPTPMWFJGUIFZVTFUIF
DPTJOFGVODUJPO
Section 6-2: General Sinusoidal Graphs
285
Precalculus with Trigonometry Course Sampler 75
T eac h e R ’ s E dition
EXPLORATION, continued
#
B.
B"
$
$ B
! !
Section Notes (continued)
6TFUIFOFXWPDBCVMBSZJOUSPEVDFE
GSFRVFOUMZBOEDPSSFDUMZConcavity, point
of inflection, upper bound,BOElower
boundBSFBMMUFSNTTUVEFOUTXJMMVTFJO
DBMDVMVT
PROPERTIES: Period and Frequency of a Sinusoid
+yCABDyCABD
$
____
B
ćJTTFDUJPOJOUSPEVDFTUIFJEFBPG
frequency,XIJDIJTVTFEUPEFTDSJCF
NBOZSFBMXPSMEQIFOPNFOB
/4!%
7
*UJTNPTUJNQPSUBOUUIBUTUVEFOUT
VOEFSTUBOEUIFFČFDUTPGUIFDPOTUBOUTA,
B,C,BOEDPOUIFHSBQITPG
-1(&(! !8)!
+&' 3
33#
!8
yCA DPTBVD
BOE
yCA TJOBVD
y
T eac h er ’ s E dition
4UVEFOUTVTVBMMZIBWFUIFNPTU
EJďDVMUZVOEFSTUBOEJOHUIFFČFDUPGUIF
DPOTUBOUB. *UJTIFMQGVMUPQPJOUPVUUIBU
¡
|B|____
period
286
* 3
* Figure 6-2a
)!+&'4
8#
3
upper boundlower bound, !#
3
critical points! 568"
/&!3
48
y
,
-8
2
.3
.3
14
Figure 6-2b
286
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
76 Precalculus with Trigonometry Course Sampler * 4
08
* &NQIBTJ[FUIBUUIFEJTUBODFCFUXFFO
BDSJUJDBMQPJOUBOEUIFOFYUQPJOUPG
period
JOĘFDUJPOJTBRVBSUFSPGBDZDMFPS____
ćJTGBDUJTVTFGVMGPS&YBNQMFPO
QBHFBOE1SPCMFNTo
'SPNUIFJSFBSMJFSXPSLXJUIUIFQBSFOU
DPTJOFBOETJOFGVODUJPOTTUVEFOUT
TIPVMELOPXUIBUUIFDPTJOFGVODUJPO
TUBSUTBDZDMFBUBIJHIQPJOUXIFSFBT
UIFTJOFGVODUJPOTUBSUTBDZDMFPOUIF
TJOVTPJEBMBYJTHPJOHVQ4USFTTUIBUB
TJOFGVODUJPOTUBSUTPOJUTTJOVTPJEBM
BYJTOPUPOUIFIPSJ[POUBMBYJTPG
UIFDPPSEJOBUFQMBOF4UVEFOUTPęFO
NJTVOEFSTUBOEUIJTEJTUJODUJPOCFDBVTF
UIFTJOVTPJEBMBYJTPGUIFQBSFOUTJOF
HSBQIDPJODJEFTXJUIUIFIPSJ[POUBM
BYJTPGUIFDPPSEJOBUFQMBOF"OPUIFS
FSSPSTUVEFOUTNBLFJTNBSLJOHBDSJUJDBM
QPJOUPSQPJOUPGJOĘFDUJPOPOUIFyBYJT
GPSeveryTJOVTPJEBMHSBQI&NQIBTJ[F
UIBUTUVEFOUTNVTUUIJOLBCPVUCPUIUIF
QIBTFEJTQMBDFNFOUBOEUIFQFSJPEXIFO
NBSLJOHDSJUJDBMQPJOUTBOEJOĘFDUJPO
QPJOUT
B ____
! $
EXAMPLE 1 '""!%&&% '%!%"$!
,"$+"&'' &%"%
'
%
%"
& ,)&$%"&&!&"$ &!% '
&! % '%!*%
' &%!)& *%&!'&'% +!'$$"$%&&%% '%! & - #'&! !$&$
+)
$
&+!'$$"$&&+!'$#'&! &
% '%!+!'%&$)&!&$
SOLUTION
$%&$
$%&$)&
$ % '%!*%&y % '$
! %!$&
$)&
% %'%+$
%
%"$%! %!
% $ &$ %%&"&'&!
&!
$
$)
&'""$ !)$!' %' &%!( ' &%!)&% '%!*%
y
f V
DPT V ¡
""$!' f ¡
DPT ¡ ¡
θ
f ¡
0!)$!' Figure 6-2c
2*&&- %!$&"! &%! &$"'$
&$&& ,
'%&&%&"%%" & $"! &! &'""$
!' !% ' &! %&$&%+&"! &'%!%.,
'%&"$!
,&!"!&& %!& *&&)!+%
, , /,
, ,
.,
1$%!!)$&"! &%)+&
+&
) ! %'&("! &%
y
/,
,
.,
Figure 6-2d
2!)$&"! &%! 3&! '$
+! &% '%!*%
)
)+&
)
)+&) ! %'&( !)"! &%
y
/,
.,
Figure 6-2e
0OF FYQMBOBUJPO GPS XIZ CPUI TJOF
BOE DPTJOF XPSL GPS UIF FRVBUJPO JO
&YBNQMF JT UIF DPGVODUJPO SFMBUJPOTIJQ
CFUXFFO UIF UXP GVODUJPOT UIBU JT
TJO V DPT¡V
GPS BMM BDVUF BOHMF
WBMVFT PG x ćJT SFMBUJPOTIJQ DBO OPX CF
FYUFOEFE UP BMM BOHMF WBMVFT GPS x
TEAChER’S EDITION
,
5P QSFQBSF TUVEFOUT GPS 1SPCMFNT o
ZPV NJHIU BTL UIFN UP FWBMVBUF UIF
GVODUJPO JO &YBNQMF PO QBHF GPS
V ¡ 4IPX TUVEFOUT IPX UP ĕOE y
OVNFSJDBMMZ CZ VTJOH UIF UBCMF GFBUVSF PO
UIFJS HSBQIFST BOE BMHFCSBJDBMMZ CZ VTJOH
GVODUJPO OPUBUJPO
*O &YBNQMF PO QBHF TUVEFOUT
VTF HSBQIFST UP DPOĕSN UIBU BMM GPVS
FRVBUJPOT HJWF UIF TBNF HSBQI *G UIFJS
HSBQIFST BMMPX JU IBWF TUVEFOUT VTF
EJČFSFOU MJOF TUZMFT GPS FBDI HSBQI 4PNF
HSBQIJOH DBMDVMBUPST DBO CF TFU UP EJTQMBZ
B DJSDMF UIBU GPMMPXT UIF QBUI DSFBUFE
CZ UIF HSBQI 6TJOH UIJT GFBUVSF BMMPXT
TUVEFOUT UP TFF UIBU FBDI TVCTFRVFOU
HSBQI SFUSBDFT UIF QSFDFEJOH HSBQIT
"TL TUVEFOUT UP JEFOUJGZ UIF EPNBJO BOE
SBOHF PG UIF GVODUJPOT JO &YBNQMFT o
BT TIPXO JO UIF DIBSU BU UIF CPUUPN PG
UIJT QBHF &NQIBTJ[F UIBU UIF EPNBJO JT
iBMM SFBM OVNCFST of degrees.w 4QFDJGZJOH
degrees JT JNQPSUBOU CFDBVTF SFBM
OVNCFST XJUIPVU EFHSFFT BSF BTTVNFE UP
CF SBEJBOT
Section 6-2:
Domain
Range
Example 1
V BMM SFBM OVNCFST PG EFHSFFT
y Example 2
V BMM SFBM OVNCFST PG EFHSFFT
y Examples 3 and 4
V BMM SFBM OVNCFST PG EFHSFFT
y Section 6-2: General Sinusoidal Graphs
287
Precalculus with Trigonometry Course Sampler
77
Section Notes (continued)
T eac h er ’ s E dition
"TBOJOUFSFTUJOHBTTJHONFOUZPVNJHIU
BTLFBDITUVEFOUUPĕOEBQIPUPHSBQIPS
BDPNQVUFSJNBHFPGBTJOVTPJEBMDVSWF
BOEXSJUFBSFBTPOBCMFFRVBUJPOGPSUIF
DVSWF&ODPVSBHFTUVEFOUTUPĕOEPVU
XIBUNJHIUCFSFBTPOBCMFVOJUTGPSUIFJS
QIPUPT*GZPVTIPXBGFXFYBNQMFTJO
DMBTTTUVEFOUTXJMMTFFUIBUTVDIDVSWFT
BSFDPNNPOBOEXJMMCFBCMFUPĕOE
FYBNQMFTPOUIFJSPXO$SFBUFBCVMMFUJO
CPBSEPGUIFQIPUPTBOEFRVBUJPOT
TUVEFOUTĕOE:PVNBZXBOUUPHJWFUIJT
BTTJHONFOUUIFEBZZPVCFHJO$IBQUFS
CVUTDIFEVMFJUTEVFEBUFGPSafterZPV
ĕOJTI4FDUJPO"TTUVEFOUTTUVEZFBDI
OFXTFDUJPOUIFZXJMMHFUCFUUFSJEFBTGPS
QPTTJCMFQJDUVSFTPGTJOVTPJETćJTXJMM
BMTPCSJOHVQUIFOFFEGPSBOPOEFHSFF
BOHMFNFBTVSF
&YBNQMFTPGOBUVSBMMZPDDVSSJOH
TJOVTPJETBCPVOE"FSJBMQIPUPTPGSJWFST
BOEUIFDSFTUTPGEFTFSUTBOEEVOFT
GPSNTJOVTPJEBMDVSWFT&BDINPOUIMZ
JTTVFPGUIFNBHB[JOFAstronomy
DPOUBJOTBDPMPSGVMQBHFTQSFBEPGUIF
TJOVTPJEBMQBUIPGUIFNPPO*OBEEJUJPO
FBDINPOUIUIFTJOVTPJEBMQBUITPG
GPVSPG+VQJUFSTNPPOT*P$BMMJTUP
&VSPQBBOE(BOZNFEFBSFTIPXO
ćFCPPLMathematics: An Introduction
to Its Spirit and UseIBTQIPUPHSBQIT
PGNVTJDBMOPUFTSFDPSEFECZBO
PTDJMMPTDPQFćFGVOEBNFOUBMIBSNPOJD
IBTPOFDZDMFUIFTFDPOEIBSNPOJDIBT
UXPDZDMFTUIFUIJSEIBSNPOJDIBTUISFF
DZDMFTBOEUIFGPVSUIIBSNPOJDIBT
GPVSDZDMFTćF%FDFNCFSJTTVF
PGNational GeographicTIPXTQMBDFTPO
&BSUIQIPUPHSBQIFEEVSJOHZFBSTPG
TQBDFĘJHIUTBOEBMTPTIPXTUIFQBUIPGB
UZQJDBMTQBDFDSBę%JTUJODUJWFTJOVTPJEBM
QBUITBSFWJTJCMFJOUIFTFQIPUPHSBQIT
288
y
V
"0
(0
%0
&
#
Figure 6-2f
#0
$"0/
#
,,,
,,,,
#0
$"0 $"
1
2
B-
#
$"1
/
,,
$"
%01
-
y&'$" V%0!
%0
(0
Figure 6-2g
-
.+-
)-
y
&
V
$0
$0
$(
Figure 6-2h
288
Chapter 6: Applications of Trigonometric and Circular Functions
Differentiating Instruction
t 1BTTPVUUIFMJTUPG$IBQUFSWPDBCVMBSZ
BWBJMBCMFBUwww.keypress.com/
keyonline,GPS&--TUVEFOUTUPMPPL
VQBOEUSBOTMBUFJOUIFJSCJMJOHVBM
EJDUJPOBSJFT
Chapter 6: Applications of Trigonometric and Circular Functions
78 Precalculus with Trigonometry Course Sampler "0
V
#
*3
- !
EXAMPLE 2 y
t 6TFTFWFSBMFYBNQMFTPGargument
boundBOEfrequency BOEHFUTUVEFOU
SFTQPOTFTUPNBLFTVSFUIFZVOEFSTUBOE
UIFTFJNQPSUBOUNBUIFNBUJDBMNFBOJOHT
#JMJOHVBMEJDUJPOBSJFTNBZOPUJODMVEF
UIFJSNBUIFNBUJDBMEFĕOJUJPOT
t $SFBUFHSBQITXJUIUIFuBOEvBYFT
TDBMFEGSPN<>0OUXPPGUIFTFUTPG
BYFTIBWFHSBQITPGTJOFBOEDPTJOFćF
QBQFSHSBQITXJMMFOBCMFTUVEFOUT
t Refer to the Problem Notes for
Problems 5–8 and Problems 9–18.
These problems will help prepare
students for Section 6-7, which will
present a challenge for ELL students
because of the complex language.
t Problem 28 will challenge ELL students
to develop their English skills.
.4*02%''
.4*02%''.!!'/!-4*0)0.!!%/$!-/$!.%)!*-/$!*.%)!./$!+-!%(#!
"0)/%*) "0)/%*)!-!0.!/$!*.%)!"0)/%*)!0.!%/.86
-./:4'!./-/./$%#$
+*%)/) /2*$%#$+*%)/.-!&)*2)
9 *6) /$!+!-%* '**&//$!4'!.$*2)%)%#0-!
$/./-/./7) !) ./
7.*/$!+!-%* %.
77*-
7
9 !"-!,0!)4%./$!-!%+-*'*"/$!+!-%* *-
4'!+!- !#-!!
9 !.%)0.*% '3%.%.$'"24!/2!!)/$!0++!-) '*2!-*0) ..*
y
*-
9 !(+'%/0 !%./$! %./)!!/2!!)/$!0++!-*-'*2!-*0) ) /$!
.%)0.*% '3%.
Additional Exploration Notes
A
Exploration 6-2a gives students practice
in graphing particular cosine and sine
equations; identifying period, amplitude,
and other characteristics; writing an
equation from a given graph; checking
their work using a grapher; and finding
a y-value given an angle value. Assign
this exploration as a group activity
after you have presented and discussed
Examples 1 and 2. This gives students
supervised practice with the ideas
presented in the examples before they
leave class. Students may need help with
Problem 5, which asks them to find y
when V 35°. Allow 20–30 minutes for
the exploration.
9 .%)#/$!*.%)!"0)/%*)./$!+-!)/"0)/%*)/$!+$.! %.+'!(!)/
%.7*0*0' '.*0.!
7*-7
7
7
9 !$*-%5*)/' %'/%*)%.
.*B*-/$!-!%+-*'*"/$!
7
7
$*-%5*)/' %'/%*)*+-/%0'-!,0/%*)%.
y*.7
'*//%)#/$!*--!.+*) %)##-+$*)4*0-#-+$!-*)6-(./$//$!!,0/%*)
%.*--!/
³
*0)6) )!,0/%*)*".%)0.*% 2$!)*)'4+-/*"4'!%.#%1!)
!)!3/
!3(+'!.$*2.4*0$*2/* */$%.
EXAMPLE 3 ³
%#0%#0-!
%.$*2.,0-/!-4'!*".%)0.*%
-%/!+-/%0'-!,0/%*)) $!&
$!&%/4+'*//%)#%/*)4*0-#-+$!-
y
7
7
Figure 6-2i
SOLUTION
(#%)!/$!
(#%)!/$!!)/%-!4'!"-*(/$!+-/*"/$!
#-+$
/$/ %
#-+$/$/%..$*2)*0)/!''/$/'*2
+*%)/%./
7!0.!/$!#-+$++!-.
/*'!1!'*0//$!-!*/$!'*2!-*0) %.
/y
!+*%)//7(0./!)
%)<!/%*)+*%)/*)/$!.%)0.*% '3%.
/y!0.!/$!#-+$%.,0-/!-4'!
*/$!(+'%/0 !%.*-&!/$/$!
'*2!-*0) /$!.%)0.*% '3%.) /$!
0++!-*0) ;!3/'*/!$%#$+*%)/
to trace with their fingers to reinforce
their understanding and to enable you
to verify that the understanding does
(or doesn’t) exist. These graphs can also
help reinforce the meanings of sinusoid,
periodic, and displacement, and clarify
translation of one period, pre-image and
image graphs, and negative angles.
t Have students use their paper graphs
while you go over the examples.
Section 6-2: General Sinusoidal Graphs
289
t Have students write the general
sinusoidal equation definition in their
journals both formally and in their
own words.
t Make sure the distinction on page 290
between a particular equation and the
particular equation is clear.
t Consider using the Reading Analysis
as an in-class discussion. Alternatively,
allow ELL students to do it in pairs.
Exploration 6-2b can be assigned as a
quiz or as extra homework practice. It
can also be assigned later in the year as
a review of sinusoids. Problem 1 of the
exploration asks students to sketch two
cycles of a given sinusoid. Problems 2
and 3 ask them to write two equations—
one using sine and one using cosine—for
the same sinusoid and then to check
their equations using their graphers.
Problems 5 and 6 give students practice
writing equations based on a half-cycle
or quarter-cycle of a sinusoid. Allow
20 minutes for the entire exploration or
8–10 minutes for just Problems 5 and 6.
Section 6-2: General Sinusoidal Graphs
289
Precalculus with Trigonometry Course Sampler 79
T eac h e R ’ s E dition
SOLUTION
Technology Notes
$!#!&%!"
''!'"#!##"#"
(
(#!"'!#
$"#"# ' '!'#
#"##&#!$!
Exploration 6-2 BTLT TUVEFOUT UP
USBOTGPSN B DPTJOF HSBQI UP ĕU EBUB
PO UIF BWFSBHF EBJMZ UFNQFSBUVSF
GPS B DJUZ ćJT DBO CF EPOF FBTJMZ
XJUI TMJEFST JO 'BUIPN
y
)
+
CAS Suggestions
)
'
'
Fi re 6-2j
Figu
-2
-2j
!"'!
+'2$" $!#!#!"'!5#
+'
!11
#"111
, )'
8
8
# B#"$" $#"#!!#"!5#
#.&$$"## $"4
!#$! $#"
, '
y +*"111
0###!&$!!!"3"### $#"!!#
TEAChER’S EDITION
Note: ćF BMHFCSB JO UIJT BQQSPBDI DBO
CF EPOF CZ IBOE )PXFWFS UIF QPJOU PG
UIJT QSPCMFN JT OPU UIF NBOJQVMBUJPO
CVU UIF NFBOJOHGVM EFUFSNJOBUJPO PG UIF
DPFďDJFOUT B $"4 JT FOUJSFMZ BQQSPQSJBUF
GPS UIJT XPSL
0ODF BO FRVBUJPO JT EFUFSNJOFE JU DBO
CF UFTUFE UP TFF JG UIF QFSJPE JT QSPQFSMZ
SFQSFTFOUFE BMHFCSBJDBMMZ %FĕOF UIF
FRVBUJPO ćFO UFTU UIBU FRVBUJPO GPS
UIF HJWFO QFSJPE 8IJMF UIJT EPFT OPU
absolutely DPOĕSN UIBU UIF QFSJPE IBT
CFFO DPSSFDUMZ DPNQVUFE JU EPFT DPOĕSN
XIFUIFS BO FRVBUJPO IBT B QFSJPE UIBU JT
BO JOUFHFS NVMUJQMF PG UIF DPSSFDU QFSJPE
'
4UVEFOUT VTJOH B $"4 DBO EFUFSNJOF UIF
IPSJ[POUBM EJMBUJPO CZ SFNFNCFSJOH UIBU
UIF QFSJPE PG DPTJOF XBT NVMUJQMJFE CZ
UIF IPSJ[POUBM EJMBUJPO UP EFUFSNJOF UIF
QFSJPE PG UIF OFX GVODUJPO
EXAMPLE 4 !#"$"$!
3!#!#$!
$#$"
a. -"3#""##!#'
b. c. -"3##%%!##
#!
d. 3##%%!##
#!
-9
9!&$!!!##$
! $#"%#"!
$
y
)
4UVEFOUT DBO VTF #PPMFBO MPHJD UP
DPOĕSN UIF FRVJWBMFODF PG UIF FRVBUJPOT
JO &YBNQMF PO QBHF +
)
)'
'
'
'
Fi re 6-2k
Figu
Chapter 6:
290
80
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
/####4""!
"" a!#$! $#"$"# the
""!
!
!& $%#!
# "# $#3&&$!
#!
!
#69
9!"#7&3#!&$$"#!#"!!#"$
#
$
4#4"3""""2#"
)'
)+'
a. +0& "0%00%"/&*1/+&!&/0%"/)"+*"/&*4),("+:
+:*!
+:
!&6
6"."*0,%/"!&/,( ")"*0(++'#+.*+0%".%&$%,+&*0 +*2"*&"*0
+*"&/0 7((0%"+0%". +*/0*0/.")&*0%"/)"+*+0%".
,.0& 1(."-10&+*&/
7
y +/
b. "$.,%+#0%",."*0/&*"#1*
"# 0&+*/0.0/0,+&*0+#&*;
"#1*
*;" 0&+*+*
0%"/&*1/+&!(4&/3%&(" going
goin up.3
+,+//&("/0.0&*$,+&*0/,,".&*
3
&$1."
'+*"0 7*!*+0%".0 7
7
7 +. y /&*
y /&*
c. %*$&*$0%"2".0& (!&(0&+*#
&+*# 0+.#.+)0+
&+*#
0+.#
1/"/0%"/&*1/+&!
0+".";" 0"! .+//0%"/&*1/+&!(4&/#5+11/" 0%"8:
:./09 5 ("
/0.0//low ,+&*0&*/0"!+#%&$%,+&*0")+/0 +*2"*&"*0(+3
,+&*0&*0%&/ /"&/0 7
7
y +/
d. &0%*"$0&2"!&(0&+*#
&+*# 0+.0
&+*#
0+. %"/&*"#1*
"# 0&+*/0.0/ 5 ("0,+&*0
"#1*
+#&*;
*;" 0&+*3%&("$+&*$ down.*"/1 %,+&*0&//%+3*&*&$1."
'0
7
7
y /&*
(+00&*$0%"/"#+1
/"# ."-10&+*/+*5+1.$.,%".."2"(/+*(5+*"&)$""$.,%/
/"#+1
."/1,".&),+/"!+*+*"*+0%".
PRO BLE M N OTES
Q1. DZDMFT
Q2. Q3. Q4. Q5. GPSyDPTx
__
Q6. ____
q
Q7. Q8. TEAChER’S EDITION
SOLUTION
Problem Set 6-2
Reading Analysis
.+)3%05+1%2"."!&*0%&//" 0&+*3%0!+
5+1 +*/&!".0+"0%")&*&!"<=+3."0%"
period, frequency,
equenc *! cycle."(0"!0++*"*+0%".&*
equency,
+**" 0&+*3&0%/&*1/+&!/<%0&/0%"!&6
&6"."* "
"03""*0%"35 ,,"./+*0%"$.,%+#
/&*1/+&!*!0%"35&
%"3 0,,"./&*uv ++.!&*0"
%"35&
/5/0")/&*%,0".<=+3 *0%"."")+."
0%*+*",.0& 1(."-10&+*#+.$&2"*/&*1/+&!<
5m
in
Quick Review
.+(")/>@>."#".0+
."#
."#".0+
&$1."
(
Q1. =+3)*5 5 ("/."0%".""03""* 7
*! 7<
Q2. %0&/0%"),(&01!"<
y
7
Q3.
Q4.
Q5.
Q6.
Q7
Q7.
Q8.
Fi re 6-2l
Figu
7
%0&/0%",".&+!<
%0&/0%"2".0& (0.*/(0&+*<
%0&/0%"%+.&?+*0(0.*/(0&+*#+. +/&*"<
&*!0%""4 02(1"*+!" &)(/+#/&*7
&*!0%",,.+4&)0"2(1"+#/" 7
&*!0%",,.+4&)0"2(1"+# +0 Section 6-2:
Section 6-2: General Sinusoidal Graphs
291
Precalculus with Trigonometry Course Sampler
81
Problem Notes (continued)
Q9. Q10. :x 11 50.7105...
Q9. tan1 ___
9
2
Q10. 9x 30x 25
6. !2 "2
y
%
Problems 1–4 should all be assigned
so students get sufficient practice in
graphing transformed sinusoids.
"2
"2 "2 "2
#2 #2
""2
"2
1. Amplitude 4; Period 120;
Phase displacement 10;
Sinusoidal axis 7
7. $!2 "2
y
y
!2
$!2
4
',1" 3 *0
- ,0
4
4
-0
0
360°
TEAChER’S EDITION
2. Amplitude 5; Period 1440;
Phase displacement 240;
Sinusoidal axis 3
y
!
"!
a. .
/
/
360°
y
#
9.
b. &/
.0
0 3. Amplitude 20; Period 720;
Phase displacement 120;
Sinusoidal axis 10
!"
c. ).
y
//.
(
.
/3
3/
y
5. #!2 "2
2
#2
y
10.
y
360°
!
',1" 3.
',1% %2
2
2. y +" "!2
4. y %! #2
2
y
1. y $" !2
3. y !!+ !2
2
8. %2 $$#2
!
20
4. Amplitude 10; Period 72;
Phase displacement 6;
Sinusoidal axis 8
y
100°
200°
5
10
15
20
The Solve command could be
used to determine the coefficient of V in
Problems 5–22.
292
82
$!2 2 !2 #2 !2 2 !!2
Chapter 6:
Problems 5–8 are important not only
because students must create equations for
given graphs but also because they must
find y-values for given angle values. This
is an excellent preview of Section 6-7, in
which students use sinusoidal equations to
predict results in real-world problems. Be
sure to discuss finding the y-values during
the class discussion of the homework. A
blackline master for these problems is
available in the Instructor’s Resource Book.
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
!
!2
5a. y 9 6 cos 2(V 20)
5b. Amplitude 6; Period 180;
1
Frequency ___
180 cycle/deg;
Phase displacement 20;
Sinusoidal axis 9
5c. y 10.0418... at V 60;
y 8.7906... at V 1234
2
&*'$%+&)-*,*1$'+"&-+'"
"++!'/&"&(*,"-$*)-,"'&'*,!+"&-+'"
y
17.
y
y
18.
13.
r
14.
y
&*'$%+&!$1$'+"&-+'""+
+!'/&"&(*,"-$*)-,"'&'*,!+"&-+'"
15.
y
16.
y
8b. Amplitude 10; Period 20;
1
Frequency __
20 cycle/deg;
Phase displacement 2;
Sinusoidal axis 30
8c. y 30 at V 8;
y 35.8778... at V 1776
12.
8a. y 30 10 sin 18(V 2)
19. ,!+"&-+'""&*'$%"+0,&,'
/!,"+,!.$-'y,!+"&-+'""+
0,&,'"+,!('"&,'&,! *(!
'.'*$'/,!+"&-+'"$0"+'/*
20. ,!+"&-+'""&*'$%"+0,&,'
,!$,'/!,"+,!.$-'y,!
+"&-+'""+0,&,'"+,!('"&,'&
,! *(!'.'*$'/,!+"&-+'"$0"+
'/*
'**'$%+&+#,!,!+"&-+'"
+*"&/*",(*,"-$*)-,"'&'*",
!#,!)-,"'&'&1'-* *(!*,'%#+-*
",(*'-+,! *(!1'-+#,!
21. (*"')-$+,!%($",-"+-&",+
,!(!+"+($%&,'*y'+)-$+
&,!+"&-+'"$0"+"+,y-&",+
22. *)-&1"+
1$(* *,!
%($",-)-$+-&",+,!(!+"+($%&,
'*y'+)-$+&,!+"&-+'"$
0"+"+,y-&",+
Problems 9–18 provide practice in
writing equations from graphs that show
complete cycles or parts of cycles.
This is another critical skill required
to solve the real-world problems in
Section 6-7. A blackline master for these
problems is available in the Instructor’s
Resource Book.
9. y 1.45 1.11 sin 10(V 16)
10. y 30 20 cos 360(V 0.3)
11. y 1.7 cos(V 30)
12. y 5000 cos 45(V 1)
Problems 13 and 14 use different variables
to name the horizontal and vertical axes.
When you discuss homework, make sure
students have used the correct variables
and not just the usual variables y and V.
13. r 7 cos 3B
14. y 0.03 sin 0.9C
15. y 35 15 sin 90V
16. y 7 3 sin 4.5V
y
9
17. y 4 9 sin __
13 (V 60)
18. y 60 100 sin 45V
Problems 19 and 20 require students to
find y-values corresponding to given
angle values.
6a. y 8 10 cos 9(V 4)
6b. Amplitude 10; Period 40;
1
Frequency __
40 cycle/deg;
Phase displacement 4;
Sinusoidal axis 8
6c. y 2.1221... at V 10;
y 6.4356... at V 453
Section 6-2: General Sinusoidal Graphs
293
7b. Amplitude 5; Period 120;
1
Frequency ___
120 cycle/deg;
Phase displacement 10;
Sinusoidal axis 3
7c. y 8 at V 70;
y 1.9931... at V 491
19. y 12.4151... at V 300;
y 2.0579..., 1.9420... below the
sinusoidal axis at V5678
20. y 32.3879... at V 2.5; y 60,
on the sinusoidal axis, at V 328
Problems 21 and 22 require students to
write equations for sinusoids based on
verbal descriptions.
