Streaming Sensor Data from the Home What does it all mean? How can it help you? ! Holly%Jimison,%Misha%Pavel,%% Xuan%“Sean”%Li,%Krissy%Mainello% College%of%Computer%&%InformaAon%Science% Bouve%College%of%Health%Sciences% ConsorAum%on%Technology%for%ProacAve%Care% Northeastern%University% % ! ! ! • Funding' – Na&onal!Science!Founda&on! – Na&onal!Ins&tute!on!Aging! – Alzheimer’s!Associa&on!/!Intel!Company! – Na&onal!Ins&tute!on!Standards!&!Technology! – TEKES!(Finland!Government)! • No'conflicts'of'interest' ' • Collabora5ve'work'with' – Oregon!Health!&!Science!University! – University!of!California!at!Berkeley! Scalable Approach to Delivering Health Interventions to the Home ! Sensors, algorithms, mobile communications for lifestyle interventions ! Remote, just-in-time, continuous care ! Incorporate principles of health behavior change ! Optimal use of lower cost personnel ! Integrate family & informal caregivers into the health care team (untapped resource) ! Platform for testing sustained cognitive interventions in the home Modular Software for Multiple Protocols ! Cognitive Exercise (computer game format) ! Novelty exercise ! Physical Exercise ! Sleep Management ! Socialization ! Medication Management ! Mood Management (depression) Behavioral Markers = Continuous Monitoring & Computational Models Home health based on unobtrusive, continuous monitoring Models!to!Infer!Ac&vi&es!of!Daily!Living! Pavel et al., IEEE Special Issue, in press 6 Activity Monitoring in the Home Sensor Events Private Home Bedroom Bathroom Living Rm Front Door Kitchen Hayes et al., www.orcatech.org Hayes, ORCATECH 2007 Activity Monitoring in the Home Sensor Events Residential Facility Bedroom Bathroom Living Rm Front Door Kitchen Hayes et al., www.orcatech.org Hayes, ORCATECH 2007 Measuring!Gait!in!the!Home! • Unobtrusive'gait'measurement'in<home'with'passive' infrared'(PIR)'sensors'<'Hagler,%et%al.,%IEEE%Trans%Biomed%Eng,%2010% – Four!restricted!view!PIR!sensors! – Measure!gait!velocity!whenever!a! – ! subjects!passes!through!the!! – ! “sensorVline”! – Deployed!for!the!Intelligent!! – !!!!Systems!for!Assessing!! – !!!!Aging!Changes!(ISAAC)!study! – 200+!subjects!monitored!for!>!4!years! 9 Subject!1! 0.035 90 0.03 Stroke Velocity (cm/s) 80 0.025 70 0.02 60 0.015 50 0.01 40 0.005 30 12/07 08/08 11/09 12/10 Time Aus&n!et!al,!Sept!2011!V!EMBC!(Gait)! 10 Subject!2! 90 Velocity (cm/s) 0.05 CDR=0.5 and MCI diagnosis 0.045 0.04 80 0.035 0.03 70 0.025 0.02 60 0.015 0.01 50 0.005 07/07 02/09 09/10 Time Aus&n!et!al,!Sept!2011!V!EMBC!(Gait)! 11 Health!Coaching!Pla_orm! Family Interface • Safety monitoring • Soft alerts • Team-based care • Socialization Automated!Coaching!for!Physical!Exercise! • Collabora5on'with'' – Oregon!Health!and!Science!University! – University!California!Berkeley! • Pre<recorded'video'clips'for' tailored'exercise'and'Kinect' Camera' • Real<5me'feedback'based'on' image'interpreta5on'from'Kinect' skeleton'representa5on' • Monitoring'of'balance,'flexibility,' strength,'endurance' • Poten5al'for'remote'interac5on'' Sleep Module Assessment • Sleep Hygiene • Anxiety • Circadian Rhythm Tailored Intervention 14 Socialization Protocols for Cognitive Health ! Web cams and Skype software given to participants and their remote family partner ! Frequent spontaneous use among participants Cogni&on!V!Monitoring!&!Interven&on! 16 Computer!Game!to!Measure!Execu&ve!Func&on!! 17 Model!the!&ming!of!the!mouse!clicks! Recall Next Target tR Search for Next Target + tS ( n, d ) Move to Next Target + tM S. Hagler et al., www.ORCATECH.org 18 Es&mates!from!Game!Predict!TMT!Scores! R 2 = 0.78 p < 0.0001 S. Hagler et al., www.ORCATECH.org 19 Cognitive Modeling Example: Memory E D C B B E D C C B E D C F B E D BGHDG F FGHD BE FGH EDE FG D DE F E E D H F E I D H F Characterize Memory Capacity • Intervening number of events • Intervening time • Memory load Simple Memory Model: Discrete Buffer Probability of Correct A D C A B Probability of Correct BACD BAC BA B Subject 1020, N = 8687 1 0.5 0 0 5 10 15 Intervening Number of Events 1 0.5 0 0 5 10 15 20 25 Intervening Time [sec] Characterize Memory Capacity with a Single Parameter M Pavel, et al., www.ORCATECH.org Dynamic!User!Model!to!Support!Tailored!Messaging! Family Interface • Safety monitoring • Soft alerts • Team-based care • Socialization Family Caregiver Interface Link to Demo !!!!!!!!!!!!!!!!!!!!!!Monitoring!V>!Interven&on!! • Ac5vity'Monitoring'in'the'Home' • Cogni5ve'Monitoring' – Adap&ve!Computer!Games!–!Divided!Aaen&on,!Planning,!Memory,! Verbal!Fluency,!+++! – Linguis&c!Complexity!–!Emails,!phone! • Motor'Speed' – Speed!of!Walking,!Computer!Typing,!Mouse!Movements! • Sleep'Monitoring' • Depression'–'affect'on'phone,'linguis5c'analysis' • Medica5on'Management'–'Context'aware'reminding' • Socializa5on'–'Skype,'phone,'emails' • Physical'Exercise'–'Interac5ve'video' 23
© Copyright 2026 Paperzz