Algebra 2/Trig Worksheet β Parabolas Parabola A #1 β21 odd Parabola B #2 β 22 even Parabola C #23 - 30 Find the vertex, focus and directrix of each parabola, then graph the parabola. 1. (π₯ β 1) = 8(π¦ β 2) 2. (π¦ β 5) = β 6(π₯ + 3) 3. (π¦ + 3) = β2π₯ 4. (π₯ + 1) = 4(π¦ + 7) 5. (π₯ β 6) = β4(π¦ + 3) 6. (π¦ β 5) = β12(π₯ + 1) 7. 3(π¦ β 3) β π₯ + 2 = 0 8. (π₯ + 2) + π¦ β 4 = 0 9. (π₯ + 5) β π¦ = 0 10. π₯ β 2(π¦ β 2) + 3 = 0 Parabolas have a vertex, focus and directrix. In the following problems, two of these are given. Find the third. 11. vertex (4, 2); directrix y = - 3 12. directrix y = 2; vertex (2, 4) 13. vertex (-2, 1); focus (2, 1) 14. focus (- 3, - 1); vertex (1, - 1) 15. focus (1, - 2); directrix y = 12 16. directrix x = - 6; focus (2, 0) Find the standard form of the equation of the parabola described. 17. focus (0, 0); directrix x = - 6 18. vertex (4, -4); focus (0, - 4) 19. focus (3, 4); vertex (3, -1) 20. focus (- 2, 0); directrix y = 3 21. vertex (0, 0); directrix x = - 1 22. focus (- 2, 1); vertex (- 3, 1) Find the vertex, focus and directrix of each parabola. Then graph the parabola. 23. π¦ = π₯ 24. π₯ + 8π¦ + 4π₯ β 4 = 0 25. 4π₯ = π¦ β 4π¦ 26. π¦ + 6π¦ + 2π₯ + 5 = 0 27. π₯ + 10π₯ + 16π¦ β 7 = 0 28. 4(π₯ + 1) = (π¦ + 3) 29. π₯ β 2π₯ + 2π¦ + 3 = 0 30. 31 β 4π₯ β π¦ β 2π¦ = 0
© Copyright 2026 Paperzz