7a. y 3 5 cos 3(V 10)
See page 1002 for answers to
Problems 21 and 22.
Section 6-2: General Sinusoidal Graphs
293
Precalculus with Trigonometry Course Sampler 83
T eac h e R ’ s E dition
11.
Problem Notes (continued)
+..+(!)/* 3.%0!"+1
0!" . %7!.!*0
0!"+1
,.0%1(.!-10%+*/"+
/" .0$!#%2!*/%*1/+% 1/%*#
/"+
Problems 23 and 24 BTL TUVEFOUT UP XSJUF
GPVS QPTTJCMF FRVBUJPOT GPS FBDI HSBQI CZ
VTJOH CPUI QPTJUJWF BOE OFHBUJWF EJMBUJPOT
PG CPUI TJOF BOE DPTJOF FRVBUJPOT
ćFTF QSPCMFNT XJMM DIBMMFOHF ZPVS CFTU
TUVEFOUT " CMBDLMJOF NBTUFS GPS UIFTF
QSPCMFNT JT BWBJMBCMF JO UIF Instructor’s
Resource Book
a. +/%*!/0$!,.!*0"1*0%+*3%0$,+/%0%2!
2!.0%( %(0%+*
c. %*!/0$!,.!*0"1*0%+*3%0$,+/%0%2!
2!.0%( %(0%+*
(+0(("+1
(" .!-10%+*/+*0$!/)!/.!!*+*5+1.
("+1
#.,$!.0++*9
9.)0$00$!#.,$/.!0$!/)!
8 8
TEAChER’S EDITION
28. , 0!5+1.&+1.*(3%0$
0$%*#/5+1$2!(!.*! +10/%*1/+% /*
,.0%1(.!4,(%*$+
.
.!4,(%*$+
30$!),(%01 !,!.%+ ,$/! %/,(!)!*0".!
0" -1!*5*
0".!
5* /%*1/+% (
5
4%/(+0%+*.!.!(0! 0+0$!"+1.+*/0*0/
%*0$!#!*!.(/%*1/+% (!-10%+*$0%/
)!*05 *
8
24.
8
<8 8 8
;
=
;8 8 8 8
8
<8 8 8
25. !1*%0"+.0$!,!.%+ +"
/%*1/+% %/ !#.!!/,!.5(!!1*%0"+.0$!
".!-1!*5%/
5 5(!/,!. !#.!!
5%/
a. 1,,+/!/%*1/+% $/,!.%+ !#.!!5(!
$03+1(( 0$!"
0$!".!-1!*5!
5
5!
$5
$5)%#
$0
,!+,(!,.!"!.0+/,!'+"0$!".!
"0$!" -1!*5+
"0$!".!
5 "
5+
/1$/%*1/+% .0$!.0$*0$!,!.%+ Problem 26 SFJOGPSDFT UIF JEFBT PG
inflection point, concave up, BOE concave
down ćFTF JEFBT BSF WFSZ JNQPSUBOU JO
UIF TUVEZ PG DBMDVMVT #F TVSF UP BTTJHO
UIJT QSPCMFN
b. +. +/3$0%/0$!,!.%+ $0
%/0$!" -1!*5+3*5+1(1(0!0$!
%/0$!".!
".!-1!*5-1%'(5
5-1%'(51/%*#0$!
5-1%'(5
-1%'(51/%*#0$!
26. '!0$0$!#.,$+"
"1*0%+*0$0$/$%#$* (+3.%0%(,+%*0/
*0$!/'!0$/$+3
Problem 27 QSPWJEFT QSBDUJDF JO
USBOTGPSNJOH B HJWFO FRVBUJPO UP BOPUIFS
GPSN CZ VTJOH BMHFCSB ćF ĕOBM GPSN
PG UIF FRVBUJPO IFMQT TUVEFOUT TFF UIBU
IPSJ[POUBM BOE WFSUJDBM USBOTGPSNBUJPOT
GPMMPX UIF TBNF SVMFT
84
c. $5%/0$!+.%#%*("+.
.%#%*(" )+"0$!!-10%+*)+.!
.%#%*("+.
1/!"1(0$*0$!"+.
!"1(0$*0$!" )%*,.0
!"1(0$*0$!"+.
25b. 1FSJPE
'SFRVFODZ_DZDMFEFHćFGSFRVFODZ
JTEJWJEFECZ
294
23.
25a. DZDMFTEFHćJOLJOHJOUFSNT
PGDPNQMFUFDZDMFTPGUIFN
HJWFTB
DMFBSFSNFOUBMQJDUVSFUIBOUIJOLJOHJO
UFSNTPGGSBDUJPOT
4FFQBHFToGPSBOTXFSTUP
1SPCMFNTBOEBOE
$"41SPCMFNTo
a. $+30$05+1*0.*/"+.)0$!#%2!*
!-10%+*0+
8
+/ b. 4)%*!0$!!-10%+*%*,.0"+.0$!
0.*/"+.)0%+*/0$0.!,,(%! 0+0$!
* 2.%(!/$0%/0$!"+.
0%/0$!" )+"
0%/0$!"+.
0$!/!0.*/"+.)0%+*/
d. %*!/0$!,.!*0"1*0%+*3%0$*!#0%2!
2!.0%( %(0%+*
Problem 25 HJWFT TUVEFOUT QSBDUJDF
EFUFSNJOJOH GSFRVFODZ
28. +PVSOBMFOUSJFTXJMMWBSZ
+/ 8
0$!* 0$!.!0$!2!.0%(0.*/"+.)0%+*/
100$!* 0$! 8.!0$!.!%,.+(*
+,,+/%0!+"0$!$+.%6+*0(0.*/"+.)0%+*/
b. +/%*!/0$!,.!*0"1*0%+*3%0$*!#0%2!
2!.0%( %(0%+*
Problems 23 and 24 DBMM GPS UIF
EFWFMPQNFOU PG NVMUJQMF FRVBUJPOT
GPS UIF HJWFO ĕHVSFT BOE HSBQIJDBM
DPOĕSNBUJPO PG UIFJS FRVJWBMFODF
4UVEFOUT DBO BMTP VTF B $"4 UP QSPWJEF
#PPMFBO MPHJD UP DPOĕSN UIF BMHFCSBJD
GPSN PG UIF EFSJWFE FRVBUJPOT
Problem 28 JT B KPVSOBM FOUSZ UIBU HJWFT
TUVEFOUT QSBDUJDF XJUI UIF WPDBCVMBSZ JO
4FDUJPO :PV NJHIU UFMM UIF DMBTT UIBU
ZPV XJMM SBOEPNMZ DIPPTF ĕWF TUVEFOUT UP
SFBE UIFJS KPVSOBM FOUSJFT UP UIF DMBTT
27. *0$!"1*0%+*
a. ,+%*0+"%*:
"%*:!0%+*
b. .!#%+*3$!.!0$!#.,$%/+*2!1,
c. .!#%+*3$!.!0$!#.,$%/+*2! +3*
Chapter 6:
Additional CAS Problems
1. %FTDSJCF UIF HSBQIJDBM USBOTGPSNBUJPOT
SFRVJSFE UP DIBOHF y DPT x JOUP
y DPTx
x &YQMBJO IPX UIJT
x
DPOĕSNT UIF SFMBUJPOTIJQ
TJO x DPTx
x GPS BMM BOHMF WBMVFT
x
PG x
2. &OUFS DPTx
x JOUP ZPVS $"4
x
8IBU JT UIF PVUQVU BOE XIZ EPFT JU
DPOĕSN UIBU UIF SFMBUJPOTIJQ
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
TJO x DPTx
x IPMET GPS BMM WBMVFT
x
PG x?
3. *G ZPV FOUFSFE Solve(y = f(x), y) | x = 0 JOUP
ZPVS $"4 XIFSF f x
x XBT BOZ EFĕOFE
x
TJOVTPJEBM GVODUJPO IPX NBOZ BOTXFST
XPVME ZPV HFU &YQMBJO
4. *G ZPV FOUFSFE Solve(y = f(x), x) | y = 0 JOUP
ZPVS $"4 XIFSF f x
x XBT BOZ EFĕOFE
x
TJOVTPJEBM GVODUJPO IPX NBOZ BOTXFST
XPVME ZPV HFU &YQMBJO
Cosecant Functions
and Co
!
#
#
!
#
#"
vertical asymptotes
"
discontinuous
Objective
+
,,,,
,,,,,
,,,,,
)(&'
y y -+&(
y y !
"
.
2
2#
#$
%
!1
#
#
y
y
',
',! ! ! ',
',! )*
)*! +(!
y -!
-! (+
-
(+! *)
*)! ,'!
,'
y Fi re 6-3a
Figu
-
-!
-! (+
-
(+! *)!
*) ,'
,'!
',! )*
)*! +(
+(!
',
',! ! ! ',
Fi re 6-3b
Figu
y 0
0
3
Section 6-3:
PL AN N ING
Class Time
EBZ
Homework Assignment
3" 2o 1SPCMFNT o o
Teaching Resources
&YQMPSBUJPO B 5BOHFOU BOE 4FDBOU
(SBQIT
&YQMPSBUJPO C 5SBOTGPSNFE 5BOHFOU
BOE 4FDBOU (SBQIT
4VQQMFNFOUBSZ 1SPCMFNT
5FTU 4FDUJPOT UP 'PSNT " BOE #
Technology Resources
7BSJBUJPO PG 5BOHFOU BOE 4FDBOU
1SFTFOUBUJPO 4LFUDI 5SJH 5SBDFST
1SFTFOUHTQ
&YQMPSBUJPO B 5BOHFOU BOE
4FDBOU (SBQIT
TE ACH ING
y
y Sec tion 6 -3
TEAChER’S EDITION
Graphs of Tangent, Cotangent, Secant,
6 -3 Graph
Important Terms and Concepts
6OJU DJSDMF
7FSUJDBM BTZNQUPUF
%JTDPOUJOVPVT
2VPUJFOU QSPQFSUJFT GPS UBOHFOU BOE
DPUBOHFOU
Section Notes
4FDUJPO JOUSPEVDFT UIF HSBQIT PG UIF
UBOHFOU DPUBOHFOU TFDBOU BOE DPTFDBOU
GVODUJPOT *G ZPV QSFGFS ZPV DBO XBJU
VOUJM BęFS 4FDUJPO UP DPWFS UIJT
TFDUJPO CFDBVTF UIF UPQJDT JO 4FDUJPO UISPVHI 4FDUJPO EP OPU EFQFOE PO
UIF HSBQIT PG UIFTF GPVS GVODUJPOT *G ZPV
EP SFPSEFS UIF TFDUJPOT EP OPU BTTJHO
BOZ 3FWJFX PS 2VJDL 3FWJFX QSPCMFNT
UIBU JOWPMWF UIF HSBQIT PG UIF UBOHFOU
DPUBOHFOU TFDBOU PS DPTFDBOU GVODUJPOT
Section 6-3: Graphs of Tangent, Cotangent, Secant, and Cosecant Functions
295
Precalculus with Trigonometry Course Sampler
85
Section Notes (continued)
EXAMPLE 1 "OPUIFS JNQPSUBOU PVUDPNF PG UIJT
TFDUJPO JT JOUSPEVDJOH UIF RVPUJFOU
QSPQFSUJFT UP TUVEFOUT CFGPSF UIFZ
FODPVOUFS UIFN JO $IBQUFS SOLUTION
ćF HSBQIT PG UIF UBOHFOU DPUBOHFOU
TFDBOU BOE DPTFDBOU GVODUJPOT BSF TIPXO
OFBS UIF CFHJOOJOH PG UIF TFDUJPO
TEAChER’S EDITION
86
y
(2
(3
Fi re 6-3d
Figu
Fi re 6-3c
Figu
0 .
+!!
()*((
" / "#
/
!
1"
-#
#
#
&uv'
v uv# r
v'
r &uv'
v #%
v'
%
uv
! #r
r !
r
v/
v/r
___
u/r
u/r
,#%
% 1 1 .+ quotient properties ćF UFYU BTTVNFT UIBU TUVEFOUT
OFFE UP VTF UIF SFDJQSPDBM QSPQFSUJFT UP
HSBQI BOE DBMDVMBUF DPTFDBOU TFDBOU BOE
DPUBOHFOU PO UIFJS HSBQIFST CVU OPUF
UIBU TPNF HSBQIFST XJMM FWBMVBUF BOE
HSBQI UIFTF GVODUJPOT EJSFDUMZ
296
! $ $
" %
% !#$"
"
!#! .
y
8IFO XPSLJOH XJUI GVODUJPOT
UIBU IBWF WFSUJDBM BTZNQUPUFT JU DBO
CF IFMQGVM PO TPNF HSBQIFST UP VTF B
GSJFOEMZ XJOEPX XIFSF UIF IPSJ[POUBM
SBOHF JT B EFDJNBM NVMUJQMF PG "MTP
UIF VNJO TIPVME CF B NVMUJQMF PG ¡
'PS FYBNQMF UIF HSBQIT PG y UBO V
BOE y TFD V DPVME IBWF B V XJOEPX
¡ V ¡ /PUF UIBUVNBY VNJO
TP FBDI QJYFM
NPWF SFQSFTFOUT B DIBOHF PG ¡ JO V
ćJT DBO CF IFMQGVM JO USBDJOH UIF HSBQI
PG UIF GVODUJPO ćF 4FDUJPO /PUFT GPS
4FDUJPO DPOUBJO NPSF JOGPSNBUJPO PO
GSJFOEMZ HSBQIJOH XJOEPXT
ćF HSBQIT JO 'JHVSFT B BOE C DBO
CF SFQMJDBUFE PO B HSBQIFS XJUI WJFXJOH
SBOHFT ¡ V ¡ y GPS
y UBO V BOE y TFD V BOE
¡ V ¡ y GPS
y DPU V BOE y DTD V "MM GPVS HSBQIT
IBWF VTDBMF ¡ BOE yTDBMF #FGPSF
HJWJOH TUVEFOUT UIF XJOEPX EJNFOTJPOT
FODPVSBHF UIFN UP FYQMPSF UIF EPNBJO
BOE SBOHF PG GVODUJPOT JO PSEFS UP ĕOE
BQQSPQSJBUF WJFXJOH XJOEPXT .BLF TVSF
UIFJS HSBQIFST BSF TFU JO EFHSFF NPEF GPS
UIJT TFDUJPO /PUJDF UIBU UIFTF BSF OPU
GSJFOEMZ XJOEPXT XIJDI XFSF NFOUJPOFE
FBSMJFS "T B SFTVMU TUVEFOUT XJUI PMEFS
HSBQIFST TVDI BT 5*
XJMM TFF UIBU UIF
UPQ PG POF TFDUJPO PG B HSBQI JT DPOOFDUFE
UP UIF CPUUPN PG UIF OFYU TFDUJPO
XIFSF UIFSF TIPVME CF BO BTZNQUPUF
y .
""
#
PROPERTIES: Quotient Properties for Tangent and Cotangent
41 "# EXAMPLE 2 /
/y y .1 #
y .
"#"
2
Chapter 6:
ćJT DBO CF QBSUJBMMZ SFNFEJFE CZ QSFTTJOH
UIF MODE CVUUPO BOE TFMFDUJOH DOT
SBUIFS UIBO CONNECTED PS JU DBO CF GVMMZ
SFNFEJFE CZ VTJOH B GSJFOEMZ HSBQIJOH
XJOEPX BT EJTDVTTFE FBSMJFS
*O UIF FYBNQMFT FYQMPSBUJPOT BOE
QSPCMFNT TUVEFOUT MFBSO IPX UP TLFUDI
UIFTF HSBQIT CZ SFMBUJOH UIFN UP UIF TJOF
BOE DPTJOF HSBQIT 'PS FYBNQMF CFDBVTF
TFD V ____
DPT V UIF HSBQI PG y TFD V JT
VOEFĕOFE XIFSF DPT V IBT WBMVF Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
XIFSF DPT V BOE IBT WBMVF XIFSF
DPT V 8IFO ZPV QSFTFOU UIF TFDBOU
HSBQI TLFUDI B HSBQI PG UIF DPTJOF GVODUJPO
BOE TIPX UIBU UIF TFDBOU HSBQI iCPVODFT
PČw UIF IJHI BOE MPX QPJOUT PG UIF DPTJOF
HSBQI CFDBVTF TFDBOU JT UIF SFDJQSPDBM
PG DPTJOF 4JNJMBSMZ CFDBVTF DPTFDBOU JT
UIF SFDJQSPDBM PG TJOF UIF DPTFDBOU HSBQI
iCPVODFT PČw UIF IJHI BOE MPX QPJOUT PG
UIF TJOF HSBQI
&+ )$($%&$"%!&% &!% ' &! %
!%
)#'$($% !% $!""!%&%
&$%&!&$
% !%
)#'$&%"!
&%% '$
%&
!!&$
% &!& &$"&$!'&$"! &%! %%& &)&&%*"&!&%
, $"%%!) '$
+
Figure 6-3e
y
y
+
+
+
Figure 6-3f
+
Figure 6-3g
Problem Set 6-3
Reading Analysis
Q8.
Q8 &
&
!'
! ' &! %y
% y x -- /
$!)&*!'($ &%%&! )&!
*!'! %$&!7& /&&'$!
&$"%!&& &!& &% & !% &' &! %(&&% '%!%! !&(
)*!&*(&%&'$/&7$
"$!"$&%!)*!'&!%&&$"!&
& &!$!& &' &! $!&)!% '%!%/
5m
in
Quick Review
3$!7%44.$$&!&#'&! y !%+
Q1. $"!&#'&! %/
Q2. "&'%/
Q3. "$!%/
Q4. "%%" &)&$%"&&!
y !%%/
Q5. $#' *%/
Q6. % '%!8%%&y/
Q7. !)$7!' %&y /
Q9. & !' &! %yx/
Q10. 92;:"$&!&%&& &!&!$%
&
A. 0! '%! B. 1*"!&%%
C. 0! ($%
D. 2 ($%
Period
t %JTDVTTProblem 7TPTUVEFOUT
VOEFSTUBOEXIZUIFQFSJPEPGUIF
UBOHFOUBOEDPUBOHFOUGVODUJPOTJT
¡SBUIFSUIBO¡4UVEFOUTNBZ
OFFEUPCFSFNJOEFEPGUIJTGBDU
UISPVHIPVUUIFZFBS
t /FYUEJTDVTTProblem 9XIJDIBTLT
TUVEFOUTUPĕOEUIFEPNBJOPG
yTFDV)BWFTUVEFOUTMJTUTFWFSBM
BOHMFWBMVFTBUXIJDIUIFSFBSF
BTZNQUPUFT&WFOUVBMMZTPNFPOF
TIPVMEQPJOUPVUUIBUUIFBTZNQUPUFT
BQQFBS¡BQBSUBOEXJMMBUUFNQUUP
TUBUFUIFEPNBJO0ODFUIFEPNBJO
JTHJWFOIBWFTUVEFOUTFYBNJOFUIF
HSBQITPGUIFUBOHFOUDPUBOHFOUBOE
DPTFDBOUGVODUJPOT1PJOUPVUUIF
HFOFSBMQBUUFSOXIFSFVJTVOEFĕOFE
JOUIFEPNBJO V (location of 1st
asymptote) (distance between
asymptotes) n, XIFSFnJTBOJOUFHFS.
t 4VNNBSJ[FUIFTFDUJPOVTJOHUIFDIBSU
BUUIFCPUUPNPGUIJTQBHF
E. 0! &$"!%&(
1. Secant Function Problem
a. 5&&)!*%!&"$ &!% ' &! y!%.6%&&&&
&!%&&$"!y%.
%
!%
b. 1!) *!'!&&%*"&!&% &
% &$"7*!! &&!% $"/
1!)!%*!'$$"!"$)&&% &
$" '$
7/
c. !%&% &' &! ($&"! &%/
2%!, %!!&2 !&8" )* !&
d. !%&% &' &! ("! &%!
<&! /2%!, %!!&2 !&
8" )* !&
Section 6-3: Graphs of Tangent, Cotagent, Secant, and Cosecant Functions
Function
Differentiating Instruction
Domain
Range
297
y tan V
¡
VBMMSFBMOVNCFSTPGEFHSFFTFYDFQU
V¡¡n,XIFSFnJTBOJOUFHFS
yBMMSFBMOVNCFST
y cot V
¡
VBMMSFBMOVNCFSTPGEFHSFFTFYDFQU
V¡n,XIFSFnJTBOJOUFHFS
yBMMSFBMOVNCFST
y sec V
¡
VBMMSFBMOVNCFSTPGEFHSFFTFYDFQU
V¡¡n,XIFSFnJTBOJOUFHFS
yPSy
y csc V
¡
VBMMSFBMOVNCFSTPGEFHSFFTFYDFQU
V¡n,XIFSFnJTBOJOUFHFS
yPSy
Exploration Notes
Exploration 6-3aSFRVJSFTTUVEFOUTUP
HSBQIUBOHFOUBOETFDBOUGVODUJPOTBOE
UPXSJUFFRVBUJPOTGPSHSBQITPGUBOHFOUT
BOEDPTFDBOUT:PVNBZXBOUUPBTTJHO
UIJTFYQMPSBUJPOBTBEEJUJPOBMIPNFXPSL
QSBDUJDFJGZPVEPOPUIBWFUJNFUPVTFJU
JODMBTT
Exploration 6-3bSFRVJSFTTUVEFOUTUP
HSBQIUBOHFOUBOEDPTFDBOUFRVBUJPOT
BOEUPXSJUFUBOHFOUBOETFDBOU
FRVBUJPOTGPSHSBQIT:PVNBZXBOUUP
BTTJHOUIJTFYQMPSBUJPOBTBEEJUJPOBM
IPNFXPSLQSBDUJDFJGZPVEPOPUIBWF
UJNFUPVTFJUJODMBTT
4FFQBHFGPSBOTXFSTUP
1SPCMFNT2o2BOE1SPCMFN
Section 6-3: Graphs of Tangent, Cotangent, Secant, and Cosecant Functions
297
Precalculus with Trigonometry Course Sampler 87
T eac h e R ’ s E dition
$)&
$)&$"%!&% !% ' &! %% %!$%"&(*
!%
% '$
'%!&
%!)&%*"&!&%)$% %
% %!)& &$"&%)$!%
SOLUTION
y
Technology Notes
8. 3+'%)2$4%
$ /%.(!)%)#'!../*/'&*0//$!
$4%
(+'%/0 !*"/$!/)#!)/*/)#!)/.!)/)
*.!)/"0)/%*).
TEAChER’S EDITION
Problem 16 asks students to
explore the behaviors of the six
trigonometric functions as the
angle of measurement varies. They
may create their own sketches
using Sketchpad, or they may
use the Variation of Tangent and
Secant exploration at
www.keymath.com/precalc.
a. &!/$/2*4'!.*"/$!+-!)/"0)/%*)
y *.) /2*4'!.*"/$!+-!)/
"0)/%*) y .%)*)/$!.(!3!.
c. -&/$!.4(+/*/!.%)/!-!+/.) */$!-
.%#)%7)/+*%)/.*)4*0-.&!/$%)+-/
!).&!/$/$!#-+$*"y /) .
*2 *!.
/$!-!.0'/*(+-!2%/$/$!/)#!)/#-+$%)
%#0-!
*--*'!(.
6
2$/-!/$! %'/%*))
/-).'/%*)0.! 4/$!*)./)/.%)/$!!,0/%*)
'*//$!#-+$*)4*0-#-+$!-) .$*2/$//$!.!
/-)."*." (/%*).-!*--!/
."*-
Presentation Sketch:
Trig Tracers Present.gsp at
www.keypress.com/keyonline
is a presentation sketch that
traces out the graphs of the six
trigonometric functions as a point
is animated on a unit circle.
d. *!./$!/)#!)/"0)/%*)$1!-%/%'
+*%)/.".*7
7) .*(!*"/$!(")*/
!3+'%)2$ */
!3+'%)2$4)
12. y */ 5
Exploration 6-3a: Tangent and
Secant Graphs has students
discover what the graphs of tangent
and secant look like and how
they relate to the graphs of sine
and cosine. The better resolution
available in Fathom may be useful
for the parts where they are asked
to use a grapher. Sketchpad could
also be employed here.
b. 3+'%)$*24*0)0.!/$!#-+$.%)+-/
/*'*/!/$! %)/!-!+/.) /$!1!-/%'
.4(+/*/!.*"/$!#-+$*"y /) e. *!./$!/)#!)/"0)/%*)$1!+*%)/.*"
%)8!/%*)".*7
7) .*(!*"/$!(")*/
!3+'%)2$ */
!3+'%)2$4)
f
x
x .%) fx
x *. fx
x f
x
xf
fx
x
4. Quotient
nt Property for Cotangent Problem:)/$!
.(!.-!!)*)4*0-#-+$!-+'*
+$!+$!-+'*
//$!.!/$-!!
#-+$.3+'%)$*2/$!-!.0'/*)7
)7-(./$!
,0*/%!)/+-*+!-/4"*
+!-/4" -*/)#!)/
+!-/4"*
15. Rotating Ligh
Li thouse Beacon Problem:
%#0-!$.$*2.'%#$/$*0.!'*/! (
"-*(/$!.$*-!
+*/*"'%#$/
f
x
x .%) fx
x *. 9%#$/-44
fx
x fx
xf
f
x
x
x
6. %/$*0/-!"!--%)#/*%#0-!,0%&'4.&!/$
/$!#-+$.*"y .! ) y .
9%#$/$*0.!
!*)
Chapter 6:
D $*-!
(
7. 3+'%)2$4/$!+!-%*
$4/$!+!-%* *"/$!"0)/%*).
$
y /) ) y */%.*)'4
5%)./! *"5'%&!/$!+!-%* .*"/$!*/$!-"*
/$!-" 0-
/$!-"*
/-%#*)*(!/-%"0)/%*).
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
11. y /) 5
3. Quotient
nt Property for Tangen
n t Problem:'*//$!.!
ngen
/$-!!#-+$.*)/$!.(!.-!!)*)4*0-#-+$!-
3+'%)$*2/$!-!.0'/*)7
)7-(./$!,0*/%!)/
+-*+!-/4"*-/)#!)/
Supplementary problems for this section
are available at www.keypress.com/
keyonline.
298
10. $/%./$! *(%)*"/$!"0)/%*)y /) $/%.%/.-)#!
14. y . 5
5. %/$*0/-!"!--%)#/*%#0-!,0%&'4.&!/$
/$!#-+$.*"y /) ) y */.
.
In Problem 2b, the V-intercepts
and vertical asymptotes can be
found on a CAS by solving equations
involving the corresponding portions
of the tangent fraction. Notice that the
vertical asymptote locations are written
in an uncommon, but correct, form.
Recognizing equivalent forms is a critical
mathematical skill, especially when using
a CAS.
9. $/%./$! *(%)*"/$!"0)/%*)y .! $/%.%/.-)#!
13. y .!
5
PRO BLE M N OTES
Problems 1–4 reinforce the work done in
Exploration 6-3a.
88
2. Tangen
n t Function Problem
ngen
/$!-'%#$/-4
Fi re 6-3h
Figu
2a., 2c.
y
1
90°
450°
2b. Asymptotes occur where cos V 0 at
V 90 180n; V-intercepts occur where
sin V 0 at V 180n.
a. "''%#"D&(!'"!".&
*!"**'-
-!
D''%&('
b. %"&'&#"'"'''&"%
*!-!-
c. '&'.%&'#"&'))(""%*
D$(&"%*D$(&
d. +#!'#,&&!.!"'
&, #'"''-
16.
Variation of Tangent and Secant
Problem:(%
/&"*&'(!'%!
uv/""%!'&,&' !%,%" '"%!
O,'!!,!&'!%#"&'"!1
%,
!'%&'&'%'#"!'P.!&%*!
'!!''"'%'#"!' P, !'%&'!'
u/+&'#"!'!'v/+&'#"!'B.
)%'& !'%" #"!'P!'%&'&'
u/+&'#"!'C,!"%3"!'& !'%" #"!'P!'%&'&'v/+&'#"!'D.
8. ćFTFGVODUJPOTIBWFOPNBYJNVN
PSNJOJNVN
a. &'#%"#%'&"& %'%!&'"
+#!*,'&& !'!'&%$(
'"'&+"%%&#"!!(!'"!)(&1
9. ćFEPNBJOPGTFDVJTXIFSF____
DPTV
JTEFĕOFEJFBMMVun.ćF
SBOHFJT|y|JFA><A
PA'!
PB"'
PC&!
