Metal Clusters
in Chemistry
Volume 3:
Nanomaterials and
Solid-State Cluster Chemistry
Edited by
P. Braunstein
L. A. Oro
P. R. Raithby
WILEY-VCH
Weinheim • New York • Chichester
Brisbane • Singapore • Toronto
Contents
Volume I:
Molecular Metal Clusters
1
Molecular Clusters
1
General Introduction
F.A. Cotton
3
1.1
Molecular Clusters - An Overview
M.H. Chisholm
8
1.2
Expanding, Degrading, and Rearranging Hexametal Boride
Clusters
C.E. Housecroft
Introduction
Expansion
Expansion beyond M6 during syntheses and ligand substitution
reactions of M(, borides
Expansion from M6 cages using group 11 metal fragments
Degradation
Rearrangements
Conversion of trigonal prismatic to octahedral RueB clusters
Interconversion between cis- and ?ra«.s-isomers of octahedral
R114M2B (M = Ir or Rh) borides
1.2.1
1.2.2
1.2.2.1
1.2.2.2
1.2.3
1.2.4
1.2.4.1
1.2.4.2
1.3
1.3.1
Steric Effects in Metallacarboranes
A.J. Welch
Introduction
10
10
12
12
17
18
20
20
21
26
26
vi
Contents
1.3.2
1.3.3
1.3.3.1
1.3.3.2
1.3.4
Minor consequences
Major consequences
Polyhedral deformation
Low-temperature isomerization
Conclusions and outlook
1.4
Heteronuclear Clusters Having Transition Metals and
Metals of Group 14
D.J. Cardin
Introduction
The coordination of diorganogroup-14 element compounds
Synthetic approaches
Compounds in which the group 14 ligand is bonded terminally
to a cluster
Compounds in which the group 14 ligand doubly bridges
metals in a cluster without further reaction
Clusters in which the Group 14 ligand or the heterometallic
cluster has undergone further reaction
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.5
1.5.1
1.5.2
1.5.3
1.6
1.6.1
1.6.2
1.6.2.1
1.6.2.2
1.6.3
1.6.4
1.7
1.7.1
1.7.2
Hetero-Metal Clusters by Assembling Amino Substituted
Subvalent Main Group Metals and their Ligand Reactions
M. Veith
Introduction
•:
Syntheses of clusters by using Me 2 Si(NtBu) 2 M (M = Ge(II),
Sn(II))
Conclusion
32
34
34
39
44
48
48
49
50
51
54
65
73
73
74
89
Synthetic Pathways to a Neglected Class of Compounds:
Organobimetallics of Aluminium and cobalt
91
J.J. Schneider
Introduction
91
Synthesis of mixed group 13/transition metal complexes
92
Transition metal bonds to Ga, In and Tl
92
Transition metal (tm) bonds to B and Al
95
Synthetic routes to organobimetallic compounds of Co and Al.. 100
Outlook and trends
106
Group 5 and 6 Bimetallic Complexes with Phosphido Bridges:
Syntheses and some Structural Features
G. Boni, M. M. Kubicki and C. Moise
Introduction
Synthesis of metallophosphines
110
110
110
Contents
vii
1.7.3
1.7.3.1
1.7.3.2
1.7.4
1.7.5
Bimetallic complexes from metallophosphines
Monobridged complexes
Dibridged complexes
Bimetallic complexes from metal]odiphosphines
Molecular structures of phosphido bridged complexes
1.8
Polythiometalates and Polyoxothiometalates Based on AcidoBasic Condensation Processes
124
F. Secheresse, E. Cadot and C. Simonnet-Jegat
Introduction
124
Thiometalates and catalysis
126
Academic research induced by catalysis
127
Sulfldo-ligands
127
Disulfido-ligands
131
Vanadium systems
132
The [M 2 S 2 X 2 ] 2+ X=O, S fragment
133
CS 2 activation
134
Reactions of thiometalates with polyoxometalates
134
Selective sulfuration of fully oxygenated polyoxoanions
136
Addition of a thiometallic fragment on a lacunary polyanion ... 136
Self-Condensation of the [Mo 2 S 2 O 2 ] 2 + fragment
139
1.8.1
1.8.2
1.8.3
1.8.3.1
1.8.3.2
1.8.3.3
1.8.3.4
1.8.3.5
1.8.4
1.8.4.1
1.8.4.2
1.8.4.3
1.9
1.9.1
1.9.2
1.9.2.1
1.9.2.2
1.9.2.3
1.9.2A
1.9.2.5
1.9.3
1.9.4
1.10
1.10.1
1.10.2
Electronic Effects on the Shape of M 2 X 2 Frameworks (X =
Naked Chakogenide Atom, M = Late Transition Metal)
C. Mealli and A. Orlandini
Introduction
Discussion
Chemical bonding in less electron rich M 2 X 2 planar skeletons ..
Puckering of the M 2 X 2 skeletons
Coupling/ uncoupling of dichalcogenide within puckered
frameworks
Coupling of chalcogenide atoms in electron rich M 2 X 2
planar frameworks
Uncharged and dicationic complexes of the type L 2 MX 2 ML 2 ...
Conclusions
Appendix
Towards Transition Metal Clusters by Reaction of Simple
Metal Carbonyls with Chalcogenides and Chalcogenolates
G. Henkel and S. Weifigrdber
Introduction
Synthetic aspects
114
115
116
119
120
143
143
146
146
150
152
154
158
160
160
163
163
164
viii
Contents
1.10.3
1.10.4
1.10.5
1.10.6
1.10.7
1.10.8
1.10.9
Topological aspects
Complexes containing up to two metal atoms
Complexes containing three metal atoms
Complexes containing four metal ions
Complexes containing five metal ions
Complexes containing six metal ions
Complexes of higher nuclearities
1.11
Low-Nuclearity Iron and Ruthenium Selenido-Carbonyl
Clusters Derived from Phosphine and Diphosphine Selenides
D. Cauzzi, C. Graiff, G. Predieri and A. Tiripicchio
Introduction
Clusters derived from Ph 3 PSe
Pli3P-substituted selenido iron clusters
Ph 3 P-substituted selenido ruthenium clusters
Cluster derived from (Ph 2 PSe) 2 X
(Ph 2 P) 2 X-substituted selenido iron clusters
(Ph 2 P) 2 X-substituted selenido ruthenium clusters
Structural features
M 3 E 2 nido clusters
Ru 4 E 2 closo clusters
Cluster growth reactions
Concluding remarks
1.11.1
1.11.2
1.11.2.1
1.11.2.2
1.11.3
1.11.3.1
1.11.3.2
1.11.4
1.11.4.1
1.11.4.2
1.11.5
1.11.6
1.12
1.12.1
1.12.2
1.12.3
1.13
1.13.1
1.13.2
1.13.3
1.13.4
1.13.5
A New Supporting Ligand for /j-Oxo Metal Derivatives:
yV,yV-dialkylcarbamato, O 2 CNR 2
D. Belli Dell' Amico, F. Calderazzo, F. Marchetti and
G. Pampaloni
Hydrolytic processes
Non-hydrolytic processes
Conclusions
Alkyne Scission on Metal Cluster Frameworks
M.J. Morris
Introduction
Molybdenum-ruthenium clusters
Molybdenum-cobalt clusters
Alkyne scission in dinuclear metallacyclopentadiene
complexes
Conclusions
165
167
170
177
180
181
187
193
193
194
194
196
197
199
200
201
201
202
204
207
209
210
215
218
221
221
225
227
229
233
Contents
1.14
1.14.1
. 1.14.2
\
'1.14.3
I'
ijl. 14.4
;, 1.14.4.1
1.14.4.2
1.14.4.3
1.14.4.4
1.14.4.5
1.14.5
1.14.5.1
1.14.5.2
1.14.5.3
1.14.5.4
1.14.5.5
1.14.6
1.15
1.15.1
1.15.2
1.15.3
1.15.4
1.15.5
1.16
1.16.1
1.16.2
1.16.3
1.16.4
1.16.5
Multiple Interactions Between Arenes and Metal Atoms
ix
236
A.J. Deeming
Introduction
236
Arenes bridging two metal atoms employing only n
interactions
237
Arenes bridging more than two metal atoms employing only
n interactions
239
Aryls in metal clusters
240
Terminal aryls in metal clusters
241
Bridging aryls without ^-coordination
243
Bridging aryls with ^-coordination through a single carbon
atom
246
Bridging aryls with ^-coordination through two carbon atoms.. 247
Bridging aryls with ^-coordination through all six carbon
atoms
248
Arynes in metal clusters
250
Terminal ^2-arynes
252
Arynes bridging two metal atoms
252
Arynes bridging three metal atoms
254
Arynes bridging four metal atoms
255
Arynes bridging five metal atoms
261
Some recent developments with naphthalene and anthracene
261
From C-H-Activation to Arene Clusters and Back —
Organometallic Cluster Chemistry with Cyclopentadienyl
Cobalt Fragments and Olefins
H. Wadepohl and A. Metz
Introduction
Ethylene: cluster complexes with ^3-ethylidyne ligands