TJOV
10. ćFEPNBJOPGUBOVJTXIFSF____
DPTV
PD"&
JTEFĕOFEJFBMMVunćF
SBOHFJTBMMSFBMOVNCFST
OA&
OB&
Problems 11–14SFRVJSFTUVEFOUTUP
DPOTJEFSUSBOTGPSNBUJPOTPGUIFQBSFOU
UBOHFOUDPUBOHFOUTFDBOUBOEDPTFDBOU
HSBQITćFJOTUSVDUJPOTBTLTUVEFOUT
UPNBLFUIFHSBQITPOUIFJSHSBQIFST
CVUUIFFRVBUJPOTJO1SPCMFNTBOE
DBOBMTPCFTLFUDIFECZIBOEVTJOHUIF
UFDIOJRVFEFNPOTUSBUFEJO&YBNQMF
POQBHF'PSFYBNQMFUPTLFUDIUIF
FRVBUJPOJO1SPCMFNSFQMBDFUIFTFD
JOUIFFRVBUJPOXJUIDPTBOETLFUDIUIF
HSBQIPGUIFSFTVMUJOHFRVBUJPOćFO
ESBXBTZNQUPUFTXIFSFUIFTJOVTPJE
DSPTTFTJUTTJOVTPJEBMBYJTESBXUIF
VQXBSECSBODIPGUIFTFDBOUGVODUJPO
XIFSFUIFTJOVTPJESFBDIFTJUTNBYJNVN
WBMVFBOEESBXUIFEPXOXBSECSBODIPG
UIFTFDBOUGVODUJPOXIFSFUIFTJOVTPJE
SFBDIFTJUTNJOJNVNWBMVF
b. :
!'*!'%,!'v0+&
&'complement"!2''&'&
&(%&-."*''!
&'co(!'"!"&$('"'
(!'"!"'complement".
c. 4"!&'%('(%
0(&!,! " '%,&"*%&(&:
6" '%/&'#"%(&'Variation
of Tangent and Secant +#"%'"!'
www.keymath.com/precalc.8&%)
*'##!&'"'&+(!'"!)(&&
!&5&%"*'&!!"&!
)%,&& %%"%& %3&"!
'.(%+#!*,''!!'!&!'
" !.!'&##%"&-!*,
'"'!!'!"&!'" !.!'&
##%"&-
v
B
D
P
O
7")#"!'P
C
A
u
Figure 6-3i
2c. 4FFBOTXFSUPQBSUB
Section 6-3: Graphs of Tangent, Cotangent, Secant, and Cosecant Functions
2d. /PUIFHSBQIJTBMXBZTJODSFBTJOH
XIFSFJUJTEFĕOFE
2e. :FTBUVn
Problems 5–10 QSPWJEFUIFQSBDUJDF
OFDFTTBSZGPSTUVEFOUTUPlearnUIFHSBQIT
5. 4FF'JHVSFB
6. 4FF'JHVSFC
299
7. 'PSBMMVXIFSFnJTBOJOUFHFS
TJOVn
TJOVBOEDPTVn
DPTVćFSFGPSFGPSBMMV
TJOVn
TJOV
UBOVn
__________
_____
DPTV
DPTVn
TJOV
____
UBOV4PUIFQFSJPEPGUIFUBOHFOU
DPTV
Problem 15 NBZDBVTFTUVEFOUTEJďDVMUZ
:PVNBZXBOUUPTPMWFUIJTBTBXIPMF
DMBTTBDUJWJUZSBUIFSUIBOBTTJHOJUBT
IPNFXPSL#FDBVTFGVUVSFQSPCMFNT
EPOPUSFMZPOUIJTQSPCMFNJUDBOCF
PNJUUFE1PJOUPVUUPTUVEFOUTUIBUZPV
BSFEJTUJOHVJTIJOHCFUXFFOUIFUXPMJHIU
CFBNTBOELFFQJOHUSBDLPGXIJDIPOF
JTQPJOUJOHJOUIFQPTJUJWFEJSFDUJPOBOE
XIJDIPOFJTQPJOUJOHJOUIFOFHBUJWF
EJSFDUJPOBTJUSPUBUFTćFUFSNJOBMTJEF
PGVJTUIFQPTJUJWFEJSFDUJPOćVTBT
UIFCFBDPOSPUBUFTQBTU¡LCFDPNFT
OFHBUJWFCFDBVTFJUJTUIFOFHBUJWFMZ
PSJFOUFECFBNPGMJHIUUIBUIJUTUIFTIPSF
GVODUJPOJT'VSUIFSNPSFGPSBMMV
DPTVn
DPUVn
__________
_____
DPTV
TJOV
TJOVn
DPTV
____
DPUV
TJOV
4FFQBHFToGPSBOTXFSTUP
1SPCMFNTBOEo
Section 6-3: Graphs of Tangent, Cotangent, Secant, and Cosecant Functions
299
Precalculus with Trigonometry Course Sampler 89
T eac h e R ’ s E dition
%"''!'"!'"#"''"(&&!&
"('%,&"'!"##"&'%'"!&&'
"!%"''&'%,'! &&#"'"
''' ")&"!'&"%&!%&&
,"!-'"'%%, &'&#"'"
''D'&# !'"'&#"'"
'%" '#"!'"!'&"%"&&''"'
"!*''&# !'#"&')'"'
%'!!')'"'&,"('
"!%" '&"%
6 - 4 Radian Measure of Angles
Sec tion 6 - 4
%* &#
&#&% ## !#$$$+
&%
$+ PL AN N ING
(
(% radian !#$$$ &%%$$(#
$ %$$% * &(#(%#$# (
(% '#%$&#$
%(#$#$#$&# $ ($* &% )!
% !% %# %#&
% $$* &,$%)%$% &
# &%$)!$ %# %#&
% $* & #( #
&
! (!%'#$#!#$%$%% #* %#
"&%%*
%* %&$%$&##$
%*
Class Time
EBZ
Homework Assignment
3" 2o2 1SPCMFNT o Objective
Teaching Resources
TEAChER’S EDITION
&YQMPSBUJPO *OUSPEVDUJPO UP 3BEJBOT
&YQMPSBUJPO B 3BEJBO .FBTVSF PG
"OHMFT
#MBDLMJOF .BTUFST
1SPCMFNT BOE %$)! #% * &()! #%#$&% &#$&#
* &,$ (%
( $&%#$$%&#*#
*# %#&$ #
*
E XPLOR ATION 6 - 4: Introduc t ion to Radians
$#!$
($#
#&$r&
r&
r %$
% uv #%$*$%#&$$#9
:&%$ %%$ #&$2# %
#(%&#'%)%* #&$&%
$#9 :$%#%%%! $%'
u)$2%#$#(
# $&%
#(
-&%% :.%$#
Technology Resources
1SFTFOUBUJPO 4LFUDI 3BEJBOT
1SFTFOUHTQ
$"4 "DUJWJUZ B *OWFSTF
5SJHPOPNFUSJD 'VODUJPOT
1.
1 6#9;
6 #9;
9 ;)#&#-)#(
- .
(%%$$ ( % u)$
$
$&#%# %# !! $%%
#9/#-8%&$%#% 7# %
(7#
7# 8% #
$ (
(% %$.4 $%#'
% r15 (
( $%$%%* &%%%
$&#$/#1
2. 6#9 :%( ##&$%$ * &#
;)#&#$%#%#
## %
%
$* &'#*#9
$&#
# &%#&#
&# %##
&
# %! $%'u)$% %%#$ %
#93$ %$$&#%
%<
<% #$-!.(%
$%#$&# 1
3. %$%#$&# &
#' &% 12 /101
4. %$%#$&# /#18
(
( (*
( & &* &#$(#
5. %* &#$#$&% %$
)! #% %%* & %9 (
#1
v
TE ACH ING
Important Terms and Concepts
3BEJBO
6OJU DJSDMF
4VCUFOET
6OJUMFTT OVNCFS
%JNFOTJPOBM BOBMZTJT
8SBQQJOH GVODUJPO
"SD MFOHUI
#$
/#
r
r
u
Exploration Notes
Exploration 6-4 JT BO FYDFMMFOU BDUJWJUZ GPS
HSPVQT PG UXP PS UISFF TUVEFOUT *U HJWFT
FBDI TUVEFOU BO PQQPSUVOJUZ UP NFBTVSF
SBEJBOT PO B DJSDMF *G ZPV IBWF UJNF GPS
POMZ POF FYQMPSBUJPO EP Exploration 6-4
4IPX TUVEFOUT IPX UP IPME UIF JOEFY
DBSE PO JUT FEHF BOE CFOE JU UP GPMMPX UIF
DVSWF PG UIF DJSDMF "MMPX o NJOVUFT
GPS UIJT BDUJWJUZ
Chapter 6:
1. 0OFFEHFPGJOEFYDBSETIPVMECFNBSLFEBTTIPXOIFSF
Index Card
1r
90
1r
0.5 r
r
"SDIBTMFOHUIrUIFSBEJVTDPOĕSNJOHUIBUUIFBOHMFJTPOFSBEJBO
4FF QBHF GPS OPUFT PO BEEJUJPOBM
FYQMPSBUJPOT
300
1r
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
Excerpt from an old
Babylonian cuneiform text
'
'
v
'
'
r
u
r
v
(
u
Figure 6-4a
%!#% ' !
"!'
"%
a
V
r
r'
Figure 6-4c
a'
! %!%.# ),! !
)*##!%!! ! )!
#
/! !
#
! subtends! 0!! x! &
! ! ! % 1! ! !x x! +
! /! !
x! r
!
r x
Figure 6-4b
%! ! a a --r--r''#!
/! ! ! !/!% + radian
measure /! ! "% !
2. Arc has length 2.8r, meaning that V is
2.8 radians.
3. A full revolution is 2Q radians because
the circumference of a circle is 2Qr. An
angle of 180° is half of 2Q, or Q radians. An
angle of 90° is _14 of 2Q, or Q_2 radians.
1
4. One radian is __
2Qof a full circle, so its
___ 57.2957...°
degree measure is 360°
2Q
Section 6-4: Radian Measure of Angles
301
Section Notes
Section 6-4 introduces radian measures
for angles. Measuring angles in radians
makes it possible to apply trigonometric
functions to real-life units of measure,
such as time, that can be represented
on the number line. Try to do at least one
of the explorations for Section 6-4 so that
students will understand that a radian
is really the arc length of a circle with a
radius of one unit.
The explorations also help students
understand the relationship between
radians and degrees. If they do not
complete one of these activities, students
may simply memorize how to convert
from degrees to radians without
understanding how the units are related.
Explain that degrees and radians are two
units for measuring angles, just as feet
and meters are two units for measuring
length. An angle measuring 30 radians is
not the same size as an angle measuring
30 degrees (just as a length of 30 meters
is not equal to a length of 30 feet) because
the units are different.
The relationship between radians
and degrees can be used to convert
measurements from one unit to the
other. Because Q radians is equivalent
to 180 degrees, the conversion factor
Q radians
is ________
, a form of 1. Students should
180 degrees
realize that multiplying a number of
degrees by this factor causes the degrees
to cancel out, leaving a number of
radians.
30
degrees __________
Q radians __1Q radians
_________
1
180 degrees 6
Similarly, multiplying a number of
180 degrees
radians by ________
, another form of 1,
Q radians
lets the radians cancel, leaving a number
of degrees. If the units don’t cancel, the
student has the conversion factor upside
down.
5. Answers will vary.
Section 6-4: Radian Measure of Angles
301
Precalculus with Trigonometry Course Sampler 91
T eac h e R ’ s E dition
&
! !! %% ! %""! #! #$ %%% %!
$!% &
#% !
!&
% !! !!
"%#!! ! !
! uv % !
!
Section Notes (continued)
DEFINITION: Radian Measure of an Angle
"OPUIFSXBZUPNBLFTVSFTUVEFOUTDBO
WJTVBMJ[FBSBEJBOJTUPIBWFFBDITUVEFOU
IPMEVQIFSPSIJTIBOETIFFMUPIFFM
UPGPSNBPOFSBEJBOBOHMF"SBEJBOJT
BCPVUEFHSFFT*GUIFBOHMFJTNVDIUPP
CJHPSUPPTNBMMZPVDBODPSSFDUUIFN
RVJDLMZ
arc length
radian measure _________
radius
For the work that follows, it is important to distinguish between the name
of the angle and the measure of that angle. Measures of angle will be written
this way:
is the name of the angle.
m°() is the degree measure of angle .
T eac h er ’ s E dition
5PIFMQTUVEFOUTEFWFMPQBHPPE
VOEFSTUBOEJOHPGSBEJBOTESBXBMBSHF
DJSDMFBOENBSLTFWFSBMFYBDUSBEJBO
NFBTVSFTJODMVEJOHCPUIJOUFHFSTBOE
NVMUJQMFTPGQ0OUIFTBNFDJSDMFTIPX
UIFEFDJNBMBQQSPYJNBUJPOTGPSTPNFPG
UIFSBEJBONFBTVSFTFTQFDJBMMZ
Q
Q
__
__
Q BOEQ,OPXJOHEFDJNBM
Q
BQQSPYJNBUJPOTGPSNVMUJQMFTPG__
BMMPXT
TUVEFOUTUPEFUFSNJOFXIJDIRVBESBOUBO
BOHMFHJWFOJOSBEJBOTGBMMTJOćJTIFMQT
TUVEFOUTVOEFSTUBOEXIZFYQSFTTJPOT
MJLFDPTBOETJOSFQSFTFOU
OFHBUJWFRVBOUJUJFT*GZPVHBWFTUVEFOUTB
5SJHPOPNFUSJD3BUJPT5BCMFJO$IBQUFS
IBWFUIFNDPNQMFUFJUCZĕMMJOHJOUIF
3BEJBOTDPMVNO
m R() is the radian measure of angle .
Because the circumference of a circle is 2r and because r for the unit circle
is 1, the wrapped number line in Figure 6-4a divides the circle into 2 units
(a little more than six parts). So there are 2 radians in a complete revolution.
There are also 360° in a complete revolution. You can convert degrees to radians,
or the other way around, by setting up these proportions:
m°() 360°
m R() ____
180°
_____
_____
2 ____
or
____ ____
2
m°() 360° 180°
m R()
Solving for m R() and m°(), respectively, gives
180°
m°()
R
and
m°() ____
m R() ____
m ()
180°
These equations lead to a procedure for accomplishing the objective of this section.
PROCEDURE: Radian–Degree Conversion
To find the radian measure of , multiply the degree measure by ___
.
180
180
To find the degree measure of , multiply the radian measure by ___
.
EXAMPLE 1 SOLUTION
Convert 135° to radians.
Co
I order to keep the units straight, write
In
each qua
quantity as a fraction with the proper
units. If you have done the work correctly,
certain units will cancel, leaving the proper
units for the answer.
135° x
135 x
180° 180 = 3
135 degrees radians
m R() __________ __________ __ 2.3561... radians
180 degrees 4
1
Notes:
3 If the exact value is called for, leave the answer as _34 . If not, you have the choice
of writing the answer as a multiple of or converting to a decimal.
3 The procedure for canceling units used in Example 1 is called dimensional
analysis. You will use this procedure throughout your study of mathematics.
302
302
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
92 Precalculus with Trigonometry Course Sampler SOLUTION
EXAMPLE 3 SOLUTION
Differentiating Instruction
! '#%
# $%!#$
# $ #$
*
# $
% $$%#&
%!%#! !%#& %! $%#$)!%$
$$%
$$&
$$&%!$&#
# $
%$()%$ "!#% %!#)!&
%! &%#$)!& % !(%)!&#&%!#%!# ! %#% % EXAMPLE 4 SOLUTION
%# $&# %#$&#! (!$$ $
$ # %)!&#&%!#%!# !
$ *
%)!&#&%!#%!#!
0!1(%#%$ $(#$# %2&' %)!&!&! '#%! %!
%!%#
#$
* $%
#) )!&#
# # $
&%!#(%!&%#!& Radian Measures of Some Special Angles
/%(")!&%# &&$%!%!#2&1)%# $&#$!
#% $" $$&$%!$(!$#$&#$#&%"$!
*
*
-)%% 2&!.3"
# !#
#'!&%!
*
# !# #'!&%!
*
/)!&##%$%(!)!& 4 !%#$2&1))&%"%! !# $% # $!# #'!&%!
*+
,*
+!#+
# $!# #'!&%!
*+!#+# $!# #'!&%!
!#*)!& $")##%%&#'!&%! $# $$!
#'!&%! $# $
Section 6-4: Radian Measure of Angles
t )BWFTUVEFOUTJODMVEF radians JOUIFJS
KPVSOBMTXSJUJOHUIFEFĕOJUJPOJOUIFJS
PXOXPSET
t &--TUVEFOUTNBZIBWFCFFOUBVHIUUP
VTF3UPEFOPUFSBEJBONFBTVSF
t $POTJEFSQSPWJEJOHBUBCMFPG
USJHPOPNFUSJDSBUJPTPSBVOJUDJSDMF
GPSTUVEFOUTUPVTFBTBSFGFSFODF
"MUFSOBUJWFMZIBWFTUVEFOUTDSFBUF
UIFJSPXOVOJUDJSDMFT
t #FBXBSFUIBUTUVEFOUTNBZIBWF
MFBSOFEDPOWFSTJPOTCFUXFFOEFHSFFT
BOESBEJBOTVTJOH¡BOEQ
t .BOZMBOHVBHFTVTFUIFTBNFXPSE
GPScircumferenceBOEperimeter&--
TUVEFOUTNBZJOUFSDIBOHFUIFXPSETJO
&OHMJTI
t "MMPX&--TUVEFOUTUPEPProblems 1
and 2 JOQBJSTćFZBSFMBOHVBHF
IFBWZ
t %FNPOTUSBUFGPSTUVEFOUTUIFGPSNZPV
XBOUUIFNUPVTFGPSFYBDUBOTXFST
4UVEFOUTNBZIBWFMFBSOFEBWBSJFUZPG
GPSNTBDSPTTUIFDMBTT
*UXJMMUBLF
UJNFGPSUIFNUPBEKVTU
303
Section 6-4: Radian Measure of Angles
303
Precalculus with Trigonometry Course Sampler 93
T eac h e R ’ s E dition
EXAMPLE 2 Additional Exploration Notes
(#& "
"#+
(#& *$& *$ *%' %1./
Exploration 6-4a DBO CF DPNQMFUFE BT B
XIPMFDMBTT BDUJWJUZ 1SPCMFN SFRVJSFT
B QSPUSBDUPS *U JT JNQPSUBOU CFDBVTF JU
HJWFT TUVEFOUT BO FTUJNBUF PG UIF OVNCFS
PG EFHSFFT JO POF SBEJBO "MMPX o
NJOVUFT GPS UIJT FYQMPSBUJPO
v
v
%
'
+0
)0
&
' '(0
&0
)
%
% u
Technology Notes
TEAChER’S EDITION
Presentation Sketch:
3BEJBOT 1SFTFOUHTQ BU
www.keypress.com/keyonline
BMMPXT ZPV UP BOJNBUF B QPJOU
BMPOH UIF SBEJVT PG B DJSDMF UP
EFNPOTUSBUF UIF TJ[F PG B POF
SBEJBO BOHMF NFBTVSF ćF TLFUDI
PO UIF TFDPOE QBHF BMMPXT UIF QPJOU
UP BOJNBUF BMM UIF XBZ BSPVOE UIF
DJSDMF BOE WJTVBMMZ EFNPOTUSBUFT
UIF BQQSPYJNBUF OVNCFS PG
SBEJBOT JO ¡ BT XFMM BT UIF
BQQSPYJNBUJPO Q y__
& &
'
Fi re 6-4d
Figu
EXAMPLE 5 SOLUTION
94
+0
%*0
&)0
$&
$
,,
%
,%
,%
,%
,%
%
%
*
)
'
/--
)
--
%
%-- --------
-----
&1
)
&1
&$
&
60°
1
, "
"
/&1
hypotenuse
sec θ = 1 =
adjacent
cos θ
Problem Set 6-4
Reading Analysis
! !
!"
"
! !
Q3. V
Chapter 6:
90°
304
)0
$'
-3
y
1
'(0
$)
2
Q4. ćFSFJTOPWBMVF
Q2.
&0
Radians
30°
y
90°
Degrees
Revolutions
PRO BLE M N OTES
1
Fi re 6-4e
Figu
PROPERTY: Radian Measures of Some Special Angles
CAS Activity 6-4a: *OWFSTF
5SJHPOPNFUSJD 'VODUJPOT JO UIF
Instructor’s Resource Book IBT
TUVEFOUT FYQMPSF UIF SFMBUJPOTIJQT
CFUXFFO UIF JOWFSTF USJHPOPNFUSJD
GVODUJPOT BOE EFNPOTUSBUF UIBU
BMUIPVHI UIFSF BSF TJY JOWFSTF
USJHPOPNFUSJD GVODUJPOT UISFF PG
UIFN BSF TVďDJFOU "MMPX o
NJOVUFT
Q1.
u
0
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
Quick Review
Q1. y Q2. y Q3. "
" y !
Q4. "
"
2. Arc Length and Angle Problem:3)()+"*%*
4$ * %$%( $/%+$"+"**(
"$*)*&(%+*%*$" $( $)$
*( +)%* (" +()%-)()%
*( ("))+*$/$*("$"%
( $)
( %* ("),"$*)
$#
A. %$,()
B. $,()
C. %$*(&%) * ,
D. %$"+) %$
r
(
(
(
(
E. /&%*) )
Q6. y-EJMBUJPOPG
Q7. xEJMBUJPOPG
Q8. f x
axbxc, au
Q9. 1a.
1. Wrapping Function Problem: +(
)%-)*+$ * (" $uv%%( $*)/)*#
+&&%)/%+-$**%+)*$"#)+( $
( $))* $&$$*,( "# $
*x. )(%#$xy%%( $*)/)*#&"
*$$**%* ("*)%( $x )**
&% $*u,v
$*x. ) )-(&&
(%+$* ("
3
2
Figure 6-4g
v
a. %-"%$-%+"*(%*# ("
/%+#)+( *- *5. "(+"(
2
b. $/%+()!*(%#&(*)%-$")%
$( $) $)*$(&%) * %$
x
u
1
r1
1b.
3
2
b. $*"$*)%*()%$*
# ("
$*# ("+) $*&(%&(* )%
) # "(%#*( 4+()
c. $ ("%( +)r#*()-* )*
"$*%$(** ))+*$/$$"
%( $)
v
1
u
3
a. %--(*&% $*)x
$%$*
$+#(" $#&%$*%* ("
c. .&" $%-*"$*%*(%*+$ *
(")+*$/$*("$"%* ("
)("**%*( $#)+(%**$"
Q10. %
Problem 1 JOUSPEVDFT UIFOFYU
TFDUJPOBOESFJOGPSDFTUIFJEFBTJO
Exploration 6-4#FTVSFUPBTTJHO
UIJTQSPCMFN"CMBDLMJOFNBTUFSGPS
Problem 1JTBWBJMBCMFJOUIFInstructor’s
Resource Book
r
r
__
Q5. q
T eac h e R ’ s E dition
Q5. * )*.*,"+%*$0
Q6. **($)%(#* %$%+$* %$f )
(&()$*/g xf x
Q7. **($)%(#* %$%+$* %$f )
(&()$*/h xf x
Q8. ( **$("'+* %$%('+(* +$* %$
Q9. Q10. 1*$2&(*%*)**#$*%(*%(#
)""*
d. %-%+"/%+ quickly4$*"$*a
%$(% ("%( +)r#*()** )
)+*$/$*("$"%( $)
( *%(#+"(&()$* $*("$*
Figure 6-4f
Section 6-4: Radian Measure of Angles
305
v
2
3
1
1
u
r1
1c. ćFBSDMFOHUIPOUIFVOJUDJSDMF
FRVBMTUIFSBEJBONFBTVSF
Problem 2EFWFMPQTUIFHFOFSBMGPSNVMB
GPSĕOEJOHUIFMFOHUIPGBOBSDHJWFO
UIFBOHMFNFBTVSFBOEUIFSBEJVTPGUIF
DJSDMF#FTVSFUPBTTJHOUIJTQSPCMFNBOE
SFWJFXJUJOUIFIPNFXPSLEJTDVTTJPO
2a. DN
2b. DNGPS rDN
DNGPSr DN
2c. rN
2d. a rV
Section 6-4: Radian Measure of Angles
305
Precalculus with Trigonometry Course Sampler 95
Problem Notes (continued)
!""!#)*
* $ exact"
t
t"
#%"!
$ !#
Problems 3–30 DBO CF EPOF PO
B $"4 VTJOH B Solve DPNNBOE BOE
DPOWFSTJPO SBUJPT
!""!#)*
* $" #%"!$
!"
!"
TEAChER’S EDITION
Problems 31–34 QSPWJEF TLJMM QSBDUJDF JO
ĕOEJOH approximate GVODUJPO WBMVFT PG
BOHMFT JO SBEJBOT 3FNJOE TUVEFOUT UP
VTF UIF SBEJBO NPEF PO UIFJS HSBQIFS
12. (
14. (
25. "
26. "
27. " #
28. " #
29. "
30. " #
!""!#)*
* $%
$! &%
%
!"
!
!"
"$ " #
!
Problems 35–38 SFRVJSF TUVEFOUT UP ĕOE
BO BOHMF JO SBEJBOT HJWFO B yWBMVF
3FNJOE TUVEFOUT UP VTF SBEJBO NPEF PO
UIFJS HSBQIFS BOE UIBUTJO EPFTOU
NFBO_____
TJO %JTDVTT IPX TUVEFOUT DBO
ĕOEDPU BOEDTD PO UIFJS HSBQIFS
VTJOH UIFUBO BOETJO LFZT
31. # 32. !#
33. $ 34. # 49.
y
(
)
50.
(
y
(
(
!""!# *
* $ $!$#
x
x $"$$" x
51.
x
(
!""!#)*
* $" #%"
!"
!$ !"
52.
(
x
5
Problems 39–48 QSPWJEF TLJMM QSBDUJDF
JO ĕOEJOH UIF exact GVODUJPO WBMVFT GPS
TQFDJBM BOHMFT JO SBEJBOT
x
1
35. # 36. $ 37. !$ 38. #
Problems 46–48 BSF FYBNQMFT PG
USJHPOPNFUSJD QSPQFSUJFT TUVEFOUT XJMM
TUVEZ JO $IBQUFS 96
11. (
13. (
!""!#)
*
* $'$"#%"
!$ & " # !##$
!#$$
$$!
"
"
15. 16. " #
17. "
18. "
"
"
20. " #
19. "
"
" #
22. "
#
21. " #
24. " #
23. "
!""!#
)*
* $"#%" !"
!$ & " #
!"
Problems 25–30 QSPWJEF TLJMM QSBDUJDF JO
DPOWFSUJOH GSPN SBEJBOT UP approximate
EFDJNBM GPSNT PG EFHSFF NFBTVSFT
306
8. (
10. (
9. (
Problems 15–24 QSPWJEF TLJMM QSBDUJDF JO
DPOWFSUJOH GSPN SBEJBOT UP exact EFHSFF
NFBTVSFT
4FFQBHFToGPSBOTXFSTUP
1SPCMFNToBOE$"41SPCMFNTo
4. (
6. (
7. (
Problems 3–10 QSPWJEF TLJMM QSBDUJDF JO
DPOWFSUJOH GSPN EFHSFFT UP exact SBEJBOT
4. __
Q
3. __
Q
Q
6. Q
5. __
8. __
Q
7. __Q
Problems 11–14 QSPWJEF TLJMM QSBDUJDF JO
DPOWFSUJOH GSPN EFHSFFT UP approximate
EFDJNBM GPSNT PG SBEJBOT
Problems 49–54 SFWJFX DPODFQUT GSPN
QSFWJPVT DIBQUFST 3FNJOE TUVEFOUT UP
QVU UIFJS HSBQIFST JO EFHSFF NPEF GPS
UIFTF QSPCMFNT " CMBDLMJOF NBTUFS GPS
Problems 49 and 50 JT BWBJMBCMF JO UIF
Instructor’s Resource Book
3. (
5. (
!""!#+)*
* $ exact&
t %!$
t&
$%
$ $! !#,!$$$%#
$%
$"# # !$%#$ ###%$!
" #
40. !#
39. # 42. !$
41. $ 43. #
44. #
!""!#)*
* $ exact&
t %!$
t&
'-"##! !#
45. # !#
46. ## 47. !#
# 48. $
$ #
$
!""!#+ /"$-"$%".%$! !"$# %#!"-
Chapter 6:
Additional CAS Problems
1. 1VU ZPVS $"4 JO SBEJBO NPEF BOE
DBMDVMBUF UBOo@ _ DPUo@ _ DTDo@ o _
o _
TJOo@ __
TFD @ BOEDPT @ &OUFS UIF
FYQSFTTJPO JO UIF ĕSTU SPX PG B UBCMF XJUI
UIF $"4 SFTVMU JO UIF TFDPOE SPX ćFSF
BSF TJY JOWFSTF USJHPOPNFUSJD GVODUJPOT
CVU IPX NBOZ TFFN UP CF BCTPMVUFMZ
OFDFTTBSZ &YQMBJO
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
!""!# *
* $"#%"!
$"$$" 53.