Substituted styrenes: cluster complexes with face-capping
arene ligands
Cycloalkenes: cluster complexes with bridging cycloalkyne
ligands
Concluding remarks
Cyclopentadienylnickel Clusters
5". Pasynkiewicz and A. Pietrzykowski
Introduction
(Cyclopentadienyl)trinickel clusters
(Cyclopentadienyl)tetranickel clusters
(Cyclopentadienyl)pentanickel clusters
(Cyclopentadienyl)hexanickel clusters
269
269
271
278
285
287
290
290
290
302
305
306
x
Contents
1.17
1.17.1
1.17.2
1.17.3
1.17.4
1.17.5
1.18
1.18.1
1.18.1.1
1.18.1.2
1.18.2
1.18.2.1
1.18.2.2
1.18.2.3
1.18.2.4
1.18.3
1.18.4
1.19
1.19.1
1.19.2
.19.3
.19.4
.19.5
.19.5.1
.19.5.2
.19.5.3
1.19.5.4
1.19.5.5
1.19.6
Ligand Orientation Effects on Metal-Metal Bonding
S. Alvarez and G. Aullon
Introduction
Pyramidality and metal-metal bond strength in
binuclear complexes
Ligand orientation effects in unsupported [Fe2(CO)s]2~ and
derivatives
Ligand orientation effects in bridged Fe-Fe bonds, including
triangular Fe2M clusters
Clusters with a Fe4C skeleton
Synthesis and Properties of Metal Carbonyl Clusters
Containing Nitrido Ligands
A. Fumagalli and R.D. Pergola
Introduction
Generalities on interstitial nitrido clusters
Synthesis of the nitrido ligand in clusters
Synthesis of nitrido clusters
Iron clusters
Ruthenium clusters
Cobalt and rhodium clusters; some clues to the pyrolytic
cluster growing mechanism
Mixed-metal clusters
Structural features
Spectroscopic data associated with the interstitial nitrides
High Nuclearity Osmium - Gold Clusters
J. Lewis and P. R. Raithby
Introduction
Electron counting schemes and the rationalization of cluster
geometries
Synthetic routes to higher nuclearity clusters
Characterization of the new clusters
Reactions of high nuclearity osmium cluster carbonyl anions
towards monodentate and bidentate gold phosphine cations
Additions to hexanuclear osmium cluster anions
Additions to heptanuclear osmium cluster anions
Additions to octanuclear osmium cluster anions
Additions to nonanuclear cluster anions
Additions to decanuclear cluster anions
Synthesis of poly-aurated high nuclearity osmium carbonyl
cluster
308
308
309
311
314
318
323
323
323
324
327
327
328
329
335
338
342
348
348
349
352
353
355
355
359
362
364
365
368
Contents
xi
1.19.6.1
1.19.6.2
1.19.6.3
1.19.6.4
1.19.6.5
1.19.7
Hexaosmium cluster systems
Heptaosmium cluster systems
Octaosmium cluster systems
Nonaosmium cluster systems
Decaosmium cluster systems
Conclusion
368
370
370
372
373
377
1.20
Novel Imido Rhodium Clusters: Synthesis and Perspectives...
LA. Oro, M.A. Ciriano, C. Tejel, Y.-M. Shi and
J. Modrego
Introduction
The challenge of synthesizing rhodium imido complexes
A synthetic strategy for rhodium triangular cores
Butterfly rhodium imido clusters
A "Rh3(,«-N-/?-tolyl)2" core with tuneable donicity
Exploiting the ambivalent donor character of the
"Rh3(/z-N-/?-tolyl)2" core: heterometallic clusters
Trinuclear anionic rhodium imido clusters
The bonding in imido-rhodium clusters
Fluxional behavior
Conclusions and outlook
381
Synthesis and Reactivity of Tripalladium Clusters
D. Kovala-Demertzi
Introduction
Syntheses
Synthesis of cationic mixed-valence Pd 3 clusters
Synthesis of neutral mixed-valence tripalladium clusters
Synthesis of tripalladium Pd(0)clusters
Synthesis of tripalladium clusters in the formal oxidation state
of Pd( II)
Bonding and structure in tripalladium clusters
Reactivity
Ligand substitution reactions
Oxidative addition reactions and electron-transfer reactions
Ligand addition reactions
Host-guest chemistry
399
1.20.1
1.20.2
1.20.3
1.20.4
1.20.5
1.20.6
1.20.7
1.20.8
1.20.9
1.20.10
1.21
1.21.1
1.21.2
1.21.2.1
1.21.2.2
1.21.2.3
1.21.2.4
1.21.3
1.21.5
1.21.5.1
1.21.5.2
1.21.5.3
1.21.5.4
1.22
1.22.1
Platinate (II) Complexes as Building Blocks for Complexes
with Pt—>M (Donor-Acceptor) bonds
/. Fornies and A. Martin
Introduction
381
382
382
384
387
389
391
393
395
396
399
400
400
403
403
405
405
406
407
410
412
412
417
417
xii
\
\
Contents
1.22.2
1.22.3
1.22.4
1.22.5
1.22.6
1.22.7
Synthesis of Pt —> Ag complexes
Attempts to prepare Pd —> Ag complexes
Structural types of Pt —> Ag complexes
o-X- • • Ag secondary interactions
Other P t - M complexes
Attempts to prepare complexes containing Pt —> Pt bonds
1.23
Complexes of Keggin-Type Monolacunary Heteropolytungstates:
Synthesis and Characterization
A.M. V. Cavaleiro, J.D. Pedrosa de Jesus and
H.I.S. Nogueira
Introduction
Keggin type heteropolyanions and related species
Polyoxotungstates with formula [XWnM(L)O 39 ] n ~
The 1 : 1 complexes
Synthesis and stability in solution
Structural characterisation
Electronic and vibrational spectra
N M R and EPR spectra
Powder and single crystal X-ray diffraction studies
Electrochemical properties
Thermal stability
Polyoxotungstates with the formula [M(XWuO 3 9 ) 2 ] n The 1 : 2 complexes
Synthesis and stability in solution
Structural characterisation
Vibrational spectra
N M R spectra
Single crystal X-ray diffraction studies
Electrochemical properties
The 1:2 complexes as oxidation catalysts
Concluding remarks
1.23.1
1.23.2
1.23.3
1.23.3.1
1.23.3.2
1.23.3.3
1.23.3.3.1
1.23.3.3.2
1.23.3.3.3
1.23.3.3.4
1.23.3.3.5
1.23.4
1.23.4.1
1.23.4.2
1.23.4.3
1.23.4.3.1
1.23.4.3.2
1.23.4.3.3
1.23.4.3.4
1.23.4.4
1.23.5
1.24
1.24.1
1.24.2
1.24.2.1
1.24.2.2
Reactivity of Diauracycles. A Way to Prepare Chains of
Gold Atoms
M. Laguna and E. Cerrada
Introduction
Reactivity of [Au 2 (CH 2 PPh 2 CH 2 ) 2 ]
Reactions of [Au 2 (CH 2 PPh 2 CH 2 ) 2 ] with gold(III) or silver(I)
complexes
Reactions of [Au 2 (CH 2 PPh 2 CH 2 ) 2 ] with mono and binuclear
gold(I) complexes
418
428
431
434
436
438
444
444
445
446
446
447
448
448
449
451
451
452
453
453
453
453
453
454
454
455
455
456
459
459
461
463
466
Contents
1.24.2.3
1.24.3
Reactions of [Au 2 (CH 2 PPh 2 CH 2 ) 2 ] with protic acids
Mixed-valence linear chains of gold atoms
1.25
Aurophilicity at Chalcogenide Centers. Synthesis of Polynuclear Chalcogenido-centered Complexes with Gold-Gold
Interactions
O. Crespo, M. C. Gimeno and A. Laguna
Introduction
Oxygen-centered complexes
Sulfur-centered complexes
Double bridging sulfido ligands
Triply bridging sulfido ligands
Quadruply bridging sulfido ligands
Quintuply and sextuply bridging sulfido ligands
Selenium-centered complexes
Double bridging selenido ligands
Triply bridging selenido ligands
Quadruply bridging selenido ligands
Tellurium-centered complexes
1.25.1
1.25.2
1.25.3
1.25.3.1
1.25.3.2
1.25.3.3
1.25.3.4
1.25.4
1.25.4.1
1.25.4.2
1.25.4.3
1.25.5
1.26
1.26.1
1.26.2
1.26.3
1.26.4
1.26.5
1.26.6
1.27
1.27.1
1.27.2
1.27.2.1
Au(I) Au(I) and Au(I) Ag(I) Loose Clusters
J. Vicente, M-T. Chicote, I. Saura-Llamas, M-C. Lagunas,
M. C. Ramirez de Arellano, P. Gonzdlez-Herrero,
M-D. Abrisqueta and R. Guerrero.