0
0
54. 0
2. %FUFSNJOF UIF NFBTVSF PG BO BOHMF
XIPTF SBEJBO NFBTVSF OVNFSJDBMMZ
FRVBMT UIF TRVBSF PG JUT EFHSFF NFBTVSF
3. " TFDUPS PG B DJSDMF XJUI SBEJVT r JT
EFĕOFE CZ BO BOHMF NFBTVSJOH x SBEJBOT
*G UIF QFSJNFUFS PG UIF TFDUPS JT VOJUT
BOE UIF BSFB PG UIF TFDUPS JT VOJUT
UIFO XIBU BSF UIF WBMVFT PG x BOE r?
0
The normal
al human EKG
EK
(electrocadiogram) is periodic.
Objective
circular functions,
Learn about the circular functions and their relationship to trigonometric
funct
functions.
*
*
(#!+
'&, %
'& %
y x
y "
"
x
$'!+
(#!+
#
$
%
Fi re 6-5a
Figu
*
*
x
xy-
uvu, v "! -'&
x)
'&
x ""
x ##x x
$
$
#
v
#
x"
#
x
"
x +x
!
#
v
x "
"
)
x
x
u
!
u
"
"
Sec tion 6 -5
PL AN N ING
Class Time
EBZ
Homework Assignment
3" 2o2 1SPCMFNT o Teaching Resources
&YQMPSBUJPO B $JSDVMBS 'VODUJPO
1BSFOU (SBQIT
4VQQMFNFOUBSZ 1SPCMFNT
Technology Resources
4JOVTPJE 5SBOTMBUJPO 1SPCMFN 4JOVTPJE %JMBUJPO 1SPCMFN ćF *OFRVBMJUZ TJO x x UBO x
1SPCMFN 1SFTFOUBUJPO 4LFUDI $JSDVMBS
'VODUJPOT 1SFTFOUHTQ
1SFTFOUBUJPO 4LFUDI $JSDVMBS
5SBOTGPSNT 1SFTFOUHTQ
1SFTFOUBUJPO 4LFUDI 4JOF
$IBMMFOHF 1SFTFOUHTQ
&YQMPSBUJPO B $JSDVMBS
'VODUJPO 1BSFOU (SBQIT
"DUJWJUZ 5SJHPOPNFUSZ 5SBDFST
"DUJWJUZ 5SBOTGPSNBUJPOT PG
$JSDVMBS 'VODUJPOT
TEAChER’S EDITION
Circular Functions
6 -5 Circul
Fi re 6-5b
Figu
TE ACH ING
Section 6-5:
Important Terms and Concepts
$JSDVMBS GVODUJPOT
4UBOEBSE QPTJUJPO
Section 6-5: Circular Functions
307
Precalculus with Trigonometry Course Sampler
97
Section Notes
&
xx# &
&
xx xx#
x
4FDUJPOJOUSPEVDFTcircular functions.
$JSDVMBSGVODUJPOTBSFJEFOUJDBMUP
USJHPOPNFUSJDGVODUJPOTFYDFQUUIBUUIFJS
BSHVNFOUTBSFSFBMOVNCFSTXJUIPVU
VOJUTSBUIFSUIBOEFHSFFTćFSBEJBO
JOUSPEVDFEJOUIFQSFWJPVTTFDUJPO
QSPWJEFTUIFMJOLCFUXFFOUSJHPOPNFUSJD
GVODUJPOTBOEDJSDVMBSGVODUJPOT
u
u
x
Figure 6-5c
T eac h er ’ s E dition
&
circular functionx &
'
DEFINITION: Circular Functions
)u,vx
,circular functionsx'
xv
xu
x __v
x
xu
x__
x
u
x v
__
x
x v
__
x
x
u
Differentiating Instruction
308
x
________________
x!
__vv
Note:"MUIPVHIUIFSFJTOPTZNCPMGPS
SBEJBOTQJTBOVNCFSXJUIPVUBOZ
VOJUTTUVEFOUTDBOVTFQBTBDMVFGPS
SBEJBOT
Exploration 6-5a SFRVJSFTTUVEFOUT
UPJOWFTUJHBUFHSBQITPGQBSFOU
USJHPOPNFUSJDBOEDJSDVMBSGVODUJPOT
v
x
u u
x%
4VNNBSJ[FUIFTFDUJPOXJUIUIFDIBSUBU
UIFCPUUPNPGUIJTQBHFUPIFMQTUVEFOUT
MFBSOUIFDMVFTXPSETBOETZNCPMT
UIBU
EFUFSNJOFXIFUIFSEFHSFFPSSBEJBO
NPEFTIPVMECFVTFE
Exploration Notes
x,xu,v
x
"x
"
&
standard position "
u,v&
x'"$
'PS&YBNQMFPOQBHFBOEUIF
IPNFXPSLQSPCMFNTZPVNBZOFFEUP
SFNJOETUVEFOUTUIBUUIFQFSJPEGPSUIF
QBSFOUUBOHFOUHSBQIBOEUIFQBSFOU
DPUBOHFOUHSBQIJTQ,OPUQ
t 4UVEFOUTNBZOPUCFBDDVTUPNFEUP
UIFDPOWFOUJPOPGVTJOH(SFFLMFUUFS
BSHVNFOUTUPSFQSFTFOUEFHSFFTBOE
3PNBOMFUUFSTUPSFQSFTFOUSBEJBOT
#FTVSFUPQPJOUPVUUIJTEJTUJODUJPO
BOEQSPWJEFTFWFSBMFYBNQMFTUPIFMQ
TUVEFOUTCFDPNFDPNGPSUBCMFXJUIUIJT
EJTUJODUJPO
t $POTJEFSBMMPXJOH&--TUVEFOUTUP
EPProblems 46–48JOQBJSTBOE
QSPWJEJOHUIFNXJUIUIFBOTXFST
ćFTFQSPCMFNTDPOUBJODIBMMFOHJOH
MBOHVBHFBOEJNQPSUBOUDPODFQUT
"MUFSOBUJWFMZXPSLUISPVHIUIFTF
QSPCMFNTBTBDMBTT
v
( ! &
!$! $#
, ! '' # "
!
&
"$"-
$ * )-#* $+
#x
308
Chapter 6: Applications of Trigonometric and Circular Functions
1SPCMFNToBTLTUVEFOUTUPTLFUDIUIF
QBSFOUTJOFDPTJOFBOEUBOHFOUHSBQIT
GSPN¡UISPVHI¡1SPCMFNToIBWF
TUVEFOUTHSBQIUIFTBNFUISFFGVODUJPOTJO
SBEJBONPEF1SPCMFNBTLTTUVEFOUTUP
SFMBUFUIFQFSJPETPGUIFHSBQITUPEFHSFFT
BOESBEJBOT1SPCMFNBTLTTUVEFOUTUP
XSJUFBOFRVBUJPOGPSBHJWFOTJOVTPJEUIF
TBNFTJOVTPJEBTJO&YBNQMF
:PVDBO
VTFUIJTFYQMPSBUJPOUPJOUSPEVDFUIFTFDUJPO
PSBTBRVJ[BęFSUIFTFDUJPOJTDPNQMFUFE
Chapter 6: Applications of Trigonometric and Circular Functions
98 Precalculus with Trigonometry Course Sampler *GZPVVTFJUBTBOJOUSPEVDUJPOBMMPX
NJOVUFT*GZPVVTFJUBTBRVJ[BMMPXMFTT
UJNFBOEDPOTJEFSBTLJOHTUVEFOUTUPEP
UIFJSXPSLXJUIPVUUIFJSHSBQIFST
Degrees
Radians
Phrase
5SJHPOPNFUSJD
$JSDVMBS
Variable
V
x
Symbol
¡
/POFQ
SOLUTION
!%%#"!y!$x! *!&##"# # ! %"#!
!
#
#"*
#*!"#*!&##$&%$
Problem 48:ćF*OFRVBMJUZ
TJOxxUBOx1SPCMFNBTLT
TUVEFOUTUPFYQMPSFUIFJOFRVBMJUZ
TJOxxUBOxXJUIUIFIFMQ
PGBOJOUFSBDUJWFTLFUDIJOUIF
%ZOBNJD1SFDBMDVMVT&YQMPSBUJPO
BUwww.keymath.com/precalc.
Presentation Sketch:$JSDVMBS
'VODUJPOT1SFTFOUHTQBU
www.keypress.com/keyonline
EFNPOTUSBUFTBMMTJYUSJHPOPNFUSJD
GVODUJPOTBTMFOHUITPGDFSUBJO
MFHTPGBUSJBOHMFDPOTUSVDUFE
BSPVOEUIFVOJUDJSDMFćJTTLFUDI
DPVMETFSWFBTBOJOUSPEVDUJPO
UPUIFBDUJWJUZ5SBOTGPSNBUJPOT
PG$JSDVMBS'VODUJPOTJOXIJDI
TUVEFOUTBSFBTLFEUPDPOTUSVDU
UIFTFUSJBOHMFTUIFNTFMWFT
Presentation Sketch:$JSDVMBS
5SBOTGPSNT1SFTFOUHTQBU
www.keypress.com/keyonline
BOJNBUFTBQPJOUPOUIFVOJUDJSDMF
UPTIPXUIFHSBQITPGTJOFDPTJOF
BOEUBOHFOUBTXFMMBTBIPSJ[POUBM
EJMBUJPOPGUIFTFUISFFHSBQITćJT
DPVMETFSWFBTBOJOUSPEVDUJPOUP
UIFBDUJWJUZ5SBOTGPSNBUJPOTPG
$JSDVMBS'VODUJPOT
Presentation Sketch:
4JOF$IBMMFOHF1SFTFOUHTQBU
www.keypress.com/keyonline
QMPUTBQPJOUBOEBTLTGPSBEJMBUJPO
PGUIFTJOFGVODUJPOUIBUQBTTFT
UISPVHIUIFQPJOU:PVNBZXJTIUP
IBWFTUVEFOUTFYQFSJNFOUXJUIUIF
TLFUDIPOUIFJSPXO
Exploration 6-5a:$JSDVMBS
'VODUJPO1BSFOU(SBQITJOUIF
Instructor’s Resource BookDBOCF
FOIBODFECZVTJOH4LFUDIQBE
4UVEFOUTDBOHSBQIJOFJUIFS
SBEJBOTPSEFHSFFTCZDIBOHJOHUIF
1SFGFSFODFTJOUIF&EJUNFOV
&#
&#$!($%#"
# %#"*!&, %%%,#$%"! %*! x$%( x
x!#"*%"#!$%( y
x
Figure 6-5d
!, %"#!#*#%%% %#& %!%!$ & %! $%#"#!!%!#+! %%! "#!!%"# %
!$ & %! $
,&$%##
# $ !"%#'!&%! &$
%"#!!%' & %! $
$(#!& #"*$!$%!%$)% $(#
Note:.$ %MAXIMUM%&#!*!&##"#! ,#$%%%"! %$%
x
EXAMPLE 2 "#%&#/&%! !#%$ &$!& %! #" &#-!%
%
%%%!#+!
%)$$x, !%, % %%% $$&# # $! ,#*!&# $(#*"!%% %/&%! ! *!&##"#
y
x
Figure 6-5e
y CA!$BxD
SOLUTION
1#%% #$ $!2&%! &$ x $%!.
3 &$!)$$%y$!C
ABC D&$ !#%! #!%#"
#!! "! %%!%
)%$
B$%#"#!!%
!#+! %%! 3 -"%&$
%*$%#%$%
"! %$!A
3 #!$
$!B .
3 .%! $
!#
!$ $%#%$*%
3 $$" %$!#%
"! %
"# %& %! !$x$!D
x 1#%%"#%&%! y
!$
!%% %$2&%! # !! ,#$%%%$!##%
Technology Notes
Problem 45:ćF4JOVTPJE5SBOTMBUJPO
1SPCMFNBTLTTUVEFOUTUPFYQMPSF
USBOTMBUJPOTPGTJOFBOEDPTJOF
HSBQITXJUIUIFIFMQPGUIF%ZOBNJD
1SFDBMDVMVT&YQMPSBUJPOBU
www.keymath.com/precalc.
Section 6-5: Circular Functions
309
Problem 46: ćF4JOVTPJE%JMBUJPO
1SPCMFNBTLTTUVEFOUTUPFYQMPSF
XJUIUIFIFMQPGUIF%ZOBNJD
1SFDBMDVMVT&YQMPSBUJPOBU
www.keymath.com/precalc,
EJMBUJPOTPGUIFTJOFHSBQIBOEUIF
FČFDUTUIFEJMBUJPOTIBWFPOUIF
QFSJPEPGUIFHSBQI
Section 6-5: Circular Functions
309
Precalculus with Trigonometry Course Sampler 99
T eac h e R ’ s E dition
EXAMPLE 1 Technology Notes (continued)
($&"((""()"
"( (#"'
"()"
TEAChER’S EDITION
Reading Analysis
&#!+(,#)*&"(''(#"+(
#,#)#"'&(#(!"7'.
7'.""
('(;(+(&(?
?&"'"('! &('
(+"circular
ar)"
ar
)"(#""trigonometric
)"(#"7#+#" !')&'"&"' "(
&) &)"
& (#"'(#((&#"#!(&)"
&)"
(#"'7
)"
5m
Q1.
Q2.
Q3.
Q4.
Q5.
Q6.
Q7
Q7.
Q8.
" 4VQQMFNFOUBSZ 1SPCMFN PO SFĘFDUJPO
PG UIF TJOF GVODUJPO JT BWBJMBCMF GPS
UIJT TFDUJPO BU www.keypress.com/
keyonline.
Q6. Q7. Q8. Q9. I
Q10. Problems 1–24 SFWJFX JEFBT GSPN
4FDUJPO QVOJUT
2. __
QVOJUT
1. __
4. __
QVOJUT
3. __
QVOJUT
5. 6. 7. 310
100
8. (( +,(
,(
+"$#"(#"/
"/(#"""',!$(#(((""(
%) '#&&$")&
)'(&('('
' ()&'
'
Problem Set 6-5
PRO BLE M N OTES
Q5. ',!$(#('&(* )'+&()"
(#"')".
)"
."#
x x 5#((("(&$'#&) &)"
& (#"'(")!&$$
&)"
$$
&'(&"(
%)(#"'#8
8
"(#x#
x &"(&$'' !&#"( x;'
x#
3FNFNCFS UIBU #PPMFBO MPHJD DBO CF
VTFE UP DPOĕSN UIF DPNQVUBUJPO PG UIF
QFSJPE PG B USJHPOPNFUSJD GVODUJPO
Q2. x
Fi re 6-5f
Figu
CAS Suggestions
Q4. #&(')"
' (#"($#"('#"/
')"
"/(#"& '#( x"(&$('#&($#"('
+&(* )#()"
(#"%) '-&##
)"
x ,
,
,
,
x y
Activity: 5SBOTGPSNBUJPOT
PG $JSDVMBS 'VODUJPOT JO UIF
Instructor’s Resource Book IBT
TUVEFOUT TUBSU XJUI B CBTF TLFUDI
BOE CVJME JU VQ UP CF TJNJMBS UP
UIF QSFTFOUBUJPO TLFUDI $JSDVMBS
5SBOTGPSNT 1SFTFOUHTQ NFOUJPOFE
FBSMJFS *U JT BO FYUFOEFE BDUJWJUZ
FNQIBTJ[JOH UIF FČFDU PO QFSJPE
BOE BNQMJUVEF PG EJMBUJPOT PG UIF
TJOF BOE DPTJOF HSBQIT "MMPX
NJOVUFT
Q1. Q
"#&&(#&$()"
(#",#)"(#"(,
)"
('$&#( #(#"'#('
,
"#&&
"/(#
"/
/(#"$#"('"('',!$(#('
($&##
#&-#"( (#"'(&$&# #
&# SOLUTION
Activity: 5SJHPOPNFUSZ 5SBDFST
JO UIF Instructor’s Resource
Book HVJEFT TUVEFOUT UISPVHI B
4LFUDIQBE DPOTUSVDUJPO PG UIF
HSBQIT PG TJOF DPTJOF BOE UBOHFOU
CBTFE PO UIF DPPSEJOBUFT PG B QPJOU
PO B VOJU DJSDMF "MMPX NJOVUFT
Q3. ((&$#y ("x.
EXAMPLE 3 in
Quick Review
#+!",&"'&"6=7
#+!",&'&"&
&
"'7
#+!",&'&"&"7
#+!",&"'&"4=7
"'"45=
"'"45
"($&##y 4#'
1 =2
"()$$&#)"#&
y
#&
y#
#&('")'#
"&# !95
Chapter 6:
*O Problems 9–12 DIFDL UIBU TUVEFOUT
VOEFSTUBOE UIBU PO B VOJU DJSDMF UIF MFOHUI
PG BO BSD JT FRVBM UP UIF SBEJBO NFBTVSF
PG UIF DPSSFTQPOEJOH BOHMF 4UVEFOUT BSF
PęFO QV[[MFE CZ UIFTF QSPCMFNT CFDBVTF
UIFZ TFFN UPP TJNQMF %P OPU QSPWJEF BO
FYBNQMF GPS 1SPCMFNT o "MMPX TUVEFOUT
UP UIJOL UIF QSPCMFNT UISPVHI
10. QVOJUT
9. __
QVOJUT
11. VOJUT
12. VOJUT
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
Q9.
Q9 #+
#+ #"#'((,#)(##!("
#" #' ( ( ,#) (# # ! ( "
*&'$#!37
Q10. :&(
0'! #&&# !'<4.
."(;(& "(#"
()"(& ')(",(*"" 1"#
! '2
1. =
2. =
3. =
4. 4
=
#&&# !'
<6.
."(;(&!')&#
(" ((')("'(*"& "(#"(
)"(& )"
6. )"(
5. )"('
8. )"
)"('
7. )"(
4
#&&# !'<.
."(;(& "(#"(
)"(& ')(",(*"" "&"'
9. &"'
10. &"
'
11. &"'
12. 45&"'
13. 14. 15. 16. 17. 18. 19. 20. Problems 21–24 BSF USJWJBM GPS TUVEFOUT
VTJOH B $"4
__
q
__
22. ____
21. ____
q
____
23. __
24. VOEFĕOFE
q
13. '!
14. &!
15. &
16. "'
34.
17. "&
18. '!
19. &
20. &
x
2
x
36.
28. 1FSJPE"NQMJUVEF1IBTF
EJTQMBDFNFOU4JOVTPJEBMBYJT
y
y
x
1
37.
4
x
2
29. 1FSJPE"TZNQUPUFTBUn
1PJOUTPGJOĘFDUJPOBUn
y
y
4
x
4
x
n
30. 1FSJPE__
"TZNQUPUFTBU____
__
1PJOUTPGJOĘFDUJPOBU n
38.
y
y
y
35.
"%%" &,
-!#%'(%$('"!"%
'%(%(!'"!%#
x
"%%" &,
-!'*')("'
%(%(!'"!!" &
22. "&
21. &!
24. &
23. '!
"%%" &,-!'#%" #'(
#&&# !'!&!(&"*&"'"!
&'&'(%&'"&''%#"!-% +"(%
%#+#"''!'&!(&"&"!+"(%%#%
x
25. y"&
x
26. y
&!
x
27. y&!
x
28. y
"&
"%%" &,-!'#%"&+ #'"'&
!%'#"!'&"%#"!'&"!.'"!!'!
&''%#
x
29. y"'
30. y'!x
31. y&x
32. y&x
27. 1FSJPE"NQMJUVEF
1IBTFEJTQMBDFNFOU
4JOVTPJEBMBYJT
y
"%%" &,-!'!)%&%(%
(!'"!! "% 33.
y
y
4
Section 6-5: Circular Functions
4
311
26. 1FSJPE"NQMJUVEF
1IBTFEJTQMBDFNFOU
4JOVTPJEBMBYJT
y
x
4
9
x
1
25. 1FSJPE"NQMJUVEF
1IBTFEJTQMBDFNFOU
4JOVTPJEBMBYJT
y
x
x
x
Problems 25–32QSPWJEFQSBDUJDFJO
HSBQIJOHBDJSDVMBSGVODUJPOHJWFOJUT
FRVBUJPO8BUDIGPSTUVEFOUTXIPVTFQ
JOTUFBEPGQBTUIFQFSJPEPGUIFQBSFOU
UBOHFOUBOEDPUBOHFOUHSBQIT
5
Problems 33–42SFRVJSFTUVEFOUTUPXSJUF
UIFFRVBUJPOPGBDJSDVMBSGVODUJPOHJWFO
JUTHSBQIProblems 41 and 42QSPWJEF
POMZBQPSUJPOPGPOFDZDMF
Qx
33. yDPT__
34. y DPTQx
35. yDPT___
Qx
Qx
36. yDPT__
Q
__
37. yDTD x
Qx
38. yDPU__
4FFQBHFGPSBOTXFSTUP
1SPCMFNTBOE
Section 6-5: Circular Functions
311
Precalculus with Trigonometry Course Sampler 101
T eac h e R ’ s E dition
"%%" &,)(''%(%(!'"!
! "% Problem Notes (continued)
39.
y
45.
39. yUBOx
40. yTFDx
41. zTJOQt 42. EDPT___
Q r
Problems 43 and 44 QSFQBSF TUVEFOUT GPS
UIF OFYU TFDUJPO %FĕOJUFMZ BTTJHO POF PG
UIFTF QSPCMFNT
TEAChER’S EDITION
ćF TPMVUJPO UP Problem 45a
DPVME CF DPOĕSNFE XJUI #PPMFBO
BMHFCSB PO B $"4 *O Problem 45b B
$"4 BVUPNBUJDBMMZ SFEVDFT UIF HJWFO
FYQSFTTJPO UP DPT x TVHHFTUJOH UIBU UIF
IPSJ[POUBMMZ USBOTMBUFE HSBQI DPJODJEFT
XJUI UIF PSJHJOBM HSBQI
45a. )PSJ[POUBMUSBOTMBUJPOPG__
Q
Q
TJOxDPT@x__
45b. )PSJ[POUBMUSBOTMBUJPOPGQ
UIFHSBQIXPVMEDPJODJEFXJUIJUTFMGBOE
BQQFBSVODIBOHFE
45c. QPSQPSBOZNVMUJQMFPG
Q
45d. "IPSJ[POUBMUSBOTMBUJPOCZB
NVMUJQMFPGQSFTVMUTJOBHSBQIUIBU
DPJODJEFTXJUIJUTFMGćFQFSJPEPGUIF
TJOFGVODUJPOJTQ
y
40.
y
43. z
z
z JT
CFMPXUIFTJOVTPJEBMBYJT
44. E
E
E
JT
BCPWFUIFTJOVTPJEBMBYJT
x
312
102
41.
z
)
Fi re 6-5g
Figu
)
b. .y 4%x &39
94
4
t
)
c. / 544
!
!
(
d. ,"!7%
7%
x n&x
x 7
x
n!
4
*
E
)
+
e. 2747:
:!4;
-$154
$
$154
!
!9
9444
Sinusoid Tran
Tr slation
"www.keymath.com/precalc.
0y 4x
x
x
y 4%x k&! k
! !
-6!
k r
+(
43. #
# z
z t "t !"
!
! !
44. #
# E
E r "r !"
!
! !
Chapter 6:
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
x
a. 2
!43
33!
*
5)x 4%
&
4%
&
42.
x
45e. "OTXFSTXJMMWBSZ"TkJODSFBTFT
UIFHSBQINPWFTUPUIFSJHIU
Problem 46 IBT TUVEFOUT JOWFTUJHBUF
IPSJ[POUBM TUSFUDIFT PG TJOVTPJET VTJOH
UIF 4JOVTPJE 5SBOTMBUJPO FYQMPSBUJPO BU
www.keymath.com/precalc. 4UVEFOUT
TIPVME BMSFBEZ GFFM DPNGPSUBCMF XJUI
UIFTF USBOTGPSNBUJPOT CVU UIJT QSPCMFN
HJWFT UIFN BO PQQPSUVOJUZ UP FYBNJOF
UIFN GSPN B EJČFSFOU QFSTQFDUJWF
Sinusoid Tran
Tr slation Problem:
('!y 3x
%& y x%&.
x
x%&.
3
3%
633&8
3&86
7
46.
Sinusoid Dilation Problem:('
!66uv'69
! x
x
x>
x>
uv'7:
xy'7:! y x
%& y x%&
%&
x
x%&
(x 1 , y1)
CPUIUZQFTPGGVODUJPOTUIFJOEFQFOEFOU
WBSJBCMFJTBEJTUBODFBMPOHUIFxBYJT
v or y
2x
x
x
(u2 , v2 )
(u1 , v1 )
1
2
48.
3
4
5
u or x
Figure 6-5h
The Inequality sin x x tan x
Problem: In this problem you will examine the
inequality sin x x tan x for 0 x __
2 .
Figure 6-5i shows angle AOB in standard
position, with subtended arc AB of length x on
the unit circle.
a. Explain why the value of v for each angle is
equal to the value of y for the corresponding
sinusoid.
D
B
x
b. Create Figure 6-5h with dynamic geometry
software such as Sketchpad, or go to
www.keymath.com/precalc and use the
Sinusoid Dilation exploration. Show the whole
unit circle, and extend the x-axis to x 7. Use
a slider or parameter to vary the value of x. Is
the second angle measure double the first one
as x varies? Do the moving points on the two
sinusoids have the same value of x?
O
Figure 6-5i
b. Based on the definitions of sine and tangent,
explain why BC and AD equal sin x and tan x,
respectively.
48c.
c. From Figure 6-5i it appears that
sin x x tan x. Make a table of values
to show numerically that this inequality is true
even for values of x very close to zero.
47. Circular Function Comprehension Problem:
For circular functions such as cos x, the
independent variable, x, represents the length of
an arc of the unit circle. For other functions you
have studied, such as the quadratic function
y ax 2 bx c, the independent variable, x,
stands for a distance along a horizontal number
line, the x-axis.
Section 6-5: Circular Functions
BOEyTJOx__________
__
v
SBEJVTPGDJSDMF
Problem 47 JTBHPPEKPVSOBMQSPCMFN
v
46b. "OTXFSTXJMMWBSZćFTFDPOEBOHMF
NFBTVSFJTEPVCMFUIFĕSTUCVUUIFNPWJOH
QPJOUTPOUIFTJOVTPJETBMXBZTIBWFUIF
TBNFxWBMVFT
tan x
49. +PVSOBMFOUSJFTXJMMWBSZ
Additional CAS Problems
1. "TFDUPSPGBDJSDMFIBTBOBSFBUIBUJT
OVNFSJDBMMZVOJUTMBSHFSUIBOUIF
MFOHUIPGJUTBSD8IBUJTUIFFYBDU
WBMVFPGUIFSBEJVTPGUIFDJSDMFJGUIF
SBEJVTJTVOJUTIPSUFSUIBOUIFBSD
MFOHUI
2. 8IBUJTUIFFYBDUWBMVFPGUIFSBEJVT
PGBDJSDMFGPSXIJDIUIFBSDMFOHUIPGB
TFDUPSJTFRVJWBMFOUUPUIFSBEJBOBOHMF
NFBTVSFPGUIFTFDUPS
313
46c. "T|k|JODSFBTFTUIFQFSJPE
EFDSFBTFTBOEWJDFWFSTBćFQFSJPEJT
Q
BMXBZT__
|k |
sin x
TJOx
48d. ____
x CVUBQQSPBDIFTBT
____CVUBMTP
xBQQSPBDIFTUBOx
x BQQSPBDIFTBTxBQQSPBDIFT
49. Journal Problem: Update your journal
with things you have learned about the
relationship between trigonometric functions
and circular functions.
46a. #FDBVTFUIFMFOHUIPGUIF
IZQPUFOVTFUIFSBEJVTPGUIFDJSDMF
v v yTJOx__________
SBEJVTPGDJSDMF
__
v
x
d. Construct Figure 6-5i with dynamic geometry
software such as Sketchpad, or go to
www.keymath.com/precalc and use the
Inequality sin x x tan x exploration. On
your sketch, display the values of x and the
ratios (sin x)/x and (tan x)/x. What do you
notice about the relative sizes of these values
when angle AOB is in the first quadrant? What
value do the two ratios seem to approach as
angle AOB gets close to zero?
a. Explain how the concept of wrapping the
x-axis around the unit circle links the two
kinds of functions.
v Problem 48NBLFTBOFYDFMMFOUHSPVQ
BDUJWJUZ4JOxJTUIFMFOHUIPGUIFWFSUJDBM
TFHNFOUBC,BOEUBOxJTUIFMFOHUI
PGUIFWFSUJDBMTFHNFOUJGUIFSBEJVTJT
FYUFOEFEUPBQPJOUUBOx
BSD __
xx
48a. m3 AOB
______
SBEJVT 48b. ćFDJSDMFJTBVOJUDJSDMF)FODF
AD
BCTJOx, BOEAD___
UBOx
OA
C A
a. Based on the definition of radians, explain
why x is also the radian measure of
angle AOB.
c. Replace the 2 in sin 2x with a variable factor,
k. Use a slider or parameter to vary k. What
happens to the period of the (solid) image
graph as k increases? As k decreases?
b. Explain how angle measures in radians link
the circular functions to the trigonometric
functions.