Introduction
Assisted loose clusters
Unassisted loose clusters
Mixed loose clusters
Aurophilic coordination
Conclusions
The Heteronuclear Cluster Chemistry of the Group 11 Metals Some Recent Advances
ID. Salter
Introduction
Investigations into the fluxional behaviour exhibited by group
11 metal heteronuclear clusters in solution
Dynamic behavior involving a rearrangement of the metal
cores of clusters containing square-based pyramidal Au 2 Ru 3
units
xiii
470
471
477
477
478
481
482
482
485
487
488
488
488
490
490
493
493
494
499
502
504
504
509
509
511
511
xiv
Contents
1.27.2.1.1
1.27.2.1.2
1.27.2.1.3
\
\
I
i
1.27.2.1.4
1.27.2.2
1.27.2.2.1
1.27.2.2.2
1.27.3
1.27.3.1
1.27.3.2
1.27.3.3
1.28
1.28.1
1.28.2
1.28.2.1
1.28.2.2
1.28.3
1.28.3.1
1.28.3.2
1.28.3.3
1.28.3.4
1.28.3.5
1.28.4
Introduction
Dynamic behavior of the clusters
[Au2Ru3(/<-H)(/u3-COMe)(/«-L2)(CO)9]
Dynamic behavior of the cluster
[Au2Ru4(^3-H)(^-H)(,«-l,2-Ph2PC6H4PPh2)(CO)i2]
Dynamic behavior of other clusters with metal frameworks
containing square-based pyramidal Au2Ru3 units
Dynamic behavior involving the bidentate diphosphine ligand
l,l'-fe(diphenylphosphino)ferrocene (dppf) attached to the
group 11 metals in heteronuclear clusters
Introduction
The dynamic behavior of the clusters
[Au2Ru3(;«-H)(/«3-COMe)(/i-dppf)(CO)9],
[M2Ru4H2(yu-dppf )(CO),2] [M = Cu, Ag or Au],
[Au2Ru3(^3-S)(/i-dppf )(CO)9] and
[AuCuRii4(^3-H)2(^-dppf )(CO)i2]
The use of sterically demanding bidentate diphosphine ligands
to control the metal core geometries adopted by clusters
containing Au2Ru3 units
Introduction
Structures of clusters of general formula [Au2Ru4(//3-H)
(/*-H)fc-L2)(CO)i2]
Structures of clusters of general formula [Au2Ru3(/i3-S)
511
511
515
518
518
518
519
528
528
529
{fi-U){CO)9]
530
Homonuclear and Heteronuclear Cluster Compounds of Gold
535
/. Strdhle
Introduction
Synthesis of homonuclear gold cluster compounds
Photolysis of R3PAuN3
Synthesis of [Au(AuCl)(AuPPh3)8]+
Synthesis of heteronuclear gold cluster compounds
Photolysis of Ph3PAuN3 in the presence of a metal carbonyl
complex
Photolytic synthesis of [Re(CO)5Au(AuPPh3)6]2+
Photolytic synthesis of [(C5H5)Mo(CO)2(AuPPh3)4]+
Co-photolysis of Pd or Pt azido complexes with metal carbonyl
complexes
Co-photolysis of Ph3PAuN3 and L2M(N3)2 (M = Pd, Pt;
L2 = dppe, (PPh3)2)
Properties and reactions of heteronuclear gold cluster
compounds
535
536
536
537
539
539
543
543
544
546
547
1.28.5
1.28.6
1.29
Contents
xv
Structures of the heteronuclear gold cluster compounds
Bonding in the homonuclear and heteronuclear gold cluster
compounds
549
551
1.29.1
1.29.2
1.29.2.1
1.29.2.2
1.29.2.3
1.29.3
1.29.3.1
1.29.3.2
1.29.3.3
1.29.3.4
1.29.3.5
1.29.4
1.29.4.1
1.29.4.2
1.29.4.3
1.29.4.4
1.29.4.5
1.29.4.6
1.29.4.7
1.29.5
Naked Clusters of the Post-Transition Elements
S. Ulvenlund and L. Bengtsson-Kloo
Introduction and scope of review
Synthesis and stabilization of cationic clusters
Historic overview and fundamental concepts
Molten salts and related routes
Superacids and other low-temperature systems
Synthesis and stabilization of anionic clusters
Liquid ammonia and amine solutions
Cluster stabilization by sequestering agents
Electrochemical methods
Recent synthetic developments
A note on Zintl phases
Structure and bonding
Electron-precise polyhedra. 5«-electron clusters
Electron-rich clusters with electron counts ^ 6«
Electron-rich clusters with electron counts >6n
Electron-poor clusters, electron counts < 5«
The bonding of cluster species in group 12
£xo-cluster bonding. Are the naked clusters really naked?
Cluster condensation and extended structures
Reactions and extensions
561
Volume II:
Catalysis and Dynamics and Physical Properties
2
Metal Clusters in Catalysis
603
2.1
Metal Clusters in Catalysis - An Overview
605
2.1.1
2.1.2
2.1.3
2.1.4
2.1.4.1
2.1.4.2
2.1.5
2.1.6
R.J. Puddephatt
Introduction
Clusters as models for heterogeneous catalysis
Stabilization of metal clusters for catalysis
Homogeneous catalysis with cluster complexes
Homometallic clusters for homogeneous catalysis
Heterometallic clusters for homogeneous catalysis
Heterogeneous catalysis involving cluster complexes
Conclusion
605
606
608
610
610
611
612
613
561
562
562
564
567
571
571
572
573
574
574
575
576
577
581
582
586
587
589
591
Contents
3.15
3.15.1
3.15.2
3.15.3
i 3.15.4
The Spectrum of an Exciton in Nano crystal Semiconductor
Structures - Theory
S.I. Pokutnyi and V. V. Kovalchuk
Introduction
The Hamiltonian of an exciton in a nano crystal
The spectrum of an exciton in a nano crystal
Bulk exciton in a nano crystal
xxv
1263
1263
1264
1265
1266
Volume III:
Nanomaterials and Solid State Chemistry
4
Nanomaterials
1271
4.1
Metal Clusters and Nanomaterials: an Overview
M. Ichikawa
Introduction
Ship-in-a-bottle synthesis of metal clusters in micropores
Robust metal clusters in mesopores
Bimetallic clusters in zeolites
Cluster tranformation to nanoparticles in mesopores
Nanowires in mesoporous channels and their unique
properties
Metal Catalysts derived from zerolite-entrapped metal clusters.