47b. "SBEJBONFBTVSFDPSSFTQPOET
UPBOBOHMFNFBTVSFVTJOHm3V
Q
mV
___
CVUCFDBVTFBSBEJBONFBTVSF
JTBQVSFOVNCFSJUDBOSFQSFTFOU
TPNFUIJOHPUIFSUIBOBOBOHMFJOBO
BQQMJDBUJPOQSPCMFN
47a. 8SBQQJOHUIFxBYJTBSPVOEUIF
VOJUDJSDMFDPOWFSUTEJTUBODFTBMPOHUIF
xBYJTUPBSDMFOHUITBOEWJDFWFSTB*O
QBSUJDVMBSJUTIPXTUIBUBDJSDVMBSGVODUJPOT
JOEFQFOEFOUWBSJBCMFBSDMFOHUI
JTUIF
TBNFBTBEJTUBODFBMPOHUIFxBYJT4PGPS
3. 8IBUJTUIFFYBDUWBMVFPGUIFSBEJVT
PGBDJSDMFGPSXIJDIUIFBSFBPGB
TFDUPSPGUIFDJSDMFJTFRVJWBMFOUUPUIF
SBEJBOBOHMFNFBTVSFPGUIFTFDUPS
4FFQBHFGPSBOTXFSTUP
$"41SPCMFNTo
Section 6-5: Circular Functions
313
Precalculus with Trigonometry Course Sampler 103
T eac h e R ’ s E dition
(x 2 , y2 )1
Inverse Circular Relations:
6 - 6 Invers
Sec tion 6 - 6
Given y, Find x
PL AN N ING
& !! ! ! "! y
y
y
" x"!
! x#%
x
!" y! !
#% #
%!$ !
! %
%
%
% ! %!
!"%
%%
%
"! $
%
# ! " %!#!
#%
&x
x
x
""!y
Class Time
EBZ
Homework Assignment
3" 2o2 1SPCMFNT o PEE
Teaching Resources
&YQMPSBUJPO B 4JOVTPJET (JWFO y
y
'JOE x /VNFSJDBMMZ
&YQMPSBUJPO C (JWFO y
y 'JOE x
"MHFCSBJDBMMZ
4VQQMFNFOUBSZ 1SPCMFNT
Objective
TEAChER’S EDITION
Technology Resources
3%) (+ "
! "! (+ !
#(+0%! TE ACH ING
) (+)*--)
Important Terms and Concepts
104
x ) (+
)*--)
u
u (+
3
! !# #%/
(+ ) (+*n
1! (+
#n 3
3
%! "!
!
!
! "!(+3*n %! %
!"! "!"!
(+n " !"! ! "!2 &
& %%!"!
Section Notes
314
v
3" !
x ) (+
)*--)
#"!3
3
Fi re 6-6a
Figu
%!'! $ arccosine,
" (+%#(+
! !
"!!--# )*--) )*--)"
! (+)*--)"!(+
*OWFSTF DJSDVMBS SFMBUJPOT
*OWFSTF DPTJOF GVODUJPO
*OWFSTF DPTJOF SFMBUJPO
"SDDPTJOF
"SDDPT
(FOFSBM TPMVUJPO
1SJODJQBM WBMVF
*OWFSTF DJSDVMBS GVODUJPO
5P JOUSPEVDF UIJT TFDUJPO OVNFSJDBMMZ
IBWF TUVEFOUT ĕOE UIF GPMMPXJOH DPTJOF
WBMVFT SBEJBO NPEF
y
y x
y
x x
The Inverse Cosine Relation
&YQMPSBUJPO B 4JOVTPJET
(JWFO y, 'JOE x /VNFSJDBMMZ
4FDUJPO JOUSPEVDFT TUVEFOUT UP UIF
JOWFSTF DPTJOF SFMBUJPO PS arccosine, BOE
EJTDVTTFT UIF HFOFSBM TPMVUJPO GPS UIF
BSDDPTJOF PG B OVNCFS ćJT TFDUJPO JT
DSJUJDBM GPS VOEFSTUBOEJOH IPX UP TPMWF
FRVBUJPOT JOWPMWJOH DJSDVMBS GVODUJPOT
BOE NVTU OPU CF PNJUUFE ćF SFBMXPSME
QSPCMFNT JO 4FDUJPO SFRVJSF UIF TLJMMT
MFBSOFE JO UIJT TFDUJPO
Radar speed guns use inverse
relations to calculate the speed of
a car from time measurements.
3 #&
& ., # "! 1. DPT_Q_
Chapter 6:
"OTXFS 2. DPT___
Q "OTXFS 3. DPT___
Q "OTXFS Q 4. DPT___
"OTXFS ćFO IBWF UIFN ĕOE UIF WBMVF PG UIF JOWFSTF
DPTJOF function,DPT VTJOH B HSBQIFS
ćF BOTXFS JT UIF TJOHMF WBMVF XIJDI FRVBMT POMZ
POMZ_Q_ ćF JOWFSTF DPTJOF
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
relation, BSDDPT IBT BO infinite OVNCFS
PG WBMVFT JODMVEJOH BMM GPVS PG UIF WBMVFT
TIPXO JO 1SPCMFNT o UP UIF MFę "TL
TUVEFOUT UP ĕOE UIF EJČFSFODF CFUXFFO UIF
BOHMFT JO 1SPCMFNT BOE BOE CFUXFFO
UIF BOHMFT JO 1SPCMFNT BOE ćF
EJČFSFODF JT Q,
Q BO BOHMF PG POF DPNQMFUF
Q,
SFWPMVUJPO
ćFO BTL UIFN XIZ UIF
EJČFSFODF CFUXFFO UIF BOHMFT JO 1SPCMFNT
BOE JT OPU BMTP Q
Q ćFSF BSF UXP BOHMFT
Q
JO FBDI SFWPMVUJPO UIBU IBWF FRVBM DPTJOFT
*O&YBNQMFQPJOUPVUUIFEJČFSFODF
CFUXFFOUIFTJHOBOEUIFyTJHO
DEFINITION: Arccosine, the Inverse Cosine Relation
x
xn x
xn
Verbally:
Note:/
*-
-
x
)principal value *
/
-
-)&
.-
.
,-)
+)**-
-
EXAMPLE 1 SOLUTION
'
%)0
0-*
0
-circular*-
(+)*
#
n
! n
$1
/
! ! ,! )
! ,! )
0ODFBHFOFSBMTPMVUJPOJTGPVOE
QBSUJDVMBSTPMVUJPOTDBOCFPCUBJOFE
CZTVCTUJUVUJOHJOUFHFSWBMVFTGPSn"
HSBQIFSUBCMFJTBOFďDJFOUXBZUPĕOE
QBSUJDVMBSTPMVUJPOTVTJOHUIFTFGVODUJPOT
! ,!!,!
,"!
! , ,!!,
"!,!
#
,,
Note:%0,0-
+-,,0-
fx
Q
DPT
x
Finding x When You Know y
fx
Q
DPT
x
'0+0,3,y4
3
0-0,1,6&
,0-x-
y4
115,
0-x +2,
y
x
SOLUTION
',graphically10-x-
y-0,'0+
'
,
-
,x1
(
'0 '0+4
0
x !
Section 6-6: Inverse Circular Relations: Given y, Find x
*UJTJNQPSUBOUUIBUTUVEFOUTVOEFSTUBOE
UIBUUIFEFĕOJUJPOPGBSDDPTJOFHJWFOJOUIF
UFYUSFRVJSFTUIBUnTUBOEGPSBOZJOUFHFS
BOEUIBUUIFBSDDPTJOFPGBOVNCFSJTB
collectionPGBOHMFNFBTVSFNFOUT
'PMMPXVQHSBQIJDBMMZCZIBWJOHTUVEFOUT
XPSLExploration 6-6a"MHFCSBJDTPMVUJPOT
GPSxBTQSFTFOUFEJOExploration 6-6bDBO
CFEPOFUIFTBNFEBZJOMPOHFSCMPDL
TDIFEVMJOHQFSJPET
315
f1(x)
f2(x)
#FGPSFBMMPXJOHTUVEFOUTUPVTFHSBQIFS
UBCMFTUPĕOETPMVUJPOTNBLFTVSFUIFZ
IBWFIBETVďDJFOUQSBDUJDFĕOEJOH
TPMVUJPOTVTJOHUIFQBQFSBOEQFODJM
NFUIPEBOEUIBUUIFZEFNPOTUSBUF
BOVOEFSTUBOEJOHPGUIFJEFBCFIJOE
TFMFDUJOHWBMVFTPGn.
Figure 6-6b
EXAMPLE 2 x (or n)
ćFFYBNQMFTJO4FDUJPOVTFHSBQIJDBM
OVNFSJDBMBOEBMHFCSBJDNFUIPETUPĕOE
UIFxWBMVFTPGBTJOVTPJEUIBUDPSSFTQPOE
UPBQBSUJDVMBSyWBMVF#FTVSFUPEJTDVTT
UIFOVNFSJDBMNFUIPEJOEFUBJMTPTUVEFOUT
VOEFSTUBOEUIBUUIFZNVTUĕOEbothPGUIF
BEKBDFOUxWBMVFTBOEUIFOĕOEBEEJUJPOBM
BOTXFSTCZBEEJOHNVMUJQMFTPGUIFQFSJPE
UPFBDIPGUIFTFWBMVFT)BWFTUVEFOUTTUPSF
FBDIPGUIFBEKBDFOUxWBMVFTJOUIFNFNPSZ
PGUIFJSDBMDVMBUPST
Section 6-6: Inverse Circular Relations: Given y, Find x
315
Precalculus with Trigonometry Course Sampler 105
T eac h e R ’ s E dition
&YBNQMFPOQBHFTIPXTIPXUPĕOE
BHFOFSBMTPMVUJPOPGUIFFRVBUJPO
DPT___
Qx
8IFOEJTDVTTJOHUIJTFYBNQMF
FNQIBTJ[FUIBUBęFSUIFHFOFSBM
TPMVUJPOJTTVCTUJUVUFEGPSBSDDPTJOFUIF
DPFďDJFOU__
Q
NVTUCFEJTUSJCVUFEPWFS
bothUFSNT*OTPMWJOHFRVBUJPOTMJLFUIJT
TUVEFOUTPęFOGPSHFUUPEJTUSJCVUFUIF
DPFďDJFOUPWFSUIFQn1PJOUPVUUIBU
UIFDPFďDJFOUPGnJOUIFHFOFSBMTPMVUJPO
TIPVMENBUDIUIFQFSJPEPGUIFHSBQI
n
Differentiating Instruction
EXAMPLE 3 TEAChER’S EDITION
t Point out the mathematical meanings
of particular,
particular principal, and
supplementary. Bilingual dictionaries
may give only the standard English
definitions.
t There are several different ways to
write 2Qn and 360°n. Students may
have learned to write this as 2kQ
Q or
2zQ
Q and 360°k or 360°z.
t Be aware that some students who
have studied trigonometry (to varying
levels) may have been taught to leave
answers (such as those in Example 4)
in fraction form. Confirm that
students understand your expectation
regarding how to write their answers.
t The Reading Analysis may be
confusing for students who have
studied trigonometry from a different
approach.
SOLUTION
"+*
Exploration 6-6b has students find the
same x-values for the same function
as in Exploration 6-6a, but using
algebraic methods rather than graphical
ones. Allow 15–20 minutes for this
exploration.
316
106
fx
x 0" 9""y x x 3!"" !" !$ "# '# "<
"%6" x*$#!
x ,#"!" "
<" x*$#!
x (
x x !!% ! %""!% !#
! '&
)"""" !!#!
!#! !% !#
!#!
! # '*#!"!$ " !"
" "# !"#" !$!' &"!% !
"
EXAMPLE 4 SOLUTION
algebraicall
algebraically
aically
y*'#""!&$#!x
x &%"""
x
!%
! %""!&!
x !
!
"""%#
% "!8#"
%#
" x !
Exploration Notes
Exploration 6-6a asks questions based
on a given sinusoidal graph. You can
use this exploration instead of doing the
examples with your class. The examples
can reinforce what students learned
through the exploration. Students find
values graphically, numerically, and
algebraically. This exploration can be
used as a small-group introduction to the
section, as a daily quiz after the section
is completed, or as a review sheet to be
assigned later in the chapter. If you use
the exploration to introduce the section,
make sure students have written a correct
equation for Problem 2 before they work
on the other problems. Allow about
20 minutes for the exploration.
numerically
cally"
cally
y"!&$#!x
x &%"""!% ! x
%
%""!#
! '&
!#
x 4 "" "# 8#"
!
fxx!
#!""8#!
'"
8#"5'!"
'"
"!& !!!" ":;
!""!%'
' x
x ! 27" !5"!!
! x 1 "8#""!" x
<!:;!""!%'
' x
! n
x ! n
x x n
#5!""#" !
-!" 5#"" $ 5"" !
x n n
x )
)
)
)
)
."n5)) !!% ! %"" # !#"!
&!
Chapter 6:
Technology Notes
Exploration 6-6a: Sinusoids, Given y,
Find x Numerically in the Instructor’s
Resource Book can be done with the aid
of Sketchpad or Fathom.
CAS Suggestions
Example 1 can be solved efficiently using
the command Solve(cos x = –0.3, x). Note
the return of the symbol n# (where # is any
integer) in the CAS result.
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
Notes:
PRO BLE M N OTES
# n,n x
x
" x"
x $
x"
Supplementary Problems designed
to introduce arcsine and arctangent
are available at www.keypress.com/
keyonline.
Q
Q2. 90
Q1. __
2
Q
Q3. 30
Q4. __
4
Q7. tan1 __3 23.1985...
7
Q8. Circle of radius 3 and center (0, 0)
# n n"
"! x
x n
# "
"
"
Problem Set 6-6
!" '!
"-2"
! " -2
" "
"$
$ -.56 !
8$
$5
5
5
5m
in
0 '$
$
$
$ 07'$
$
$
$
1. ,
2. 3. %)&
4. %&
Q10. Periodic
Problems 1–4 provide students with
practice solving inverse circular relation
equations. Because no method is
specified, students may find the solutions
numerically, graphically, or algebraically.
07'
a. .
.
" x( !
!
!
y( b. 4
c. x( "'
"
"'
4
Problems 1–4 can be solved on a
CAS using the method suggested in the
CAS Suggestions.
d. x( "
"
Quick Review
Q1. 2
y xQ2. 2
y Q3. /!"3*3 Q4. /!"9Q5. 1y Q6. 1y Q7 Q7.
!+
&-
Q8. x ) y ) ,4%&-
Q9. 245
Q10. -
- -
Q9. y abx, a u 0, b 0
e. $ x
x x
! y( 5. y *
Parts c of Problems 5–12 can be
approached as described in the CAS
Suggestions. Using appropriate domain
restrictions, students can calculate all of
the solutions simultaneously.
y
+
x
6.
+
y
y
x
Section 6-6:
To list the values simultaneously, convert
the previous answer line into list format
and use a condition at the end of the line for
the random integer n9 to assume the values
0, 1, 2, and 3—the first four non-negative
integers. The command should look like
this:
{2*n9*Q + 1.8754889808103, 2*n9*Q –
1.8754889808103} \ n9 = {0, 1, 2, 3}
A similar approach can be used in
Examples 3 and 4.
TEAChER’S EDITION
Reading Analysis
To find a specific intersection among
the infinite solutions to an inverse
trigonometric relation, it is helpful to
state constraints after the Solve command.
The graph in Problem 5 seems to have,
among others, an intersection with y 6
somewhere between x 20 and x 23. To
find this intersection, students can enter
Problems 5–10 require students to
write equations for sinusoids and use
graphical, numerical, and algebraic
methods to find x-values corresponding
to a particular y-value. These problems
are similar to the examples and to
Exploration 6-6a. In part a, students
should estimate the graphical solutions
from the graph and not use the intersect
feature on their grapher.
One way to answer part e of
Problems 5–10 is to restrict x to values
between 100 and 100 one period.
Based on the cycle of the graph, there
should be two answers, both of which are
calculated when using a CAS.
Solve(2 + 5 cos(Q/10(x – 3)) = 6, x) \ 20 < x < 23
into their CAS.
See pages 1005–1006 for answers to
Problems Q5, Q6, and 1–6.
Section 6-6: Inverse Circular Relations: Given y, Find x
317
Precalculus with Trigonometry Course Sampler
107
Problem Notes (continued)
11. y 3
7. y 1
7a. x y
Qx 7b. yDPT__
7c. x
2
y3
150°
8. y 2
2
0.7
6.7
y 2
6
x
4
a. Find algebraically the six values of x shown on
the graph for which cos x 0.9.
x
1
7
T eac h er ’ s E dition
b. Find algebraically the first value of x greater
than 200 for which cos x 0.9.
2
y
10. y 4
3
13
y 4
9e. x
100°
13. Figure 6-6c shows the graph of the parent cosine
function, y cos x.
y
y 1.5
9d. x
y5
10°
9. y 1.5
9a. x 9b. yDPT__
Qx
9c. x
y
2
4
8e. x
1
y
x
2
2
1
2
3
4
5
y 0.9
Figure 6-6c
10a. x
Qx
10b. yDPT___
10c. x
7
For the trigonometric sinusoids graphed in
Problems 11 and 12,
a. Estimate graphically the first three positive
values of for the indicated y-value.
10d. x
b. Find a particular equation for the sinusoid.
c. Find the -values in part a numerically, using
the equation from part b.
10e. x
d. Find the -values in part a algebraically.
Problems 11 and 12JOWPMWFJOWFSTF
USJHPOPNFUSJDGVODUJPOTSBUIFSUIBO
JOWFSTFDJSDVMBSGVODUJPOT*OUIF
IPNFXPSLEJTDVTTJPOQPJOUPVUUIF
TJNJMBSJUJFTBOEEJČFSFODFTCFUXFFO
Problems 11 and 12,BOEProblems 5–10
318
Chapter 6: Applications of Trigonometric and Circular Functions
12a. V
12b. yDPT__V
12c. Vy
12d. V
Problem 13BTLTTUVEFOUTUPVTFBMHFCSB
UPĕOETPMVUJPOTUPDPTx#FTVSF
UPBTTJHOUIJTQSPCMFNCFDBVTFJUSFRVJSFT
TUVEFOUTUPĕOEBWFSZMBSHFxWBMVFOPU
TIPXOPOUIFHSBQI
13a. x
13b. x
318
330°
12. y 5
y
8d. x
11d. V
4.3
6
8a. x
8b. yDPT__
Qx
8c. x
11c. V
y 1
2
7e. x
11b. yDPTV
y
10
x
0.3
7d. x
11a. V
y
Chapter 6: Applications of Trigonometric and Circular Functions
108 Precalculus with Trigonometry Course Sampler x
Sinusoidal Functions as
6 -7 Sinuso
Sec tion 6 -7
Mathematical Models
Mathe
"
"
!#
!
!
"
!
"
Class Time
EBZT
Homework Assignment
Day 1: 3" 2o2 1SPCMFNT Day 2: 1SPCMFNT Teaching Resources
&YQMPSBUJPO $IFNPUIFSBQZ 1SPCMFN
&YQMPSBUJPO B 0JM 8FMM 1SPCMFN
4VQQMFNFOUBSZ 1SPCMFNT
.
)
0!
Fi re 6-7a
Figu
Technology Resources
+
Given a verbal description of a periodic phenomenon, write an equation
using the sine or cosine function and use the equation as a mathematical
model to make predictions and interpretations about the real world.
E XPLOR ATION 6 -7: Chemothera py Proble m
Exploration 6-7 TIPXT B DIFNPUIFSBQZ
NPEFM UP QSFEJDU FWFOUT JO UIF SFBM XPSME
/PUF UIBU UIF UPQJD NJHIU CF TFOTJUJWF GPS
TUVEFOUT XIP IBWF IBE B GSJFOE PS SFMBUJWF
TVČFS GSPN DBODFS $IFDL TUVEFOU QSPHSFTT
BęFS FBDI RVFTUJPO BOE NBLF TVSF FWFSZPOF
HFUT UIF DPSSFDU BOTXFS CFGPSF NPWJOH PO
UP UIF OFYU RVFTUJPO /PUF UIBU TUVEFOUT
NVTU DPOWFSU UIFJS BOTXFST CFUXFFO XFFLT
BOE EBZT
&YQMPSBUJPO $IFNPUIFSBQZ
1SPCMFN
&YQMPSBUJPO B 0JM 8FMM 1SPCMFN
Important Terms and Concepts
.BUIFNBUJDBM NPEFM
4. 2"
3"!,
,
Section 6-7:
TE ACH ING
3 !
+
3.
+!
!
,
!""
,/!!"
"!
Section Notes
2. #4
4
5 &&1-'
'"6
6
!
Exploration Notes
8BUFSXIFFM
$"4 "DUJWJUZ B &QJDFOUFS PG BO
&BSUIRVBLF
&"! !
1.
1 !
"
)!/
t &!!
c *&&#!
(&&*&&! t )
!3 2
TEAChER’S EDITION
"$! "%
"%
"%
!
Objective
PL AN N ING
"O BMUFSOBUF WFSTJPO PG UIJT FYQMPSBUJPO DBO
CF GPVOE JO UIF Instructor’s Resource Book
"MMPX o NJOVUFT
4FDUJPO DPOUBJOT B XJEF WBSJFUZ PG
SFBMXPSME QSPCMFNT UIBU JMMVTUSBUF IPX
DPNNPO TJOVTPJET BSF JO SFBM MJGF *U JT
SFDPNNFOEFE UIBU ZPV TQFOE UXP EBZT
PO UIJT TFDUJPO 0O UIF ĕSTU EBZ EP
Exploration 6-7 BT B XIPMFDMBTT BDUJWJUZ
ćFO IBWF TUVEFOUT XPSL JO TNBMM HSPVQT
PO 1SPCMFN ćJT QSPCMFN JT WFSZ
TJNJMBS UP UIF $IFNPUIFSBQZ 1SPCMFN 0O
UIF TFDPOE EBZ EJTDVTT UIF IPNFXPSL BOE
IBWF TUVEFOUT XPSL PO PUIFS QSPCMFNT
4FF QBHF GPS OPUFT PO BEEJUJPOBM
FYQMPSBUJPOT
Q __
2. cDPT__
@ yTPUIFQBUJFOUJTOPUGFFMJOHHPPE
4. "OTXFSTXJMMWBSZ
4FFQBHFGPSBOTXFSTUP
1SPCMFNTBOE
Section 6-7: Sinusoidal Functions as Mathematical Models
319
Precalculus with Trigonometry Course Sampler
109
Section Notes (continued)
EXAMPLE 1 5PBOTXFSQBSUEPG&YBNQMFDPSSFDUMZ
TUVEFOUTNVTUBOBMZ[FUIFHSBQI*G
TUVEFOUTUSZUPĕOEUIFTPMVUJPOXJUIPVU
MPPLJOHBUUIFHSBQIUIFZBSFMJLFMZUP
HJWFUIFĕSTUQPTJUJWFtWBMVFUIBUHJWFTB
dWBMVFPG[FSP)PXFWFSUIJTTPMVUJPOJT
UIFUJNFXIFOUIFQPJOUĕSTUentersUIF
XBUFSnotUIFUJNFXIFOJUemergesGSPN
UIFXBUFS
>. ,
-/,!
5
b. --/'$(".#.d$--$(/-)$&!/(.$)()!t,1,$. *,.$/&, +/.$)(
)(9,'3",*# ,.#.3)/, +/.$)("$0 -.# ",*#$(*,.
c. )1#$"#)0 ), &)1.# 1. ,8--/,! 1$&&*)$(.P ..$' t
-..#..$' 1$&&P ")$("/*),)1(
d. .1#.*)-$.$0 .$' t) -*)$(.P 9,-. ' ," !,)'.# 1. ,
SOLUTION
a. ,)'1#.8-"$0 (3)/(. &&.# &).$)()!.# -$(/-)$&2$-.# 6#$"#7(6&)17*)$(.-(.# * ,$)
% .#.# -$(/-)$&2$-.d--#)1($($"/, d 5
% .#.# /** ,)/(.d),
(.# &)1 ,)/(.
d),
T eac h er ’ s E dition
t -
Figure 6-7c
% .##$"#*)$(..t /- .# 1. ,1# &,).. -., 0'$(
),
-,%.# ( 2.#$"#*)$(..t
),
.# * ,$)$-
,%&)1*)$(.#&!13 .1 (.# .1)#$"#*)$(.-(',%
.# *)$(.-)!$(: .$)()(.# -$(/-)$&2$-#&!13 .1 ( #
)(- /.$0 #$"#(&)1
% .#.# ",*#.#,)/"#.# ,$.$&*)$(.-(.# *)$(.-)!$(: .$)(
$"/, -#)1-.# 9($-# -% .#
b. dCA)-BtD
,)'.# ",*#C(A
"LFZQPJOUUPFNQIBTJ[FJOUIJTTFDUJPO
JTUIBUalmost allSFBMXPSMETJOVTPJE
QSPCMFNTJOWPMWFXPSLJOHXJUISFBM
OVNCFSTJFSBEJBOT
BOEUIBUTUVEFOUT
OFFEUPIBWFUIFJSHSBQIFSJOSBEJBO
NPEF4UVEFOUTNVTUMFBSOUPEFDJEF
XIFUIFSUPVTFSBEJBOTPSEFHSFFTCBTFE
POUIFDPOUFYUPGBQSPCMFNOPUKVTUPO
XIFUIFSUIFQSPCMFNJODMVEFTxPSVPSQ
D
B
d
Differentiating Instruction
t d t d Figure 6-7d
320
t
* ,$))!.#$--$(/-)$$-
;
.# * ,$))!.# )-$( !/(.$)(
$-
B$-.# , $*,)&)!.# #),$4)(.&
$&.$)(
t
>,$. .# *,.$/&, +/.$)(
d)-
&)..$(")(3)/,",*# ,)(9,'-.#..# +/.$)($-),, .
$"/, c. ..# 1$()1)(3)/,",*# ,.)$(&/ (., ),-,)&&.)
.#$-*)$(.$"/, ,)'.# ",*#d),5
(.# ",*#$-$(, -$("-)*)$(.P$-")$("/*
Chapter 6: Applications of Trigonometric and Circular Functions
t 1SPWJEF&--TUVEFOUTXJUIBTFOTFPG
UIFDVMUVSBMTJHOJĕDBODFPG.BSL5XBJO
4BNVFM$MFNFOT
CFGPSFBTTJHOJOH
Problem 1
Additional Exploration Notes
Exploration 6-7aDBOCFVTFEBTBDMBTTSPPN
HSPVQBDUJWJUZ*UJTTJHOJĕDBOUCFDBVTF
JUSFRVJSFTTUVEFOUTUPĕOEBOxWBMVF
GBSGSPNUIFHJWFOQJFDFPGUIFHSBQI*U
BMTPTIPXTIPXBTNBMMDIBOHFJOJOJUJBM
Chapter 6: Applications of Trigonometric and Circular Functions
110 Precalculus with Trigonometry Course Sampler ,$. .# " ( ,& +/.$)(=- d
>
(t!),.# 0,$& -
)-$( -.,.-3& .#$"#*)$(.
),$4)(.&$&.$)(
320
a. % .#.# ",*#)!d-!/(.$)()!.$' t,$(- )(--$( 3)/-.,. .# -.)*1.#
d
Figure 6-7b
4PNFPGUIFQSPCMFNTJOUIFQSPCMFNTFU
NBLFFYDFMMFOUQSPKFDUT'PSFYBNQMF
ZPVNJHIUEJWJEFUIFDMBTTJOUPHSPVQT
PGUISFFUPĕWFTUVEFOUTBOEIBWFFBDI
HSPVQNBLFBWJEFPEFNPOTUSBUJOH
UIFTJUVBUJPOEFTDSJCFEJOPOFPGUIF
QSPCMFNT"TLTUVEFOUTUPVTFSFBM
TUPQXBUDIFTUBQFNFBTVSFTBOEPUIFS
NFBTVSJOHEFWJDFTUPBDDVSBUFMZNFBTVSF
UJNFTBOEEJTUBODFT'SPNUIFJSDPMMFDUFE
NFBTVSFNFOUTTUVEFOUTDBOXSJUFB
QBSUJDVMBSFRVBUJPOBOEVTFJUUPĕOE
xWBMVFTHJWFOyWBMVFTBOEUPĕOE
yWBMVFTHJWFOxWBMVFT
t ćJTTFDUJPODPOUBJOTBTJHOJĕDBOU
BNPVOUPGMBOHVBHFDIBMMFOHJOH
UP&--TUVEFOUT#FQSFQBSFEUP
IFMQUIFNVOEFSTUBOEXPSETBOE
QISBTFTTVDIBTwaterwheel, emerge,
chemotherapy, red blood cell count, BOE
TPPO
t )BWF&--TUVEFOUTEPUIFQSPCMFNTJO
QBJSTćFZXJMMCFOFĕUGSPNTQFOEJOH
BUIJSEEBZPOUIJTTFDUJPOIPXFWFS
UIFMBOHVBHFXJMMTUJMMQSFTFOUB
TJHOJĕDBOUDIBMMFOHF
Waterwheel Problem:/**)- .#..# 1. ,1# &$($"/, ,).. -.