Water-gas shift reaction (WGSR)
NO + CO reaction
CO hydrogenation
Methane homologation reaction
Future prospect
1273
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.7.1
4.1.7.2
4.1.7.3
4.1.7.4
4.1.8
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3
1273
1274
1284
1285
1287
1289
1292
1293
1296
1296
1297
1298
Silver-Tellurium Clusters from Silylated Tellurolate Reagents .. 1302
D. Fenske and J. F. Corrigan
Introduction
1302
Silver-tellurium clusters
1303
Nanosized Clusters on and in Supports - Perspectives for Future
Catalysis
1325
G Schmid
Introduction
1325
Between molecule and bulk - the position of nanosized
clusters
1326
The effect of the ligand shell in immobilized clusters on
activity and selectivity
1329
xxvi
Contents
4.3.4
4.3.5
4.3.6
Bimetallic shell-structured particles
Clusters in nanotubes
Conclusions and perspectives
4.4
On the Possibility of Single Electronics Based on LigandStabilized Metal Clusters
U. Simon
Introduction
What is single-electron tunneling?
Single-electron tunneling in nanoparticles
Evidence of SET in ligand-stabilized metal clusters
Single cluster properties
One-dimensional arrangements
Two-dimensional arrangements
Three-dimensional cluster networks
Clusters as building blocks for SET devices
Doubts and chances
First devices
Summary and outlook
4.4.1
4.4.2
4.4.2.1
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.4.4
4.4.4.1
4.4.4.2
4.4.5
4.5
4.5.1
4.5.2
4.5.2.1
4.5.2.2
4.5.2.3
4.5.3
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.4.1
4.6.4.2
4.6.4.3
4.6.4.4
4.6.4.5
1332
1336
1339
1342
1342
1343
1347
1349
1349
1351
1353
1354
1356
1356
1356
1359
Strategies for Assembling Pd and Pt Atoms
1364
M.N. Vargaftik, N. Yu. Kozitsyna, N. V. Cherkashina, R.I. Rudy,
D.I. Kochubey and I.I. Moiseev
Introduction
1364
Giant clusters
1367
Polymeric precursors of giant clusters
1367
Giant Pd clusters
1372
Platinum clusters and colloids
1379
Conclusions
1388
Electronic Structure of Naked, Ligated and Supported
Transition Metal Clusters from 'First Principles' Density
Functional Calculations
G. Pacchioni, S. Kriiger and N. Rosch
Introduction
Density functional theory
Naked clusters
Clusters in ligand shells
Low-nuclearity gold compounds - complexes or clusters?
Metal-ligand interaction
Magnetic quenching in carbonylated Ni clusters
Bimetallic clusters
Interstitial atoms in clusters
1392
1392
1393
1395
1402
1402
1404
1407
1411
1417
Contents
4.6.5
4.6.5.1
4.6.5.2
4.6.6
Supported metal clusters
Ni 4 , Co,, and Pd 4 clusters on MgO(OOl)
Ni clusters deposited on A12O3
Concluding remarks
4.7
Physical Properties of Metal Cluster Compounds. Model
Systems for Nanosized Metal Particles
L.J. de Jongh
Introduction: Why are metal nanoparticles of interest?
Giant magic-number metal clusters
Evolution to magnetic metallic properties. Some examples
Odd-even electron numbers and energy level statistics in
cluster assemblies
Energy-level statistics in assemblies of small metal particles:
summary of theoretical background
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.8
xxvii
1422
1424
1427
1429
1434
1434
1437
1440
1445
1449
4.8.4
4.8.4.1
4.8.4.2
4.8.5
On the Size-Induced Metal-Insulator Transition in Clusters
and Small Particles
P.P. Edwards, RL. Johnston and C.N.R. Rao
Introduction - divided metals
The electronic structure of divided metals
The metal-insulator transition in mesoscopic and macroscopic
systems
Experimental studies
Single particles
Arrays of particles
Concluding remarks
5
Solid-State Cluster Chemistry
1483
5.1
Solid-State Cluster Chemistry - An Overview
T. Saito
1485
5.2
Transition Metal Clusters - The Relationship between
Molecular and Crystal Structure
M.J. Calhorda, D. Braga and F. Grepioni
Introduction
Experimental and theoretical methods
Molecular and crystal structures of transition metal carbonyls
Conclusions
4.8.1
4.8.2
4.8.3
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
1454
1454
1457
1463
1467
1468
1476
1478
1491
1491
1492
. 1494
1503
Discrete and condensed clusters in low Valent Niobium Oxides.. 1509
G. Svensson, J. Kohler and A. Simon
Introduction
1509
xxviii
v
\
'•
i<
.
Contents
5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.3.3.4
5.3.3.5
5.3.3.6
5.3.3
5.3.4
5.3.6
Oxoniobates containing discrete Nb 6 Oi 2 clusters
Reduced oxoniobates with condensed NbeOi 2 clusters
Intergrowths between perovskite and NbO
The formation of intergrowth compounds
Structural considerations
Two pairs of compounds
Attempts to change the properties by doping
What is the valence of the niobium atoms?
Oxotantalates containing discrete Ta 6 Oi 2 clusters
Reduced oxoniobates containing Nb 2 O 8 clusters
Superconductivity in low-valent oxoniobates
5.4
Cluster Compounds Containing Mixed-Charge Cluster
Units: [M 6 X, 2 1 2+ and IM 6 Xi 2 ] 4+ or [M 6 X 12 ] 2+ and
IMo 6 Cl 8 l 4+ (M = Nb, Ta; X = C1, Br)
1551
N. Brnicevic
Introduction
1551
Hexanuclear [M6X12]"+ (M = Nb, Ta; X = Cl, Br; n = 2, 3, 4)
cluster units and reactions in non-aqueous solvents
1552
Behavior of [M 6 X 12 ] 2+ in methanol
1552
The [(M 6 X 12 )X 2 ]-6ROH (R = Me, Et) clusters as precursors .. 1553
Clusters with mixed-charge cluster units
1555
[Ta 6 Cli 2 (PrCN) 6 ][(Ta 6 Cl 12 )Cl6]-2PrCN, a compound with
homonuclear mixed-charge cluster units - [Ta6Cli 2 ] 2+ in
the cation and [Ta6Cli 2 ] 4+ in the anion
1555
[M 6 X 12 (EtOH) 6 ][(Mo 6 Cl 8 )Cl 4 X 2 ]«EtOH-mEt 2 O, compounds
with heteronuclear mixed-charge cluster units [MgXi 2 ] 2+ and
[Mo 6 Cl 8 ] 4+ (M = Nb, Ta; X = Cl, Br)
1556
Conclusion
1561
5.4.1
5.4.2
5.4.2.1
5.4.2.2
5.4.3
5.4.3.1
5.4.3.2
5.4.4
5.5
5.5.1
5.5.2
5.5.3
5.5.3.1
5.5.3.2
5.5.4
5.5.4.1
5.5.4.2
5.5.5
M6L14 and MeLis Units in Early Transition Element Cluster
Compounds
C. Perrin
Introduction
Preparation and characterization
The M 6 Lis based compounds - M' x M"M6Li 8
Electronic properties of the MeL] 8 unit
Dependence of MeLig packing on the size, charge, and
stoichiometry of the countercations
MeLi 4 based compounds - M^.MeLi4
Electronic properties of the MeLi 4 unit
MeLi 4 stacking in the various structures
Evolution of the intra-unit distances with electronic or steric
factors - comparison of MgL^ and M 6 Li 8 units
1509
1519
1521
1526
1529
1534
1538
1539
1542
1543
1545
1563
1563
1564
1565
1565
1566
1573
1573
1574
1577
Contents
5.5.5.1
5.5.5.2
5.5.5.3
5.5.5.4
5.5.6
5.5.7
5.5.8
5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.3
5.6.3.1
5.6.3.2
5.6.4
5.7
5.7.1
5.7.1.1
5.7.1.2
5.7.2
5.7.2.1
5.7.2.2
5.7.2.3
5.7.2.4
Evolution of the metal-metal intracluster bond depending
on the cluster oxidation state
Relativistic effects on M-M intracluster distances
Matrix effects of ligand size
Effects of charge on intra-unit distances
The oxyhalides in M6 cluster chemistry
Physical properties of discrete M6Li8- and MgLn-based
compounds
Concluding remarks
xxix
1579
1581
1581
1583
1584
1585
1588
Ternary Rhenium and Technetium Chalcogenides Containing
Re6 or Tc6 Clusters
1591
W. Bronger
Introduction
1591
The structural systems of the ternary chalcogenides of rhenium
and technetium
1591
Ternary chalcogenides of rhenium and technetium containing
isolated clusters
1594
Cs6Re6Si2 - a ternary rhenium chalcogenide with
two-dimensionally linked clusters
1595
Ternary chalcogenides of rhenium and technetium with threedimensionally-linked clusters
1599
Experiments and calculations for the characterization of the
binding in clusters of the ternary chalcogenides of rhenium
and technetium
1604
Magnetochemical and vibrational spectroscopic investigations . 1604
Molecular orbital calculations for the determination of the
relative stabilities of M6 clusters
1605
The 24 valence electron configuration of the Re6 cluster and
the explanation of contradictory experiments
1607
Discrete and Linked Homoatomic Clusters of the Elements
Ge, Sn, and Pb
T.F. Fdssler
Introduction