Wa
, 0)&/.$)(-* ,'$(/. , 0'$(1)- )(-5 ,3)/-.,.-.)*1.#
,
<)..$)( *)$(.P)(.# ,$')!.# 1# &$-.$.-", . -.# $"#.d
5)0 .# P
-/,! )!.# 1. ,
(. ,)!.# 1. ,1# &$-5)0 .# -/,! 5
>. ,1# &
DPOEJUJPOTDBONBLFBMBSHFDIBOHFJOBO
FYUSBQP MBUFEBOTXFS
Technology Notes
Example 1:8BUFSXIFFM1SPCMFN
BTLTTFWFSBMRVFTUJPOTBCPVUBQPJOU
USBWFMJOHBMPOHBXBUFSXIFFMUIBU
JTQBSUJBMMZTVCNFSHFEJOXBUFS
ćFFYBNQMFJTEFNPOTUSBUFEJOB
%ZOBNJD1SFDBMDVMVT&YQMPSBUJPOBU
www.keymath.com/precalc.
CAS Suggestions
d. P
P P
""
d '
'%!t! " "#%
%!
$ $ &'
'
- www.keymath.com/precalc,$ !"Waterwheel#
-$
heel heel#
$!"""d
d t.
d
. $ $
Defining the equation in part b of
Example 1 and using that definition to
graph and evaluate the model can help
students solve part c. TI-Nspire users
may want to use a word or abbreviation
to define the function. These figures
show the definition of the waterwheel’s
height. The t-intercepts for part d can be
found using either the Solve or the Zeros
command.
Problem Set 6-7
1 Steamboat Problem:3:7"
Problem: 3:
7" :
:
1.
:7
:7"
!" !
d,
"&
& &
" t,
87"
7"&
7"
"
&
&
","
?
?!"&
&
&
@
"&"?
&
&"?
! !$
Reading Analysis
"$ !"
$ .4'
'
! 6 " ".9
9$ !6
"$ "6"$ "7 " .
5m
in
a. 6: Quick Review
TEAChER’S EDITION
t By this point in the chapter, students
should have explored and begun to
master the techniques and implications
of circular functions. Because the
objective of this section is to apply the
mathematics, not perform the algebraic
manipulations, students benefit from
using a CAS, which allows them to focus
on what the mathematics mean.
b. 8".8$
$
! !.
282 y ,-55(x )
Q1. : .
Q2. :.
Q3. :
7 $.
$.
Q4. @ #y .
Q5. @"
.
Q6. @ y .
Q7 2 x y .
Q7.
Q8. @'
'!x! ""
..
...
..
Q9. 7"! x -.
.
Q10. 2y -+x*! x
! y
y $.
y
c. ; d. 1"!
"! ""
"
3:&
:
:&
&
&
".
e. 8'
'!! t "
""&
&
&
.
.
" ".1"$ .
f. <3:7"
:7"
:7"
">
> $6 /8.
0! $ PRO BLE M N OTES
Section 6-7:
Exploration 6-7: Chemotherapy
Problem can be done with sliders in
Sketchpad or Fathom.
Exploration 6-7a: Oil Well Problem
in the Instructor’s Resource Book can
be done with sliders in Sketchpad or
Fathom.
CAS Activity 6-7a: Epicenter of
an Earthquake in the Instructor’s
Resource Book has students explore
what information is required in order
to find the epicenter of an earthquake.
Students find the epicenter of an
earthquake using triangulation. Allow
25–30 minutes.
Supplementary Problems for this section
are available at www.keypress.com/
keyonline.
Q1. 5
1
Q3. ___
12
Q5. 7
Q7. 6.5
Q9. __
Q
3
Q2. 12
Q4. 4
Q6. 9
Q8. 1, 13, 25
Q10. 9
See page 1006 for answers to Problem 1.
Section 6-7: Sinusoidal Functions as Mathematical Models
321
Precalculus with Trigonometry Course Sampler
111
Problem Notes (continued)
2. Fox Popula
Po
tion Problem:'(%&'&(%&'&-!''
#"#('"!&"&" !&"#%'"%,! &
)%,#%",*'' &&( '''
#"#('"!""+
&!%'!"%
"+
&!%'! &')%&
&!(&",*'' "%&&'%'!
#''' t ,% ! ( !( %"
"+&##%'t ,%!+' + ( &"(%%'t ,%
"+
"MM PG UIF QSPCMFNT JO UIJT TFDUJPO
DBO CF RVJUF QPXFSGVMMZ BEESFTTFE CZ
EFĕOJOH FBDI GVODUJPO NPEFM PO B $"4
BOE BT BQQSPQSJBUF
t 6TJOH GVODUJPO OPUBUJPO UP FWBMVBUF
UIF NPEFMT BU TQFDJĕD QPJOUT BOE DSFBUF
HSBQIT XJUIPVU SFUZQJOH UIF GVODUJPO
b. !#%'(%$('"!+#%&&!'
!( %""+
&&(!'"!"' "+
c. %''"+#"#('"!*!t !,%
d. (##"&"+
#"& &%%)(!%
#"&"+
&#&*!'%#"#('"!%"#&"*
'*!*''*"!"!!'))(&"
t'"+
t'
'"+&-%&'" )(!%
t 6TJOH EPNBJO SFTUSJDUJPOT BęFS B
Solve DPNNBOE UP MJNJU UIF OVNCFS PG
SFTQPOTFT UP UIF EFTJSFE WBMVFT
TEAChER’S EDITION
Problem 2 SFRVJSFT TUVEFOUT UP XSJUF BO
JOFRVBMJUZ UP BOTXFS QBSU E
F
e. "*"!,"(%%#!#%''',"
!#%'' (%!&*%
!#%''',"
'"#%'&"%%'
200
Qt
2b. FDPT___
2c. F
GPYFTF
GPYFT
F
GPYFTF
GPYFT
2d. ZStZS
a. ''%#"'&&!(&"(!'"!
Problem 3 EFTDSJCFT POMZ IBMG PG B DZDMF
4UVEFOUT NBZ NJTT UIF QFSJPE PG UIF
TJOVTPJE JG UIFZ ESBX PS JOUFSQSFU UIF
HSBQI JODPSSFDUMZ
b. !#%'(%$('"!"%&'!%"
%&'!
%&'!%"
'7""%&(!'"!"' 60
t
5
10
15
dDPT___
Qt
Problem 4 JOWPMWFT B yWBSJBCMF UIBU JT B
IPSJ[POUBM EJTUBODF 4UVEFOUT NBZ ĕOE JU
FBTJFS UP ESBX UIF HSBQI JG UIFZ UVSO UIFJS
CPPLT TP UIBU UIF SJWFS JO UIF JMMVTUSBUJPO JT
iVQw BOE UIF SJWFSCBOL JT iEPXOw
3c. d
DN
3d. d DN
3e. tT
112
)%
y )%!
Fi re 6-7f
Figu
a. ''%#"y)%&(&
y
y)%&(&
x
x!*%
'
#%'(%$('"!
c. 4'&'&'!%"
'&'&'!
'&'&'!%"
'7""%*!'
&'"#*'%&
&
Chapter 6:
20
322
4. Rope Swing
ing Problem:6",&'&(
% #
3!
3!,&&&*!!"
!%"#''"'%
%!"!!"%
! ''%!',")%
!"%
!!*'%
!!* '!&'%'&&'"#*''
!!*'%
'
''
' x &6",&'"!!"%&*!'
%&*!
%&*!'
&'!y 8
8%" '%)%!.&
(%20
/''
/'' x &&&''"
/
&&&
&&&''"
'%
!"%&*!'&'!
%&*!
%&*!'&'!
y 8
8%" '
%)%!&&( ''*&&&*!!
y
y)%&&!
(&",*'x
d
40
3b.
1
3. Bouncing Spring
ing Problem:*'''
'"'!""!&#%!&"(!!(#!
"*!.(%20
/&'"(!&'&&'!
%" '7""%)%&&!(&",*''
' 5
5"(
&'%'&'"#*'4!'&'"#*'%&
&'*''-%&'%&#"!'2 ")'7
'7""%!+'"*#"!'1 ")
'7""%"(%&
"%
'&
t
4
3a.
2
""%
Fi re 6-7e
Figu
t 6TJOH UIF Zeros DPNNBOE JOTUFBE PG
UIF Solve DPNNBOE XIFO ĕOEJOH UIF
JOEFQFOEFOU WBSJBCMFT BYJT JOUFSDFQUT
800
e. 4'&''&'-%&'#"&'))("' *!
'*'& ")'7
)'7""%
a. ''%#"'&&!(&"
t 6TJOH UIF Solve DPNNBOE UP
EFUFSNJOF JOEFQFOEFOU WBSJBCMF WBMVFT
GSPN HJWFO EFQFOEFOU WBMVFT
2a., 2e.
d. 4'*&'&'!%"
'*&'&'!
'*&'&'!%"
'7""%*!
,"(&'%''&'"#*'
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
4a.
20
y
x
5
20
yDPT__
Qx
d. &/#+*&&+)&'%*'#** %+&+
.+)+ *+-#,&y&)+%&+
)&'.% +&$*+&)*++')+&+
$+$+ #$&#+##*/&,+ *
2 m 26.8817... m
4 m 26.5287... m
6 m 25.9466... m
5)"
4,''&)+
$*
$
$
2)&,%
8 m 25.1446... m
10 m 24.1352... m
x
12 m 22.9345... m
$
a. %#&.'& %+*&++)")
*')+/$&) 0&%+##/%$
-)+ ##/
#&.'& %+ *$#&.+
)&,%+y+ *+% %$+)*
'& %+&%++)" *&-+)&,%+
x+&) 0&%+# *+% %$+)*'& %+
&%++)" *)&$+ '& %+ %
')+ ,#)(,+ &%&)y*,%+ &%&x
14 m 21.5613... m
16 m 20.0374... m
Figure 6-7g
18 m 18.3866... m
6. Buried Treasure Problem:4,''&*/&,*"
+)*,)++ *,) %+* &
$&,%+ %
$&,%+ %)%** %,*& #
-)+ #)&***+ &% ,)
-##/
+&+#8 *##. +.+)+&'+&$
%++&'&+$&,%+ % *
$&-+
.+)#-#&,*+,'%x6 *+.+)#-#
%y6 *$+&+) +&+'*+
')+&+.+)
+&'&+$&,%+ % *+
*+%x 1$
c. &) 0&%+#$*)*'$')+
*+)+ %+)&,%#-#%% %!,*+#&.
+ '& %+"+#&-#,*&
&) 0&%+#$#%+*
+)
y
22 m 14.8107... m
24 m 12.9418... m
26 m 11.0581... m
4,)
Figure 6-7h
1
x
5c.
a. %')+ ,#)(,+ &%6')** %y&)
'& %+*&%+ surface&+$&,%+ %*
,%+ &%&x
b 4&.#) ##/+++* %,*& %')+
&%+ %*+&) %
c. +)*,) *#&+%++*,)+
+'& %+
1**&.% % ,)
.&,#+*&)+)./+& +&
++)*,)&) 0&%+#+,%%#&)-)+ #
+,%%#4&./&,).&)"
28 m
9.1892... m
30 m
7.3647... m
32 m
5.6133... m
34 m
3.9625... m
36 m
2.4386... m
38 m
1.0654... m
y
Length
0 m 39.7583... m
2 m 36.6139... m
4 m 33.9530... m
6 m 31.5494... m
8 m 29.2961... m
10 m 27.1284... m
12 m 25 m
14 m 22.8715... m
20 m 16.6352... m
&,%+ %+&'
5)*,)
Length
0 m 27 m
y
5. Roller Coaster Problem:+$')" *, # %
'&)+ &%&)&##)&*+)+)" %+*'
&* %,*& ,)&,-% )
+&#,#++#%+*&+&) 0&%+#%
-)+ #*,''&)+$*
x
T eac h e R ’ s E dition
c. %+)*+'&* + -+ $.%&/.*
)+#/&-)+) -)%"y
b. -)+ #*,''&)+$*)*'$
')+*+)+ %++ '& %+%% %
!,*+&)++)"&*#&.+)&,%
"+#&-#,*&+#%+*&+
$*
5b.
d. , #)$,*+"%&.&.$,*,''&)+
$$+) #+&&))3%+$&*++ $
7
%+./%++&+##%+&+
-)+ #$*%++&+##%+&+
&) 0&%+#$*
b. %y.%x
**&/&-)#%
&)&-).+)++ *+ $
16 m 20.7038... m
Section 6-7: Sinusoidal Functions as Mathematical Models
4b. y 16.3826... ft; Zoey was over land.
4c. x 0.3562... s
4d. y 3, the sinusoidal axis
Problem 5 asks students to calculate the
lengths of the horizontal and vertical
support beams needed for a roller coaster.
Some students double the horizontal beam
lengths because the diagram shows only
half of a cycle.
Qx
5a. y 12 15 cos ___
50
5b., 5c. See tables at right.
323
18 m 18.4505... m
20 m 16.0469... m
22 m 13.3860... m
5d. Vertical timbers 324 m;
horizontal timbers 331 m
24 m 10.2416... m
26 m
5.8442... m
Problem 6 shows only half of a cycle.
Q (x 400)
6a. y 50 100 cos ___
600
Q (0 400) 0 m
6b. 50 100 cos ___
600
6c. The vertical tunnel is shorter.
Section 6-7: Sinusoidal Functions as Mathematical Models
323
Precalculus with Trigonometry Course Sampler 113
Problem Notes (continued)
Problem 7 asks students to consult a
reference in order to check the accuracy
of the model. One possible reference is
the September 1975 issue of Scientific
American.
7a. 11 yr
2Q(t
7b. S 60 50 cos ___
1948)
11
7c. S(2020) 12 sunspots
7.
Sunspot Problem: For several hundred
years, astronomers have kept track of the
number of sunspots that occur on the surface of
the Sun. The number of sunspots in a given year
varies periodically, from a minimum of about
10 per year to a maximum of about 110 per year.
Between 1750 and 1948, there were exactly
18 complete cycles.
7e. The sunspot cycle resembles a
sinusoid slightly but is not one.
T eac h er ’ s E dition
8c. 6:30 a.m.
8d. 4:00:49 a.m.
8e. On the side closest to the Moon, the
water is pulled more than Earth, causing
a high tide. On the opposite side, farthest
from the Moon, Earth is pulled more
than the water, causing another high
tide.
Problem 9 is fairly straightforward and
usually does not present trouble for
students. However, some students do
not realize that at time 0 the vertical
displacement of Earth is also zero; they
may start the graph at a minimum value
instead of at zero.
b. Use your mathematical model to predict the
depth of the water at 5:00 p.m. on August 3.
c. At what time does the first low tide occur on
August 3?
d. What is the earliest time on August 3 that the
water depth will be 1.27 m?
e. A high tide occurs because the Moon is
pulling the water away from Earth slightly,
making the water a bit deeper at a given point.
How do you explain the fact that there are two
high tides each day at most places on Earth?
Provide the source of your information.
7d. S (2021) 27 sunspots; S (2022)
53 sunspots; maximum in 2025.
Problem 8 requires students to convert
date and time information to the number
of hours since midnight on August 2.
Q(t 14)
8a. d 1.3 0.2cos ___
5.5
8b. 1.1 m
a. Find a particular equation expressing depth as
a function of the time that has elapsed since
12:00 a.m. August 2.
a. What is the period of a sunspot cycle?
b. Assume that the number of sunspots per year
is a sinusoidal function of time and that a
maximum occurred in 1948. Find a particular
equation expressing the number of sunspots
per year as a function of the year.
c. How many sunspots will there be in the
year 2020? This year?
d. What is the first year after 2020 in which
there will be about 35 sunspots? What is the
first year after 2020 in which there will be a
maximum number of sunspots?
e. Find out how closely the sunspot cycle
resembles a sinusoid by looking on the
Internet or in another reference.
8. Tide Problem: Suppose you are on the beach at
Port Aransas, Texas, on August 2. At 2:00 p.m.,
at high tide, you find that the depth of the water
at the end of a pier is 1.5 m. At 7:30 p.m., at low
tide, the depth of the water is 1.1 m. Assume that
the depth varies sinusoidally with time.
9. Shock Felt Round the World Problem: Suppose
that one day all 300 million people in the
United States climb up on tables. At time
t 0, they all jump off. The resulting shock wave
starts Earth vibrating at its fundamental period,
54 min. The surface first moves down from its
normal position and then moves up an equal
distance above its normal position (Figure 6-7i).
Assume that the amplitude is 50 m.
50 m
Jump!
Down 50 m
Figure 6-7i
324
324
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
114 Precalculus with Trigonometry Course Sampler 50 m
Up 50 m
b. + *+'*++* %,*& &*#&.
+.+)#-# %+#"5&.))&$+
y/ * *+ *#&.'& %+&.&.0&,&+
0&,)%*.)*
b. +.++ $. ##+*,))+*+&-
+*%&)$#'&* + &%
c. -)+%+,) ** #+*2##+&++&$
&+#"*&+++.+) *&%#03'
+ *+* #+# % *+y38#&++
)',* %*, +#&$ %%)%
%2%)' ##0+ %+)-#&x-#,*
+.%. %.&,#/'++&2%* #+
*&**, - % %+#"
c. ) +')+ ,#)(,+ &%/')** %
*'#$%+&-%&)$#'&* + &%*
,%+ &%&+ $#'** %+!,$'
d. + *+ *'#$%+++ $t
$ %
e. +)+2)*++)'&* + -+ $*+
. + *'#$%+ *$
d. 6%) ##*%&:*&).##+ *+%
x+)&,&.$,* #+.&,#*
) ##&)*)*+* %,*& &.
&.0&,&+0&,)%*.)
10. Island Problem: %0#%&.%*% *#%
*-)#,%)+)&$+*&)&#"
,)!*&.*-)+ #)&***+ &%
+)&,+*&)#"% *#%
*#%
.*&)$$ ## &%*&0)*&0*+)***
++,*+)+1**,)+&.)' %+&+
* %,*& #'++)%*&.%
*+'& %+
&%+*&) *+ *+%x
)&$
$*,)$%+*&%%%)+*&)*&# ')+&)+)'+&'&)')*2%++%
(,+ &%&)+* %,*& *
y
&*
x
.)x%y) *+% %+%&%*,#+*
0&,+&$"') + &%*&,++)*+&+
)'*
e. * %,*& '')*+&&+)&,+&) %
4&* ++,##0&*&&)&* +!,*+$ **
7,*+ 00&,)%*.)
f. %#) ##0+ %+)-#&x-#,*
+.%. + *#% *+&)&-+
.+)#-#5&.. *+ *#%)&$+
.+)&%&%* +&+.+)&%+&+)
11. Pebble in the Tire Problem:*0&,*+&'0&,)
)++);
# +'#&$*.
+.%++ )+)*%0&,*+)+$&- %
%+ *+%+.%+'#%+
'-$%+-) ** %,*& ##0. ++ *+%
0&,-&%
') & *+ ),$)%
&++ )**,$+++ $+)&++ ) *
3 %
y
&)
x +))
6*#%
#+)
Figure 6-7j
a. + *+ *++ *#%) **&-
+.+)#-# %+#"5&.))&$+
y/ * *+ * '& %+&.&.0&,&+
0&,)%*.)*
x
a. "++)'&+ ** %,*& #,%+ &%
b. %')+ ,#)(,+ &%&)+,%+ &%6+
*'&** #+&+%(,+ &%. +9)&'*
*'#$%+
c. + *+'#1* *+%)&$+
'-$%+.%0&,-&%
%
d. +)+2)*++.& *+%*0&,-&%
.%+'# *
%)&$+'-$%+
9a.
50
d (m)
t (min)
50
50
9b. tNJO
Qt
9c. dDPT___
9d. d N
9e. tNJONJO
NJO
Problem 10QSPWJEFTCPUIBTLFUDIBOEBO
FRVBUJPOGPSUIFTJOVTPJE1BSUGSFRVJSFT
TUVEFOUTUPXSJUFBOJOFRVBMJUZ
10a. yNBYęBUxę
10b. yNJOęBUxę
10c.
y
x
(91.81, 40)
(808.19, 40)
100
3PVHIMZęxę
10d. ę
10e. ćFDVSWFKVTUNJTTFTUIFPSJHJO
y
ę
10f. 3PVHIMZęxę
ęXJEF
Problem 11JTTJNJMBSUP&YBNQMFćF
QFSJPEJTQUJNFTUIFSBEJVTTPUIF
FRVBUJPOEPFTOPUDPOUBJOQ
11a.
y
24
Section 6-7: Sinusoidal Functions as Mathematical Models
325
12
x
50
100
11b. yDPT___
x 11c. JO
11d. xJOBOEJO
Section 6-7: Sinusoidal Functions as Mathematical Models
325
Precalculus with Trigonometry Course Sampler 115
T eac h e R ’ s E dition
a. "++)'&+ *'#$%+&
+*,))&$ +*%&)$#'&* + &%*
,%+ &%&+ $#'** %+'&'#
!,$'
Problem Notes (continued)
Problem 12 is not difficult if students
realize that half of a cycle occurs between
the x-values of 30 and 100.
Q(x 30)
12a. y 2000 500cos ___
70
y
12b.
x
100
100 200 300 400 500 600 700 800 900
1000
2000
The graph matches the description and
figure.
12c. Roughly 795 ft x 825 ft
12d. Roughly 796 ft x 824 ft
T eac h er ’ s E dition
12e. The new interval is roughly
700 ft x 707 ft. This is a very small
region to drill.
Problem 13 provides practice with
frequency and is quite easy. It does not
require students to write a sinusoidal
equation. You may wish to add this
part d to the question: “Research in the
library or on the Internet the physics of
organ pipes. You might try looking up
“The Physics of Organ Pipes,” by Neville
Fletcher and Suzanne Thwaites, in the
January 1983 issue of Scientific American.
Describe the results of your research in
your journal.”
12. Oil Well Problem: Figure 6-7k shows a vertical
cross section through a piece of land. The
y-axis is drawn coming out of the ground at the
fence bordering land owned by your boss, Earl
Wells. Earl owns the land to the left of the fence
and is interested in acquiring land on the other
side to drill a new oil well. Geologists have found
an oil-bearing formation below Earl’s land that
they believe to be sinusoidal in shape. At distance
x 100 ft, the top surface of the formation
is at its deepest, y 2500 ft. A quarter-cycle
closer to the fence, at distance x 65 ft, the
top surface is only 2000 ft deep. The first 700 ft of
land beyond the fence is inaccessible. Earl
wants to drill at the first convenient site beyond
x 700 ft.
a. Find a particular equation expressing y as a
function of x.
b. Plot the graph on your grapher. Use a window
with 100x 900. Describe how the
graph confirms that your equation is correct.
c. Find graphically the first interval of x-values
in the available land for which the top surface
of the formation is no more than 1600 ft deep.
d. Find algebraically the values of x at the ends of
the interval in part c. Show your work.
e. Suppose the original measurements were
slightly inaccurate and the value of y shown
at 65 ft is actually at x 64 ft. Would this
fact make much difference in the answer to
part c? Use the most time-efficient method to
arrive at your answer. Explain what you did.
a. Is 60 cycles per second the period, or is it
the frequency? If it is the period, find the
frequency. If it is the frequency, find the
period.
b. The wavelength of a sound wave is defined
as the distance the wave travels in a time
interval equal to one period. If sound travels
at 1100 ft/s, find the wavelength of the
60-cycle-per-second hum.
c. The lowest musical note the human ear
can hear is about 16 cycles per second. In
order to play such a note, a pipe on an organ
must be exactly half as long as the wavelength.
What length organ pipe would be needed to
generate a 16-cycle-per-second note?
Inaccessible land
100 65
x 700 ft
y 2000 ft
y 2500 ft
Top surface
Oil-bearing
formation
Figure 6-7k
13c. 34 ft 4.5 in.
326
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
116 Precalculus with Trigonometry Course Sampler Bats navigate and communicate using ultrasonic
sounds with frequencies of 20–100 kilohertz (kHz),
which are undetectable by the human ear. A kilohertz
is 1000 cycles per second.
y Fence
13a. Frequency 60 cycles/s;
1s
period ___
60
13b. Wavelength 220 in.
326
13. Sound Wave Problem: The hum you hear on
some radios when they are not tuned to a station
is a sound wave of 60 cycles per second.
Available land
x
Sunrise Project:002*#1&11'*#
,$02+/'0#3/'#00'+20,'"))64'1&1&#"6,$1&#
6#/#1t #1'*#,$02+/'0##1d #1&#"6
,$1#/01/1'+%4'1&d,++2/6
a. +1&#+1#/+#1,/$/,*+)*+!7+"
$,/6,2/),!1',+1'*#,$02+/'0#,+
1&#),+%#01"6,$1#/2+#
+"
,+1�&,/1#01"6,$1#/#!#* #/
$6,2!&,,0#6,2!+20#1&#"1$,/
++1,+',*+"
*
/#0-#!1'3#)6
#-&0#"'0-)!#*#+1$,/
!,0'+#4')) #1)2#,$d14&'!&1+
/'0#01&#)1#010#1&#'+$,/*1',+
1,7+"-/1'!2)/#.21',+#5-/#00'+%1'*#
,$02+/'0#0$2+!1',+,$1&#"6+2* #/
yA!,0Bt
,!!,2+1$,/$/'!1',+002*#1&11&#
*-)'12"#A, "#!/#0#0#5-,+#+1'))64'1&
1'*#
14d. "QSJM"QSJMJOMFBQZFBST
Aabt
14e. "OTXFSTXJMMWBSZćFOFX
GVODUJPONBZCFt__
8(#-#+"2)2* 616'+%4#'%&11,
01/'+%&2+%$/,*1&#!#')'+%,/0,*#,1&#/
!,+3#+'#+1-)!#0##'%2/#*
Q
Q
__
DPT___
dDPT___d
))
c. &1'01'*#,$02+/'0#,+6,2/ '/1&"6
1('+%"6)'%&103'+%1'*#'+1,!!,2+1
e. +1&#+,/1&#/+&#*'0-&#/#/1&*,3#0
$01#/'+4'+1#/1'*#4&#+'1'0!),0#/1,1&#
2++"0),4#/'+02**#/1'*#4&#+
'1'0$/1&#/$/,*1+0/#02)11&#
!12)&'%&-,'+1,$1�'+20,'",!!2/0)1#/
1&+-/#"'!1#"+"1&#!12)),4-,'+1
,!!2/0#/)'#/1&+-/#"'!1#"'%2/#)
/#-/#0#+11',+,$1&#!12)%/-&!+ #
-),11#" 6-211'+%'+-&0#"'0-)!#*#+1
1&1varies##'$6,2!+"2-)'!1#1&#%/-&
'+'%2/#),+6,2/%/-&#/01&#*,"'7#"
%/-& #11#/71$,/1&#!12)02+/'0#"1$,/
1&#),!1',+'+-/1
@
15. "OTXFSTXJMMWBSZ
y
d. &1'01/01"6,$1#/,+4&'!&1&#
2+/'0#01*'+1&#),!1',+'+-/1
Problem 15JTUJNFDPOTVNJOHCVU
XPSUIXIJMF4UVEFOUTNFBTVSFUIFQFSJPE
BOEBNQMJUVEFPGUIFQFOEVMVNBOE
DBMDVMBUFUIFFRVBUJPOPGJUTNPUJPOćJT
JTBHPPEQSPKFDUUPDPOOFDUUIFPSZBOE
QSBDUJDFBOEUPUBMLBCPVUNPEFMJOH
#')'+%
b. )!2)1#1'*#,$02+/'0#1,"611&#
),!1',+6,220#"'+-/1,*-/#
1&#+04#/1,6,2/"10,2/!#
t
14c. "OTXFSTXJMMWBSZ
T eac h e R ’ s E dition
14.
Problem 14JOUSPEVDFTUIFDPODFQUPGB
WBSJBCMFQIBTFEJTQMBDFNFOUJOQBSUF
DPT___
Qd
14a. t___
___
14b. "OTXFSTXJMMWBSZ
15. Variable Amplitude Pendulum Project:$
1&#/#4#/#+,$/'!1',+1&#"'0-)!#*#+1,$
-#+"2)2*$/,*'10/#01-,0'1',+4,2)" #
0'+20,'")$2+!1',+,$1'*#
Figure 6-7m
'+"'10-#/'," 6*#02/'+%1'*#$,/
04'+%0+""'3'"'+% 6:#!,/"1&#
*-)'12"#4&#+6,27/0101/11&#-#+"2)2*
+"*#02/#'1%'+<#/0/,*1�#
*#02/#*#+107+"1&#!,+01+10a, b,+"B
+"4/'1#-/1'!2)/#.21',+#5-/#00'+%1&#
-,0'1',+,$1&#-#+"2)2*0$2+!1',+,$1'*#
#016,2/#.21',+ 620'+%'11,-/#"'!11&#
"'0-)!#*#+1,$1&#-#+"2)2*11'*#t0
+"0##'+%'$1&#-#+"2)2*/#))6'04&#/#6,2
-/#"'!1#"'11, #11&11'*#/'1#+#+1/6
'+6,2/;,2/+)"#0!/' '+%1&'0#5-#/'*#+1+"
6,2//#02)10
85'*2*,!!2/0;#/-/#"'!1#"
2+/'0#1'*#
!12)
92/#0'+20,'"
8'+'*2*,!!2/0 #$,/#-/#"'!1#"
d
6
Figure 6-7l
Section 6-7: Sinusoidal Functions as Mathematical Models
327
Section 6-7: Sinusoidal Functions as Mathematical Models
327
Precalculus with Trigonometry Course Sampler 117
6 -8 Rotary Motion
Sec tion 6 -8
When you ride
rid a merry-go-round, you go faster when you sit nearer the outside.
As the merry-go-round rotates through a certain angle, you travel farther in the
same amount of time when you sit closer to the outside (Figure 6-8a).
PL AN N ING
Rotation
Class Time
EBZT
Farther
(so faster)
Homework Assignment
Day 1: 3" 2o2 1SPCMFNT o PEE
Day 2: 1SPCMFNT o
V
P1
Shorter
(so slower)
P2
Teaching Resources
TEAChER’S EDITION
&YQMPSBUJPO "OHVMBS BOE -JOFBS
7FMPDJUZ
&YQMPSBUJPO B "EBN "OU 1SPCMFN
&YQMPSBUJPO C .PUPSDZDMF 1SPCMFN
5FTU 4FDUJPOT UP 'PSNT " BOE #
Fi re 6-8a
Figu
However, all points on the merry-go-round turn through the same number of
degrees per unit of time. So there are two differen
ff
fferen
t kinds of speed, or velocity,
ty
ty,
associated with a point on a rotating object. The angular velocity
ty is the number of
degrees or radians per unit of time, and the linear velocity is the distance per unit
of time.
Objective
TE ACH ING
Important Terms and Concepts
In this exploration you will practice computing and interpreting linear and
angular velocities.
"OHVMBS WFMPDJUZ
-JOFBS WFMPDJUZ
%JNFOTJPOBM BOBMZTJT
SFWNJO PS SQN SFWPMVUJPOT QFS NJOVUF
(FBS USBJO
3FEVDUJPO SBUJP
E XPLOR ATION 6 -8: Angular and Linear Ve loc i t y
h pen travel
t
l in
i the
th 5 s?? Which
Whi h pen
did each
moved faster?
Rotate
R
Exploration Notes
The figure shows a rotating ruler attached by
suction cup to a dry-erase board. Marking pens are
put into holes in the ruler, and the ruler and pens
are rotated slowly from the initial position (dotted),
reaching the final position (solid) after 5 s. Each
pen leaves an arc on the board.
Exploration 6-8 JT B OJDF MPXUFDI XBZ PG
JOUSPEVDJOH BOHVMBS BOE MJOFBS WFMPDJUZ
8IFO TVNNBSJ[JOH UIF FYQMPSBUJPO VTF
B DIBSU TJNJMBS UP UIF POF BU UIF CPUUPN
PG UIF OFYU QBHF
4UVEFOUT NBZ ĕOE UIBU VTJOH B DIBSU
NBLFT UIJT NBUFSJBM FBTJFS "MMPX BCPVU
NJOVUFT UP DPNQMFUF UIJT FYQMPSBUJPO
4FF QBHF GPS OPUFT PO BEEJUJPOBM
FYQMPSBUJPOT
1. With a flexible ruler you find that the curved
lengths of the arcs are 60 cm (outer) and
24 cm (inner). At what average speed (cm/s)
Chapter 6:
1. 0VUFSDNT
*OOFSDNT
0VUFSQFONPWFTGBTUFS
2. 0VUFS¡¡T
*OOFS¡¡TXIJDIJTUIFTBNFBT
GPSUIFPVUFSQFO
3. 0VUFS
DN
*OOFS
DN
#PUIFRVBMUIFMFOHUIPGUIFBSDUSBWFMFE
328
118
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
2. Suppose the angle from the initial position to
the final position is 115°. At what number of
degrees per second did each pen move? Did
one pen move more degrees per second than
the other?
3. Suppose the inner pen is 12 cm from the
center of rotation and the outer pen is 30 cm
from the center of rotation. An angle of 115°
is about 2 radians. Show that the distance
each pen moved can be found by multiplying
the radius of the arc by the angle measure in
radians.
continued
4. "OHVMBSWFMPDJUZSBEJBO
QFSTFDPOE
5. 0VUFSSBEJVT
BOHVMBSWFMPDJUZ
DNTXIJDIBHSFFT
*OOFSSBEJVT
BOHVMBSWFMPDJUZ
DNTXIJDIBHSFFT
6. 4FFUIFEFĕOJUJPOTCPYPOQBHF
4FFUIFQSPQFSUJFTCPYPOQBHF
7. "OTXFSTXJMMWBSZ
Section Notes
6. $"
"#
""
"
4. #
linear velocities.#
angular velocity.
"
5. "$"
""
""
7. "
!" 3"""
""
&.)(*'#
"
r 25
- &"
"'
v 0"
-"&8,/67'
t 0
-
-
2
&YBNQMFPOQBHFEFNPOTUSBUFT
IPXBOHVMBSWFMPDJUZBOEMJOFBSWFMPDJUZ
BSFSFMBUFEPODPOOFDUFESPUBUJOHPCKFDUT
ćJTFYBNQMFVTFTBCJDZDMFBTUIFNPEFM
4FFJGZPVDBOHFUBOZPGZPVSTUVEFOUT
UPFYQMBJOIPXUIFHFBSTBOEUIFJSSBUJPT
XPSL*GOPUZPVNJHIUXBOUUPBTTJHOBO
*OUFSOFUTFBSDIPGUIJTUPQJD
t "
a
r
v a/t
/t
:PVNBZXBOUUPJOGPSNTUVEFOUTUIBU
JOUIFSFBMXPSMErevolutions per minute
PęFOBQQFBSTBTUIFBDSPOZNrpm SBUIFS
UIBOrev/min BTVTFEJOUIJTCPPL
*O&YBNQMFPOQBHFUIFEJČFSFODF
CFUXFFOBOHVMBSWFMPDJUZBOEMJOFBS
WFMPDJUZJTEFNPOTUSBUFECZJOWFTUJHBUJOH
UIFNPUJPOPGBOPME-1SFDPSE3FNJOE
TUVEFOUTUIBUUIFZVTFEEJNFOTJPOBM
BOBMZTJTXIFOUIFZDPOWFSUFEEFHSFFTUP
SBEJBOTBOEWJDFWFSTB
a 1 r
1PJOUPVUUPTUVEFOUTUIBUBMMQPJOUTPOB
SPUBUJOHPCKFDUJODMVEJOHUIFDFOUFSIBWF
UIFTBNFBOHVMBSWFMPDJUZCVUUIBUUIF
MJOFBSWFMPDJUZPGQPJOUTPOUIFSPUBUJOH
PCKFDUXJMMEJČFSćFTQFFEPGBNPWJOH
WFIJDMFFRVBMTUIFMJOFBSWFMPDJUZPGUIF
SJNTPGJUTXIFFMT
2
Figure 6-8b
#
$
DEFINITIONS: Angular Velocity and Linear Velocity
#
angular velocity, ,
&' #
linear velocity,v,
at -"+44
t v44
ćFTUBUFNFOUTJOUIFCPY$PODMVTJPOT
$POOFDUFE3PUBUJOH0CKFDUTPOQBHF
BSFLFZDPODFQUTGPSUIJTTFDUJPOBOEXJMM
CFVTFEJOUIFFYFSDJTFTBOEFYQMPSBUJPOT
""%
."$
5"
Section 6-8: Rotary Motion
329
Angle
(radians)
Arc Length
(cm)
Time
(s)
Linear Velocity
(cm/s)
Angular Velocity
(rad/s)
Outer
___
__
Inner
___
__
Section 6-8: Rotary Motion
329
Precalculus with Trigonometry Course Sampler 119
T eac h e R ’ s E dition
EXPLORATION, continued
Differentiating Instruction
T eac h er ’ s E dition
t ćJTTFDUJPODPOUBJOTDIBMMFOHJOH
MBOHVBHF$POTJEFSTQFOEJOHBOFYUSB
EBZPOUIFNBUFSJBMPSHJWJOH&--
TUVEFOUTBOBCCSFWJBUFEBTTJHONFOU
t .BLFTVSFZPVFYQMBJOrevolutions
per minuteSFWNJOPSSQN
BTJOUIF
4FDUJPO/PUFT
t $MBSJGZUIBUϵJTOPUw
t .BLFTVSFTUVEFOUTVOEFSTUBOEUIF
RVFTUJPOTJO&YQMPSBUJPO
t )BWFTUVEFOUTXSJUFJOUIFJSKPVSOBMT
BCPVUBOHVMBSBOEMJOFBSWFMPDJUZCPUI
GPSNBMMZBOEJOUIFJSPXOXPSET
t *O&YBNQMFZPVNBZOFFEUPFYQMBJO
UIFNFBOJOHPGLP.
t *O&YBNQMFZPVNBZOFFEUPFYQMBJO
UIFNFBOJOHTPGaxleBOEsprocket
t )BWFTUVEFOUTXSJUFJOUIFJSKPVSOBMT
UIFDPODMVTJPOTBCPVUDPOOFDUFE
SPUBUJOHPCKFDUTJOUIFJSPXOXPSET
t )BWF&--TUVEFOUTEPUIF3FBEJOH
"OBMZTJTBOE2VJDL3FWJFXRVFTUJPOT
JOQBJSTUPIFMQXJUIDIBMMFOHJOH
MBOHVBHF
0
vr
ar
vr
Analysis of a Single Rotating Object
EXAMPLE 1 /13!67"0+#,
/
((
&($
a. 0
b. 0
!"
5
&)*
c. 0!
"
Exploration 6-8aHJWFTTUVEFOUTQSBDUJDF
JOXPSLJOHXJUIUIFMJOFBSBOEBOHVMBS
WFMPDJUJFTPGBSPUBUJOHPCKFDU.BLF
TVSFTUVEFOUTVOEFSTUBOEUIBUUIFVOJUT
PGUIFSBEJVTBSFDNSBE"MMPXBCPVU
NJOVUFTGPSUIJTFYQMPSBUJPO
Figure 6-8c
a. 8
((&($
!"/
0
8
'+%&4
.
((& ' &
&
&()-%+()-$
( +%
3
b. /
6
&)*&&-
9
330
&&
&)* *%+&)**%+$
- vr
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
120 Precalculus with Trigonometry Course Sampler r
a
r
PROPERTIES: Linear Velocity and Angular Velocity
Additional Exploration Notes
330
t
t
t
v,
r
.
SOLUTION
Exploration 6-8bVTFTUIFDPODFQUTBCPVU
DPOOFDUFESPUBUJOHPCKFDUTEJTDVTTFE
JO&YBNQMFćJTFYQMPSBUJPOJTB
HPPEGPMMPXVQPGBDMBTTEJTDVTTJPOPO
&YBNQMF"MMPXBCPVUNJOVUFTUP
DPNQMFUFUIJTFYQMPSBUJPO
ar ###
# !# $! ""&""#!$""#$#"
#
! #!#
!#
#!%"#!!
!
!#!!!##"
c. #$!#!!!##""# #"#
#$!#%#"$!%#&"#!!%# #
##"##!##$!#!$"###!"$!"
'!
!"
v r
r "
1#!"#&#
& #!!###"'!!%#&
&#
& $##"#
&
!##"4##"$!%#&"#! #"##
CAS Suggestions
3FDBMM UIBU VOJU DPOWFSTJPOT DBO CF EPOF
PO B $"4 ,FFQ JO NJOE UIBU TPNF VOJUT
NBZ CF DPOWFSUFE BVUPNBUJDBMMZ XIFO
VTJOH B $"4 GPS FYBNQMF PO B 5*/TQJSF
$"4 VOJUT QFS NJOVUF JT BVUPNBUJDBMMZ
DIBOHFE UP VOJUT QFS TFDPOE
Analysis of Connected Rotating Objects
EXAMPLE 2 -34
-3" !3#
/!#
" !3#
Fi re 6-8d
Figu
&"##$!"#
"!&
/
/$!*(+#+!"!
#" !3#"#!)"#
!
&###3" !3#4"#!*!!4"
!$"
"###3" !3#
a. 2#"#$!%#&#!
#" !3#,
!
b. 2#"#!%#& #"#,
c. 2#"#!%#& #"#!#3" !3#,
d. 2#"#$!%#&##!#3" !3#,
e. 04"
4 #"#&3#!" !$!,
4"
SOLUTION
a. +!"
4UVEFOUT DBO TPMWF QBSU C PG &YBNQMF CZ
FYQMJDJUMZ TUBUJOH UIF GPSNVMB UP CF VTFE
BOE TVCTUJUVUJOH UIF BQQSPQSJBUF WBMVFT
/PUF UIBU UIF EFGBVMU VOJUT PO B $"4 NBZ
CF EJČFSFOU GSPN CVU FRVJWBMFOU UP
UIF
BOTXFS JO UIF UFYU
TEAChER’S EDITION
/$!*(+"4"#34
&"" !3#"#
##5#4
4 "" !3#"
#&##!" !3#
#4# "!###!
!"%!!###"4"#"
!!###!.5 )
"4"&$4#&'##
ćF Solve DPNNBOE DBO CF VTFE XJUI
TVCTUJUVUJPOT UP DPNQVUF UIF BOHVMBS
WFMPDJUZ JO QBSU E PG &YBNQMF /PUJDF
UIBU VTJOH B $"4 BMMPXT TUVEFOUT UP FOUFS
UIF OVNFSJDBM WBMVF BOE VOJUT PG FBDI
WBSJBCMF BT XFMM BT UIF FRVBUJPOT JO UIFJS
PSJHJOBM GPSN ćFTF UFDIOJRVFT DBO CF
VTFE UP TPMWF &YBNQMF -$"# "#!
#" !3#!###!5"
!
#&!##"# #"#"!###%#
"$!%#&
+!
+"
b. v r
r !
"
!%#& #"#"#""#!%#&
#"#!#!
#" !3#!$"#!
!
#" !3#
!
)
"
) !
Section 6-8:
Section 6-8: Rotary Motion
331
Precalculus with Trigonometry Course Sampler
121
c. v #
PRO BLE M N OTES
# "$*#"#$#"&$)#$$
"$# "$*#"
" "#
d. v r
r v r
# %"&$)#$#$&") $$#"$$
$&$$$"$%"&$)$$$"$
# "$#$##$$"%
%$$#%"&$)
%
%#$!%$v r
r "%##$$"
*G TUVEFOUT BSF TUSVHHMJOH FODPVSBHF UIF
VTF PG B DIBSU MJLF UIF POF JODMVEFE JO UIF
&YQMPSBUJPO /PUFT PO QBHF Q1. NT
Q2. TSFWNJO
Q3. " # e. v r
r "
#
'#$)($$# "$#$"$$#
'$$#%"&$)#$# "$##$'#
#$# $)##$##$"&$)
$#$"$'%
' %$$#"&$)%#
'%
$!%$v r
r Q4. SBEJBOT
Q5. Q
Q6. )PSJ[POUBMEJMBUJPOPG
__
Q7. q
Q8. BOE
3"2( )%"'#
" "%##%$"$$$#
"'#
$$"$$""#")(
Q9. x
x
TEAChER’S EDITION
Q10. CONCLUSIONS: Connected Rotating Objects
7'"$$$#$)(&$#%"&$)
7'"$$$#$$$""#&$#"&$)$
$""#.
Problem Set 6-8
Reading Analysis
4"'$)%&"$##$'$
)%#"$$15&
"-'"( &&"$")$
;$#$>
>"$'"&$)
%"&$)13( ')$#
$# ##
##"
$) &$)$!%<"'$$"#
$!%<"
5m
in
Quick Review
Q1. 2"%"##;$#"
&"# 1
Q2. 2#$""$$#=.#6'#
' $#
'#
"$$1
Q3. 7&% "#x#
x /=$$"
x#
&%
"= =#1
Chapter 6:
332
122
Chapter 6: Applications of Trigonometric and Circular Functions
Precalculus with Trigonometry Course Sampler
Q4. 7
7&%y
&% y "#x#
"# xx#
# "#$
"# $
$?
?"#$$&&%y#1
y
y#1
Q5. ;$#$ "$%
$
%
y /.#+x ,1
Q6. ;$$"#"$%
$ f#
%
f
g +x,
x f +x,1
x,
x
x,1
Q7 $"$$"'$) $%#
Q7.
.6'#$$"1
Q8. ;$"$#%"#$#$
$"8"9/1
Q9. 4$"0x x Q10. 4$($$"$$"#!%
a. !( )# $"#$! &$%#!%%
%!'$!%'
b. !( )#'!&%! $"# &%&$%
#!%%
2. "#!"#! #%#$#&$!!&%*&#
%&$"%"
#!"#%&#
#%&# $
$%
#' c. %!&%#!$%%"!%$%#7$$%! (%$%&# $ "#%!($%!&
%$%! "#!"#!
%!(#!(
#!
)$"#!&#$%$
4. $
$
4!#$# 7%
$"!7($'%#
.
a. 6%$% #'!%)!%"! %$
#%$%!&%! %($
b. % &#'!%)!%($ # $"#$! c. % &#'!%)!%($ #'!&%! $"# &%
5. #"$"7!&$%$$%% #!% %#!%&# %3!$" $%
%&# %%#!& !
,9
a. #!&!( )# $!$%$"7!
&$%%&# b. 6%$% !$%%#'
%%#
%%#'
#
a. 6%$% &#'!%)!%"#!"#
# $"#$! %%%"!%$
%%
%#!%"#!"#
b. 6%$% #'!%) %"#$! %%%"!%$%%
%$
%$%%
%#!%
"#!"#
3. !
! ! !
#!%#)( !(#$
/ ! &%% $
$ #!% %#!%
&# !##!#( !(#%!
&%#$$%&$%$%#7%#$$%$"!
&$%$%#7%#$$
&$%$%#7%#$$%$"!
%
$%/ $
/ #
a. )!&( %% #!$%"#%!%&%% %!&%#$$!( )# $"#
$! &$%%%&# !( )
#'!&%! $"# &%$%$
b. 6%$% #'!%)!%!&%#!$%
%"!%(%$%&# $ "#%
c. 3!#!%%$%%&# %
,9 $
(%$%&$%$"7+$
7 &#'!%)6%
7+$
$%$ #'!%)
6. 5% $!##!%#0 "
")!
$$(5
( % $%$%"! %*#!%
(5
"'!%2 %!%#$!%$$(
%$$(0
%$$(
(0 (!
$'#$
$'#
'#$%$&$%*#!%"'!%$0 !$&" 5% !$!(
( %$$
%$$(#!%%$
%#!& !-.9 .$
a. 6%#0 ++$ &#'!%) # $"#
$! #'!%) %"#$! b. 6%#5% ++$
$ &# #'!
#'!%
%$
7. #
"
!
! 1$" !$:&#
!
$7% 5!$ %!$" (%##$
!&%$%#%7 !&#!"%#'!&%! $
$
a. !($%$$#!%% #'!&%! $
"#$! b. +$
++$ &#'!%) # $
"#$! c. +$!
+ &%$%#%: #%"$#.#!
+$!
. .#!
% %#8$!#!)#!& (
$#!%%$6%$% #'!%)!#
: #%"$
Section 6-8:
Problems 1–17 DBO CF BQQSPBDIFE
VTJOH UIF NFUIPET EFTDSJCFE JO UIF $"4
4VHHFTUJPOT
Problems 1–8 BSF TJNJMBS UP &YBNQMF ćFZ JOWPMWF BOHVMBS BOE MJOFBS WFMPDJUJFT
PG B SPUBUJOH PCKFDU
1a. SBET
SFWNJOSFWNJO
1b. ___
Q
2a. WQSBETSBETBU
UIFUJQBOEUIFDFOUFS
2b. v QęTęTBUUIF
UJQvęTBUUIFUJQ
*O Problem 3c OPUF UIBU B TNBMM TUPOF
DBO USBWFM GBTUFS UIBO UIF UJQ TQFFE 'PS
FYBNQMF DPNQBSF UIF TQFFE PG B CBTFCBMM
CBU PS HPMG DMVC UP UIF CBTFCBMM PS HPMG CBMM
UIBU JU IJUT
TEAChER’S EDITION
1. %%$" $
#!& %#%#!(' %%!"#!"%
# !##!
# #%#%! (#
#!
( %$%&$%'$ %$"!
*
*$$$&%%%#$*
$*#!$
%#!#!%%! 3a. WSBET
WSFWNJO
3b. JOT
3c. *GUIFTUPOFXFSFIVSMFEXJUIUIF
TBNFWFMPDJUZBTUIFUJQPGUIFCMBEFJU
XPVMEUSBWFMBUvNJI
4a. LNI
4b. SBET
4c. SFWNJO
5a. ___
Q SBEJBOT
5b. DN
Q SBETSBET
5c. W___
vDNT
6a. WSBETvęT
6b. WSBETvęT
7a. W__SFWT
7b. W__
QSBETSBET
_____
7c. vQ
DNTDNT
Section 6-8: Rotary Motion
333
Precalculus with Trigonometry Course Sampler
123
Problem Notes (continued)
7d. 1PJOUTPG*NBTCPEZBMPOHUIFBYJT
IBWFv DNTCVUW__
QSBET
SBET
7e. vDNTĕOHFSUJQTBSF
NPWJOHTMPXFS
8a. vDNT
8b. vDNT
8c. WSBET
8d. WSFWNJO
8e. WSBET
T eac h er ’ s E dition
Problems 9–17DPNQBSFUIFBOHVMBSBOE
MJOFBSWFMPDJUJFTPGDPOOFDUFEPCKFDUT
9a. W____
Q
SBETSBET
Q
9b. v____
DNTDNT
Q
DNTDNT
9c. v____
Q
9d. v____
DNTDNT
Q
____
9e. W SBETSBET
Q
____
9f. W SBETSBET
vDNT
Problem 10 NBZCFDPOGVTJOHGPS
TUVEFOUTXIPEPOPUFLOPXXIBUQBSU
PGUIFUFFUIPGUIFHFBSUPNFBTVSFGSPN
:PVNBZXBOUUPDMBSJGZUIBUUIFZTIPVME
NFBTVSFGSPNUIFNJEEMFPGUIFUFFUI
10a. WQSBENJO
SBENJO
10b. vQDNNJO
DNNJO
10c. vQDNNJO
DNNJO
10d. WQSBENJO
SBENJO
d. )$)'!%)* (('&!%*)&% (&/
* * ,zero#!%(,#&!*/ ((
* )'&!%*) *!) (%+#(,#&!*/
** )'&!%*)
e. $'+##) (($)!%#&)*& (&/"+)*
$(&$ (.!)&(&**!&%)()+#*
(%+#(,#&!*/!%())*&
()(
(1%(*!')&!%)*(&()#&-(* %* /
-(!%'(*+)*!//&+(%)-(
8. Paper Towel Problem:%
)-/%'+##)
(&$* (&##* (''(*&-#)-!* *&*##%* $
a. &-)*!) '+##!%* ''(*&-#)
b. (&##&*&-#) )!$*($ *!)
* #!%(,#&!*/&'&!%*&%* &+*)!&
* (&##
c. *!)* %+#(,#&!*/&'&!%*&%* &+*)!&* (&##
d. * &-$%/(,&#+*!&%)'($!%+*!)* (&##&*&-#))'!%%!%
e. %.*/-/%'+##)* #)*-*&-#)
&* (&##-!* * )$#!%(,#&!*/)
&(
!)*!$* (&##0)!$*(!)&%#/
$ *!)* %+#(,#&!*/%&-
Figure 6-8h
a. &-)*!)* #((*+(%!%!%(!%)
'($!%+*
b. *!)* #!%(,#&!*/&* ** &%* #((
c. *!)* #!%(,#&!*/&* ** &%* )$##(
d. &-)*!)* )$##(*+(%!%!%(!%)
'($!%+*
e. &-)*!)* )$##(*+(%!%!%
(,&#+*!&%)'($!%+*
f. /&+&+#%%+#(,#&!*//+)!%
()- *!)* (*!&&* !$*()&* () ! (&)* (!,!%* #(
(&(* )$##(
11. Tractor Problem:
((- #)&*(*&(
!+(!(4!%!$*(%(*+(%!%
*2
(,$!%
Figure 6-8g
a. )$##'+##/ )!$*(
$%
(&**)*
(,$!%!%!*)%+#(
,#&!*/!%(!%)'()&%
b. !%* #!%(,#&!*/&'&!%*&%* (!$
&* $'+##/
c. !%* #!%(,#&!*/&'&!%*&%* #*
&%%*!%* *-&'+##/)
d. !%* #!%(,#&!*/&'&!%*&%* (!$
&* #('+##/- ! )!$*(3
$
e. !%* %+#(,#&!*/&'&!%*&%* (!$
&* 3
$'+##/
334
Figure 6-8i
a. &-)*!)* *(*&(&!%!%*'(
)&%&-)*!)* !)!%$!#)'( &+(
b. (&%*- #) ,!$*(&&%#/
4&-)*(* *('&!%*)$&,!%!%
*'()&%(&+%* - #)* !)%
%+#(,#&!*/&(#!%(,#&!*/
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
124 Precalculus with Trigonometry Course Sampler 10. Gear Problem:(-!* !$*(3
$!)
(,&#,!%*(,$!%*(!,))$##((
* * )!$*($)!$!#(*&!+( 9. Pulley Problem:-&'+##/)(&%%*/
'+##/#*!+(
10e. WSFWNJO
dESJWFS
10f. _____
dESJWFO
UIFMBSHFHFBSEPFTUIFESJWJOH
Q ęTęT
11a. v___
Q
____
v NJINJI
Q ęTęT
11b. v___
MJOFBSWFMPDJUZ
334
f. !%* %+#(%#!%(,#&!*!)&
'&!%*** %*(&* 3
$'+##/
e. ,!"!$".#"#$!
%#'#"##
12. Wheel and Grindstone Problem:&#!&
&##!
#$!"#!"
$!
-#!&
f. .#!#!$!%#"#
##!,!
14. Truck Problem:#*"("#!$0"$"
##!"# &!!###
&"$!-$ "#!%" !0#
#!(#&" !0#
#!
(#!%" !0#!###
!%
#!!%" !0#
c. -#"#"#"#%#'' ##
!"#-!!#" #"
13. Three Gear Problem:1
!!"!#
" #"#'&#$#"&#!
##$!/
,!
,!
,!
Figure 6-8k
a. ,!!##"#!%#"!$""
.#"#"$!%#'!" !
"
b. ,!
"####"1",!
/$#"!$"
.#"#"$!
%#'
c. .#"#!%#'# ##
##,!
+
#!&
12b. WSBET
12c. 1PJOUTBUUIFSJNPGUIFHSJOETUPOF
NPWFBUęT
13a. WQSBETSBET
13b. WQSBETSBET
13d. vQJOTJOT
SBETSBET
13e. W____
Q
SBET
13f. vJOTW____
Q
SBET
Figure 6-8j
b. 1
&#!&"#.'0#
!"#&##!-#"#
$!%#' #"#!#
!"#
12a. vęT
13c. vQJOTJOT
+!"#
a. -#"#!%#' #"#
!#&#!&
11c. WSFWNJO
BOHVMBSWFMPDJUZ
#!
&" !0#
14a. WQSBETSBET
Figure 6-8l
a. #$!%#'#!%" !0#
!" !"
b. #!%#'#&" !0#
" !$#
c. #$!%#'#&
!" !$#
d. #&"#!(3#" ##!$0"(##!"#mile per hour
14b. vQJONJO
JONJO
T eac h e R ’ s E dition
c. &"#!%$#" !$#!#
!#&"#$!"#"$!
%#'!!%#'
14c. WQSBENJO
SBENJO
14d. vNJINJI
SBESBET
_____
15a. W___
ę
T ę
15. Marching Band Formation Problem:-$ "
!/1$#"!#
&"/!"!!)
#!#!"!
#!
2
//!"#"!!
"$&'###'"&##/!"
#/!&#$#/$ #
#!$!#1# "&"#
!#2
/!"#/!!
#! )"
a. .#"#$!%#'#/!
!" !"
d. ,!"!%/',!
.#"#!
%#'###,!
Section 6-8: Rotary Motion
335
Section 6-8: Rotary Motion
335
Precalculus with Trigonometry Course Sampler 125
Problem Notes (continued)
SFWNJOSFWNJO
15b. W__
Q
15c. ćFMJOFBSWFMPDJUJFTBSFUIFTBNF
NFNCFSTBMMNBSDIBUUIFTBNFTQFFE
15d. WSBET
15e. UJNFTBTGBTU
EJBNFUFSPGMBSHFDJSDMF
____________________
EJBNFUFSPGTNBMMDJSDMF
16a. WQSBENJO
SBENJO
b. d. +
.