Scope
Historical background - Zintl ions and Zintl phases
Molecular clusters
Wade's Rules
Structurally characterized polyhedral clusters of group 13-15
elements
Soluble polyhedral Zintl ions of group-14 elements
Structures of homoatomic nine-atom clusters
1612
1612
1616
1616
1617
1617
1618
1618
1623
xxx
Contents
5.7.2.5
5.7.3
5.7.3.1
5.7.3.2
5.7.3.3
5.7.3.4
5.7.4
Crystal packing in compounds with nine-atom clusters
Cluster units in Ge-, Sn-, and Pb-rich intermetallic phases
Intermetallic phases containing discrete polyhedra
Intermetallic phases containing linked polyhedra
Superconductivity
Theoretical investigations of the electronic structures
Conclusion
5.8
Hexacapped Cubic Transition Metal Clusters and Derivatives a Theoretical Approach
1643
R. Gautier, J.-F. Halet and J.-Y. Saillard
Introduction
1643
Empty hexacapped cubic species
1645
Species containing interstitial transition-metal atoms
1650
Distorted metal-centered cubic M9 architectures
1653
Interstitial main group atoms
1655
Cubic cluster condensation
1656
Conclusions and comments
1659
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7
5.9
5.9.1
5.9.2
5.9.2.1
5.9.2.2
5.9.2.3
5.9.3
5.9.3.1
5.9.3.2
5.9.3.3
5.9.3.4
5.9.4
5.9.4.1
5.9.4.2
5.9.4.3
5.9.4.4
5.9.4.5
1628
1630
1630
1630
1633
1633
1637
Metallocarbohedrenes M8C12 (M = Ti, Zr, Hf, V, Nb, Cr,
Mo, Fe) and TixM',C12 ( M = Y , Zr, Hf, Nb, Ta, Mo,
W, Si, x + y = 8) - from Mass Spectrometry to
Computational Chemistry
1664
M. -M. Rohmer, M. Benard and J. -M. Poblet
Metallocarbohedrenes - organometallic fullerenes?
1664
Formation, growth and dissociation of met-cars
1666
Methods of preparation
1666
Crystal growth
1671
Dissociation pathways
1674
Physical properties of met-cars and related clusters
1676
Ionization potentials
1676
Electron affinity
1677
Collective electronic properties: delayed ionization and
delayed atomic ion emission
1678
Ion chromatography studies
1679
Chemical reactivity of met-cars and related MxCy clusters
1681
Methods of investigation
1681
Association reactions of TigCjj
1681
Reactions of niobium-containing met-cars and titanium
carbide clusters with acetone
1683
Reaction of Ti 8 Q 2 + and other met-cars with methyl iodide
1683
Oxidation-induced reactions of Ti 8 Q 2 and other metal-carbide
clusters
1685
Contents
5.9.4.6
5.9.4.7
5.9.5
5.9.5.1
5.9.5.2
5.9.5.3
5.9.6
5.9.6.1
5.9.6.2
5.9.6.3
5.9.7
6
6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4
6.5
7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
xxxi
Reactivity of V8C12+ and Nb 8 Ci 2 +
1685
Reactivity of vanadium-carbon nanocrystals
1686
Theoretical models of the pentagonal dodecahedron
1686
The earliest theoretical studies
1686
The quest for Jahn-Teller distortion
1689
The electronic ground state of dodecahedral met-cars
1690
A conformer proposed by theory - the tetracapped tetrahedron
of metal atoms
1693
Looking for different cage structures
1693
The tetracapped tetrahedron of metal atoms
1693
Pentagonal dodecahedron or capped tetrahedron - the
controversy
1704
Conclusion - more than a peak in a mass spectrum?
1707
Metal Clusters in Chemistry - Bibliography of Reviews
1988-1997
M.I. Bruce
Introduction
Books
Books on metal clusters
Compilations
Synthetic methods
Conferences
Annual surveys
Bibliography of reviews 1988/1997
Retrospective and Prospective Considerations in Cluster
Chemistry
/. Lewis
Introduction
Critique of metal-metal bonds
Metal-metal bond energies
Structure of carbonyl clusters
High nuclearity polynuclear carbonyls
Interaction of clusters and organic molecules
Preparation of cluster compounds
Conclusions
Index
1711
1711
1711
1712
1714
1714
1716
1718
1719
1755
1755
1756
1759
1760
1766
1774
1779
1781
1783
© Copyright 2026 Paperzz