$
c. e. +
.
$
d. f. .
!.
$
e. 16b. vQDNNJO
DNNJO
T eac h er ’ s E dition
16c. 1VMMFZvQDNNJO
DNNJO
WQSBENJO
SBENJO
1VMMFZWQSBENJO
SBENJO
vQDNNJO
DNNJO
% 1
,
!)"
,
")!%
16. Four Pulley Problem:*
*
&(-
!
!" ,
-
"-
#
/
-
",
-
$2
(FBSWQSBETSBET
vQDNTDNT
-
#
,
"
-
$
b. +
,
",
#
,
$
c. +
,
$
-
"
Figure 6-8n
a. -
!
b. -
!
c. *
.
".
#.
$
d. +
,
$
e. 4
reduction ratio
+
&(*
/2
Chapter 6: Applications of Trigonometric and Circular Functions
17d. WSFWNJO
17e. SBUJP_____
DN
_____
DN
DN DN
Chapter 6: Applications of Trigonometric and Circular Functions
,
$
Figure 6-8o
-
!
336
,
#
a. ,
!
-
$)#
17c. vDNTWQSBET
SBET
126 Precalculus with Trigonometry Course Sampler ,
!
-
")"
-
#)!"
(FBSvQDNTDNT
WQSBETSBET
336
,
$)!(
-
!)! 16d. vDNNJO
WQSBENJO
SBENJO
17b. (FBSvQDNT
DNTWQSBET
SBET
,
#)#
Figure 6-8m
1VMMFZvQDNNJO
DNNJO
WQSBENJO
SBENJO
16e. WSFWNJO
16f. SBUJP_____
DN
_____
DN
DN DN
17a. WQSBETSBET
" 1
17. Gear Train Problem:
/
/
-+
&(,
!
"' 4
,
!
,
"
0
,
#4
,
#
,
$4
1
Chapter Review and Test
6 -9 Chapte
Sec tion 6 -9
PL AN N ING
Class Time
EBZT JODMVEJOH EBZ GPS UFTUJOH
Homework Assignment
Day 1: 1SPCMFNT 3o3 5o5
Day 2 1SPCMFN $ PS $ PS 1SPCMFN
4FU Review Problems
7 7 6
2 :
b. 2
:
:
5-')
-
5
15
5
3
*
Teaching Resources
&YQMPSBUJPO B $BSCPO %JPYJEF
'PMMPX6Q
&YQMPSBUJPO C 3FIFBSTBM GPS 4JOVTPJET
5FTU
#MBDLMJOF .BTUFST
1SPCMFNT 5 BOE 5
5FTU $IBQUFS 'PSNT " BOE #
y
7 /
,"
$(8
"!8
7 /
%
7 3
R1. a. 1 0
9
9
1
6
b. 5y $%
& "!8 5
& "!8 *
R2. a. 3
9
9
5
y $%
& "!8 .
6
Technology Resources
"!
Fi re 6-9a
Figu
c. +5
-')-
5
"#!
Important Terms and Concepts
y
1BSBNFUSJD NPEF
Section Notes
R2b. yDPT___
V
yTJO___
V
4FDUJPO DPOUBJOT B TFU PG SFWJFX
QSPCMFNT B TFU PG DPODFQU QSPCMFNT
BOE B DIBQUFS UFTU ćF SFWJFX QSPCMFNT
JODMVEF POF QSPCMFN GPS FBDI TFDUJPO
JO UIF DIBQUFS :PV NBZ XJTI UP VTF UIF
DIBQUFS UFTU BT BO BEEJUJPOBM TFU PG SFWJFX
QSPCMFNT /PUF UIBU BMM UIF TJOVTPJET
PO UIF UFTU BSF DJSDVMBS GVODUJPOT XJUI
SFBMOVNCFS BSHVNFOUT SBUIFS UIBO
USJHPOPNFUSJD GVODUJPOT
R2d. 1PJOUPGJOĘFDUJPOBUVDSJUJDBM
QPJOUBUV
DZDMFEFH
R2e. 'SFRVFODZ___
PS___
&ODPVSBHF TUVEFOUT UP QSBDUJDF UIF OP
DBMDVMBUPS QSPCMFNT XJUIPVU B DBMDVMBUPS
TP UIBU UIFZ BSF QSFQBSFE GPS UIF UFTU
QSPCMFNT GPS XIJDI UIFZ DBOOPU VTF B
DBMDVMBUPS
(8
#!8
Fi re 6-9b
Figu
d. + -')
;
;
*+
*+
*+
*
e. -
- 5
-')
Section 6-9:
R0. +PVSOBMFOUSJFTXJMMWBSZ
R2a.
y
R2c. yTJO___
V
3
90°
&YQMPSBUJPO B $BSCPO %JPYJEF
'PMMPX6Q
TE ACH ING
&!
TEAChER’S EDITION
R0. 2
24
4 "NQMJUVEF1FSJPE4JOVTPJEBM
BYJT1IBTFEJTQMBDFNFOU
4FFQBHFGPSBOTXFSTUP
1SPCMFN3
Section 6-9: Chapter Review and Test
337
Precalculus with Trigonometry Course Sampler
127
Differentiating Instruction
T eac h er ’ s E dition
t "MMPXTUVEFOUTEPUIFDIBQUFSSFWJFX
JOQBJST&--TUVEFOUTNBZOFFE
SFQFBUFEDMBSJĕDBUJPOPGUIFMBOHVBHF
t *GZPVBTTJHOProblem C3CFTVSFUP
DMBSJGZUIFMBOHVBHFGPS&--TUVEFOUT
t ćJTUFTUXJMMQPTFBDIBMMFOHFGPS&--
TUVEFOUTXJUISFTQFDUUPMBOHVBHF
$POTJEFSQSPWJEJOHBMJTUPGXPSET
GPSFYBNQMFpendulum, tide, BOETP
PO
BGFXEBZTCFGPSFUIFUFTUTP&--
TUVEFOUTDBOUSBOTMBUFUIFNBIFBE
PGUJNF"UUIFWFSZMFBTUBMMPX&--
TUVEFOUTUPVTFCPUIUIFJSQVCMJTIFE
BOEDMBTTCJMJOHVBMEJDUJPOBSJFT
t (PPWFSUIFSFWJFXQSPCMFNTJODMBTT
QFSIBQTCZIBWJOHTUVEFOUTQSFTFOU
UIFJSTPMVUJPOT:PVNJHIUBTTJHO
TUVEFOUTUPXSJUFVQUIFJSTPMVUJPOT
CFGPSFDMBTTTUBSUT
t #FDBVTFNBOZDVMUVSFTOPSNTIJHIMZ
WBMVFIFMQJOHQFFST&--TUVEFOUTPęFO
IFMQFBDIPUIFSPOUFTUT:PVDBOMJNJU
UIJTUFOEFODZCZNBLJOHNVMUJQMF
WFSTJPOTPGUIFUFTU
t $POTJEFSHJWJOHBHSPVQUFTUUIFEBZ
CFGPSFUIFJOEJWJEVBMUFTUTPUIBU
TUVEFOUTDBOMFBSOGSPNFBDIPUIFS
BTUIFZSFWJFXBOEUIFZDBOJEFOUJGZ
XIBUUIFZEPOULOPXQSJPSUPUIF
JOEJWJEVBMUFTU(JWFBDPQZPGUIFUFTU
UPFBDIHSPVQNFNCFSIBWFUIFN
XPSLUPHFUIFSUIFOSBOEPNMZDIPPTF
POFQBQFSGSPNUIFHSPVQUPHSBEF
(SBEFUIFUFTUPOUIFTQPUTPTUVEFOUT
LOPXXIBUUIFZOFFEUPSFWJFXGVSUIFS
.BLFUIJTUFTUXPSUI_UIFWBMVFPGUIF
JOEJWJEVBMUFTUPSMFTT
t &--TUVEFOUTNBZOFFENPSFUJNFUP
UBLFUIFUFTU
Exploration Notes
Exploration 6-9a JTBGPMMPXVQUPUIF
$BSCPO%JPYJEF1SPCMFNPG4FDUJPO
4UVEFOUTVTFTJOVTPJEBMSFHSFTTJPOPOUIF
SFTJEVBMTGSPNUIFFYQPOFOUJBMSFHSFTTJPO
UPHFUBOFRVBUJPOUIBUNPEFMTUIF
TFBTPOBMĘVDUVBUJPOPGDBSCPOEJPYJEF
338
d. &*!/%"1(0"+#/%"&*1"-."/-&$+*+)"/-& #0* /&+* +.
R3. a. '"/ %/%"$-,%+#y/*
b. 3,(&*2%4/%","-&+!+#/%"/*$"*/
#0* /&+*&.6-/%"-/%*6(&'"/%".&*"
*! +.&*"#0* /&+*.
e. &*!/%""3 /1(0".*+!" &)(.+#/%"
." *!/*
&- 0(-#0* /&+*. +.
f. '"/ %/%"$-,%.+#/%",-"*/ &- 0(-
#0* /&+*.y +.x*!y.&*x
c. (+//%"$-,%+#y." +*4+0-$-,%"-
3,(&*%+24+0!&!/%&.
g. 3,(&*%+2/+8*!/%","-&+!+#/%"
&- 0(-#0* /&+*y.&*
x
#-+)/%" +*./*/.&*/%"">0/&+*'"/ %
/%"$-,%<+*8-)4,(+//&*$+*4+0-
$-,%"-/%/4+0-.'"/ %&. +--" /
h. &*!,-/& 0(-">0/&+*#+-/%" &- 0(-
#0* /&+*.&*0.+&!#+-2%& %%(# 4 ("&.
.%+2*&*&$0-": d. ."/%"-"(/&+*.%&,"/2""*.&*"*!
+." *//+"3,(&*2%4/%" +." */
#0* /&+*%.1"-/& (.4),/+/"./6
667
e. 3,(&*2%4/%"$-,%+#/%" +." */
#0* /&+*%.%&$%*!(+2,+&*/.0/*+
,+&*/.+#&*9" /&+*3,(&*2%4/%"$-,%
+#/%" +/*$"*/#0* /&+*%.,+&*/.+#
&*9" /&+*0/*+%&$%+-(+2,+&*/.
f. +-/%"#0* /&+*y
+/6
$&1"/%"1"-/& (*!%+-&5+*/(!&(/&+*.
*!/%"1"-/& (*!%+-&5+*/(/-*.(/&+*.
+#/%",-"*/ +/*$"*/#0* /&+*
"*,(+/
/%"$-,%/+ +*8-)/%/4+0-*.2"-.-"
+--" /%/&./%","-&+!+#/%&.#0* /&+*
%4&.&/*+/)"*&*$#0(/+/('+0/&/.
),(&/0!"
R4. a. +2)*4-!&*.-"&*6*6*6
&1"/%"*.2"-."3 /(4&*/"-).+#
b. +2)*4!"$-"".-"&***$("+#
-!&*.-&/"/%"*.2"-.!" &)(
y
x
Figure 6-9c
c. &*!/%"("./1(0"+#- +./%/&.
$-"/"-/%*
d. +-/%".&*0.+&!&*&$0-":!8*!/%"#+0-
1(0".+#x.%+2*#+-2%& %y
? -,%& ((4/++*"!" &)(,( "
? =0)"-& ((448*!&*$,-/& 0(-
">0/&+**!,(+//&*$/%"$-,%
? ;($"-& ((40.&*$/%",-/& 0(-">0/&+*
d. &*!/%"-!&*)".0-"+# +.*!
. e. +2(+*$&./%"- +# &- (".0/"*!"!4
"*/-(*$("+#-!&*&#/%"-!&0.+#/%"
&- ("&.0*&/.
R5. a. -2/%"0*&/ &- ("&*uv ++-!&*/"
.4./")*/%&. ++-!&*/".4./")!-2*
x3&.1"-/& ((42&/%&/.+-&$&*//%",+&*/
uv%+22%"-"/%",+&*/.
x0*&/
0*&/.*!0*&/.),+*/+/%"
0*&/ &- ("./%"x3&.&.2-,,"!-+0*!&/
e. %/&./%"*"3/,+.&/&1"1(0"+#x#+-2%& %
y
"4+*!/%"(./,+.&/&1"1(0".%+2*
&*&$0-":!
y
b. +2(+*$&./%"- +#/%"0*&/ &- ("
.0/"*!"!4 "*/-(*$("+#6
#
-!&*.
c. &*!.&*
6*!.&*
y Figure 6-9d
Chapter 6: Applications of Trigonometric and Circular Functions
DPODFOUSBUJPOJOUIFBUNPTQIFSFBTXFMMBT
UIFJODSFBTJOHUSFOEPWFSBOVNCFSPGZFBST
Exploration 6-9bSFRVJSFTBDBMDVMBUPSGPS
1SPCMFNTBOEo4UVEFOUTNVTU
BOBMZ[FUIFHSBQIUPBOTXFSTPNFRVFTUJPOT
BOEVTFUIFFRVBUJPOUPBOTXFSPUIFST
4UVEFOUTTIPVMEDPNQMFUFUIFFYQMPSBUJPO
JOEJWJEVBMMZ"MMPXoNJOVUFT
Chapter 6: Applications of Trigonometric and Circular Functions
128 Precalculus with Trigonometry Course Sampler R6. a. &*!/%"$"*"-(.+(0/&+*+#/%"&*1"-."
&- 0(--"(/&+*- +.
b. &*!/%"8-.//%-"",+.&/&1"1(0".+#/%"
&*1"-." &- 0(--"(/&+*- +.
c. &*! +.*! +.6
338
Technology Notes
Exploration 6-9aJOUIFInstructor’s
Resource BookBTLTTUVEFOUTUPĕU
WBSJPVTNPEFMTUPEBUBBOEUIFOUP
BOBMZ[FUIFN'BUIPNDBOCFVTFE
UPQMPUUIFEBUBBOETMJEFSTDBOCF
DSFBUFEUPNPEFMUIFEBUB
x
a. % .#.# ",*#)!
!
!
0
0 ,-/-
b. ,$. ( +/.$)( 2*, --$("-
-
!/(.$)()!
! !
c. )/,-/',$(
',$( (.)''/($.
(7
1$.#
-#$*-)(.# -/,! 1
1# ($.$- * ,.#(
'..$'
'..$' )/&3)/,
'
-/',$( )''/($. )1$3)/
,,$0 .3)/,(-1 ,
d. .1 (1#..1)()(( ".$0 .$' -$-3)/,
-/',$(
$( 8,-./(& .))''/($. R8. 5- )(6#()(&)%
,).. -.#,)/"#(("& )!
4$(-
a. #.$-$.-("/&,0 &)$.3$( ", -* ,
- )(
b. #.$-$.-("/&,0 &)$.3$(,$(-* ,
- )(
c. )1!,) -*)$(.)(.# .$*)!.# #(
'! '.# 2& ')0 $(-#.
'!,)
$-.# &$( ,0 &)$.3)!.# .$*)!.# #(
)1(3)/&/&. .#$-&$( ,0 &)$.3
+/$%&3! '.# ,$/-(.# ("/&,
+/$%&3!,)
0 &)$.3
$"/, -#)1-
# &
1$.#,$/-
'./,($("1$.#(
("/&,0 &)$.3)!,-.$-)(( . 3
&..)# &1$.#,$/-'# &
1$.#,$/-'$-)(( . .).# -' 2& -# &
'
'
# &
'
# &
# &
QSBEJBOT
R4a. __
QSBEJBOT__
Q
__
SBEJBOT
R4b. R4c. DPTDPT
R4d. DPTDTD__
Q
R4e. VOJUT
4FF UIF $"4 4VHHFTUJPOT JO
4FDUJPOT BOE GPS JEFBT PO IPX
TUVEFOUT DBO VTF B $"4 UP DPNQMFUF UIF
QSPCMFNT JO UIJT TFDUJPO
ćF UXP GPSNT PG UIF FRVBUJPO
JO Problem R2b DBO CF TIPXO UP
CF FRVJWBMFOU VTJOH #PPMFBO MPHJD
DPNNBOET
R6a. DPTQn
d. $(.# &$( ,0 &)$.3)!*)$(.-)(.# &.
)(( .$("# &
.)# &
e. $(.# &$( ,0 &)$.3)!*)$(.-)(.# ,$'
)!# &
f. $(.# &$( ,0 &)$.3)!*)$(...#
(. ,)!# &
g. $(.# ("/&,0 &)$.3)!# &
h. $(.# ("/&,0 &)$.3)!# &
i. $(.# &$( ,0 &)$.3)!*)$(.-)(.# ,$'
)!# &
j. !# &$-.)/#$(".# ",)/(#)1!-.
$(%$&)' . ,-* ,#)/,1)/&.# 0 #$& )(( . .).# 1# & ')0$("
Concept Problems
C1. ()$&1
( )$& 1 &&&&*/'*:%
*/'* :%
$--#)1($($"/, !)(.# ( 2.*" -
.# ').),./,(-.# 1&%$(" ',)%-/*
()1(*/&&$(".# ,))/.)!.# 1 &&(
& ..$("$.")%$(.).# 1 && )(( .$)(
.1 (.# ,)(.# 1&%$(" '$-
-. && .#.1,*-,)/(.# .# $-.( !
!,)
!
!,)'.# ",)/(.)*)$(. 1# , .# & )(( .-.).# ,)0,$ -
* ,$)$&&31$.#.$' PRO BLE M N OTES
- .# 1&%$("
1&%$(" ',)%-.#
' ,)%- .# ("&
("& $.
$.
a. -.#
'% -1$.#.# ",)/(0,$ --$(/-)$&&3
1$.#.$' ("& ") -!
-!,)''$($'/'
)! ,$(.)'2$'/')!,$(
)1'(3 ", -),, -*)(.).#$-,("
)!("& b. ,$/-)!.# $,/&,,)(.# .# $-9;#.,& (".#)(.# .# ),, -*)(-.).#
(-.).# ,(" )!("
)!("& -$(*,.
R6b. R6c. R6d. (SBQIJDBMMZx
Q
yDPT__
x
/VNFSJDBMMZx
TEAChER’S EDITION
R7. --/' .#.3)/
, ),, - ,#-/',$( )$("
-/' ," .,$($(" 2 ,$- -$(.# $8
$8
(..$'
(..$' 3)/-.,.*),*)$-$("
(
")$("&. ,(. &3 * ,(-#&&)1 ,
..$' '$(3)/, .3)/, * -.
'..$'
'..$' '$(3)/( 2.
'
, #3)/,-#&&)1 -. '--/'
.#. 0,$ --$(/-)$&&31$.#.$' "MHFCSBJDBMMZx
R6e. x
Qt
R7b. yDPT__
R7c. "UtyN
TVCNBSJOFDPVMEDPNNVOJDBUF
R7d. 3PVHIMZTtNJOT
R8a. W____
T
T
Q
___
R8b. W SBETSBET
Q
R8c. ___
DNDNMJOFBS
WFMPDJUZ___
Q
DNTUIJTDBOCFGPVOE
QSBE ____
BT____
DN
T
SBE
R8d. vDNT
R8e. vDNT
R8f. v DNT
R8g. WSBET
Section 6-9:
R5a.
3
2
v
2
3
1
1
u
r1
R5b. __
QVOJUTVOJUT
R8h. WSBET
R8i. vDNT
R8j. vLNI
Problem C1 QSFTFOUT B DIBMMFOHF FWFO
UP UIF CFTU TUVEFOUT CFDBVTF UIFZ NVTU
DPOOFDU BOE BQQMZ TFWFSBM DPODFQUT GSPN
UIF DIBQUFS
4FFQBHFToGPSBOTXFSTUP
1SPCMFNT33DoI3BBOE$BoC
Section 6-9: Chapter Review and Test
339
Precalculus with Trigonometry Course Sampler
129
Problem Notes (continued)
c. d
C1c. ę
C1d. d
10
&
0
5
,
%#6
t
2
4
6
8
xt
&
C1e. dDPT___
Q t
C1f. ę
yt
&
/
tx
15
P
,
*
c. (
d
C1g. T
C1h. 'BMTF
T eac h er ’ s E dition
Problem C2JOWPMWFTJEFBTGSPN
$IBQUFSBOEDBOCFBTTJHOFEUP
TNBMMHSPVQTPGTUVEFOUTćJTJTBMTP
BHPPESFWJFXRVFTUJPOBęFSZPV
DPNQMFUF$IBQUFS
C2a. d. )7
yx
Figure 6-9f
d. -
t
-
P
P6
!:4
7P":
04
y
2
b. function4
relation,yx,
,
x
y
t)6
:
e. *
yx
3
<
55
*"%
e. )
56d
t
x
y
!
f. *
P
t$
1
!
x
g. *
P"!:
C2b. h. 18
9
y
2
C2. Inverse Circular Relation Graphs:+
x
1
a. -
yx2
x
x
x
3
x
y715
C2c. ćFHSBQIJOQBSUBJTDPOUBJOFEJO
UIFHSBQIPGQBSUC
C2d. ćFHSBQIJOQBSUBJTUIFHSBQIPG
QBSUCGPS__
Qt __
Q
C2e. 6TF x t, yTJOt.
340
2
C2g. ćFHSBQIJOQBSUBIBTPOMZPOF
yWBMVFGPSFBDIxWBMVFJOUIFEPNBJO
XIJMFUIFHFOFSBMJOWFSTFTJOFHSBQIIBT
JOĕOJUFMZNBOZyWBMVFTGPSFBDIx
x
1
g. )7*"%
not h. 3
yx
15
(
*"%
Chapter 6: Applications of Trigonometric and Circular Functions
C2f. ćFBSDTJOFHSBQIJTUIFTJOFHSBQI
SFĘFDUFEBDSPTTUIFMJOFyx.
y
Figure 6-9g
f. +*"%
*
C2h. (SBQITBQQFBSUPCFSFĘFDUJPOTBDSPTT
UIFMJOFy x
y
2
x
1
340
Chapter 6: Applications of Trigonometric and Circular Functions
130 Precalculus with Trigonometry Course Sampler C3. Merry-Go-Round Problem:##)!#!& #!%%$%! $% % &#'!%)(
# $!$%$#!%%%# %&%! $% %
&#'!%)&#&""!$%
$%$#!%%%#' !& %#!($
(%#$"%%!%#!& (%
##)!#!& $#!%% %
#' !& %#!($
%$
#'
4 ft
9
#'
0##)!#!& 9
C3d. 0OFDZDMFJTTIPXOIFSF
a. )!&# #'!%)+ %"#$! +
&%!%combined#!%%! $!%$%$
%##)!#!& ( )!&#$%$
7 #%$%#!% %#!%
##)!#!& 7 -!$$%%!% %#!%
##)!#!& b. / (%#%! #)!&%&)!' ( )!&#$%$!$$%%!% %#!%
##)!#!& ,
c. $)!&#$%%&# $+)!&#$% #!
% '#$$ &$!)(%%$
%##)!#!& %&# $+%9$!%$
$ &$!$!'#$$ &$!)(%%+
&%(%# %"#! "%&
&""!$%%%%t)!&#$%$%%$
#%$%$% #!% +
=#%
8&%! 9"#$$ )!&#$% #!
% $& %! !%+t, $! $
d. 4!%%#"!%& %! "#%
%%#$&%
e. 6$% $(#$ "#%$:%!9" ()
)"!"! *%(=## ! %$%)"!#
Figure 6-9h
25
d (ft)
20
15
10
5
t (s)
5
Problems T1 and T2BTLTUVEFOUTUP
WJTVBMMZBQQSPYJNBUFSBEJBOTPOB
VOJUDJSDMF"CMBDLMJOFNBTUFSGPSUIFTF
QSPCMFNTJTBWBJMBCMFJOUIFInstructor’s
Resource Book.
T1., T2. 3
2
v
2
Part 1: No calculators allowed (T1–T9)
T1. &#$!($ x9$#( % %%!
%& %# uv!!# %$)$%3 !")!%$>&#+$!(""#!9%)(#
%"! %x
"$! %!%& %#
( %x9$$(#""#!& %#
x
T3. %#%$%"$ %!> ""#!9%! !%#$&#! !
# $.1 (%8&# %(!&
%$ %# %.
u
T6. "NQMJUVEF1FSJPE
1IBTFEJTQMBDFNFOU4JOVTPJEBM
BYJT
T6. 0'%"#!+"%&+$ &$!9$+ "$$" %!%#&#& %!
f x,!$77
x
T7. %%$%%(!)$!%$ &$! 4#!5
T7. T8. !%#!%%$(% &#'!%)
#$%$% #'!%)!
"! %
#!%9$!#!%%! .
:
Figure 6-9i
C2i. (SBQITBQQFBSUPCFSFĘFDUJPOTBDSPTT
UIFMJOFy x
y
2
Section 6-9: Chapter Review and Test
C2j. +PVSOBMFOUSJFTXJMMWBSZ
r1
T3. ___
Q JO2VBESBOU**
T4. ___
Q T5. T5. 0'%9% &#!#$ 77
-# !$
1
1
u
3
T2. % !
# $! %!")!
&#
T4. 0'%9% &#!# $ <
!$
v
C3e. "OTXFSTXJMMWBSZćFSFBSF
GSFRVFOUBOESBQJETIJęTPGEJSFDUJPOBU
IJHIWFMPDJUZ
Chapter Test
10
T eac h e R ’ s E dition
i. "%"#%!#% '#$% %
& %! j. #% %#) )!&#!&# !&%(%
)!&'# #!%$"#!
f(x)
3
x
4
341
C3a. vGBSUIFTUQęTęT
vDMPTFTUQęTęT
8
T8. vDNT
C3b. $MPDLXJTFXJUISFTQFDUUPUIFDFOUFS
PGUIFNFSSZHPSPVOE
x
1
C3c. dt
DPT___
Qt
DPTQt,
XIFSFdJTJOGFFUBOEtJTJOTFDPOET
Section 6-9: Chapter Review and Test
341
Precalculus with Trigonometry Course Sampler 131
Problem Notes (continued)
T9. $)&$'%
$!&&%%!&&&%&&
( '$(!&* %&%&&%
)&$$$)&$'% &%&
$(!&*!&&&! &$$$
T9. WSBET
T10. y
Part 2: Graphing calculators allowed (T10–T24)
50
x
1
4
7
T11. y TJO__
Qx
T12. dęBU tnI
T13. dęBUt nI
T10. ! " '' %$!& %
&%) % !$&&%%& $!&
)($%% '%!*)&&&&
x%&%&&%!%%&"! &y
$%! %&$&%&&%$&%&"! &
y&&$"
T11. '$%!)%*!$'$
' &! % '%! "$&'$#'&! !$&%% '%!
y
T14. tBUQN
d ę
T15. d
.
t
10
T16. "QQSPYJNBUFMZItI
T17. tI
T18. tI
T19. WQSBETSBET
T20. vQDNTDNT
d (cm)
1.0
T14. &!%t#'&/2"5!)"%&
)&$&&&&
Bicycle Problem:!$6$!%8<8./ 7$
%$ $&'$ %&"%&
.$( %! %!&*$
%!) '$
0
342
.1
.
Figure 6-9l
T22. 5!)%&%
"$!'$
+%! !&$%
T23. "%$.$!&;%!&$
%"$!&&$"%!) &%& ! +%$&!!&$!&"( &%
' &! !& '$!%! %% $
!!&)%&"! &!)&'""$ !)$!' %&% '%!;% &
!&! !& ;&&$"! &%
T24. &*!'$ %$%'&!& &%&%&
&&*!' !& !)!$
Chapter 6: Applications of Trigonometric and Circular Functions
Chapter 6: Applications of Trigonometric and Circular Functions
132 Precalculus with Trigonometry Course Sampler 1
T19. &%& '$(!&*!&"% $ %"$%! T24. "OTXFSTXJMMWBSZ
342
Figure 6-9k
T13. =$&&*!'!' 6$!8.) %&)&$ ;&&&%%!)%&5!)"%
&&&&&
t (s)
T18. !($*!$&>$%&"!%&(&&
)&)&$%;&*
="
T21. &%& '$(!&*!&)
T12. &&)&)&$%"%&5!)
"%&&&&&
T23. d t
DPTQt
T17. &*!'$$"$+%&!&! &
&&$&$!6$!8 %&&
& $ && &!& $%&
&&%&&&)&)&$%%&
%%& ="
T20. &%& $(!&*!& &&$%"$%! 8
T22. vQLNILNI
T16. 3*&$ *!'$$" 6$!8
> ""$!;&*&>$%& &$(!
! &(&%!$)&)&$%
%%& ="
Figure 6-9j
!$6$!%8.<81'$%!)%&
"&!&)&$&"! & $&%!$%&
($%'&!&&%"$&'$#'&! $& d &&!t !'$%=$ &! ( *%
,td/.!%:::
T21. WQSBETSBET
60
50
40
30
20
10
4"&
T eac h er ’ s E dition
3
/
x
T15. 6!&&$"!&% '%! '$! *!'$$"$9%) !))&x ,&'*t-
!'&x
""$!"$&) !)
!$y,&'*d-
© Copyright 2026 Paperzz