Supplement - Atmos. Chem. Phys

Supplement of Atmos. Chem. Phys., 15, 10799–10809, 2015
http://www.atmos-chem-phys.net/15/10799/2015/
doi:10.5194/acp-15-10799-2015-supplement
© Author(s) 2015. CC Attribution 3.0 License.
Supplement of
The NOx dependence of bromine chemistry in the Arctic atmospheric
boundary layer
K. D. Custard et al.
Correspondence to: K. D. Custard ([email protected])
The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Table S1. Gas-phase chemical reactions used in the model. All rate constants are calculated for a
temperature of 248 K unless otherwise noted and are expressed in units of cm3 molecule-1 s-1.
(Note: C2H5CHO represents propanal and C3H7CHO represents n-butanal)
____________________________________________________________________________________________________________
Reaction
Rate Constant
Reference
____________________________________________________________________________________________________________
O(1D) + M  O(3P)
3.34 x 10-11
Ravishankara et al. [2002]
3
O( P) + O2  O3
2.12 x 10-14
Atkinson et al. [2004]
O(1D) + H2O  2OH
2.2 x 10-10
Atkinson et al. [2004]
OH + O3  HO2
3.84 x 10-14
Atkinson et al. [2004]
OH + HO2  H2O
1.34 x 10-10
Atkinson e t al. [2004]
OH + H2O2  HO2 + H2O
1.52 x 10-12
Atkinson et al. [2004]
3
OH + O( P)  O2
3.74 x 10-11
Atkinson et al. [2004]
OH + OH  H2O + O(3P)
1.74 x 10-12
Atkinson et al. [2004]
OH + OH  H2O2
1.86 x 10-11
Atkinson et al. [2004]
OH + NO3  HO2 + NO2
2.0 x 10-11
Atkinson et al. [2004]
HO2 + NO3  HNO3
4.0 x 10-12
Atkinson et al. [2004]
HO2 + O3  OH + 2O2
1.39 x 10-15
Atkinson et al. [2004]
HO2 + HO2  H2O2 + O2
2.58 x 10-12
Atkinson et al. [2004]
NO + OH  HONO
NO + HO2  NO2 + OH
NO + O3  NO2
NO + NO3  NO2 + NO2
NO2 + OH  HNO3
NO2 + HO2  HNO4
NO2 + O3  NO3
NO2 + NO3  N2O5
NO2 + CH3COOO  PAN
NO3 + NO3  NO2 + NO2
N2O5 + H2O  HNO3 + HNO3
HONO + OH  NO2 + H2O
HNO3 + OH  NO3 + H2O
HNO4 + OH  NO2 + H2O
3.49 x 10-11
9.59 x 10-12
7.09 x 10-15
2.98 x 10-11
1.2 x 10-10
f: 8.6 x 10-12 r: 1.32 x 10-4
6.15 x 10-18
f: 1.83 x 10-12 r: 3.76 x 10-5
f: 1.4 x 10-11 r: 3.1 x 10-8
4.36 x 10-17
2.6 x 10-22
3.74 x 10-12
1.5 x 10-13
6.2 x 10-12
CO + OH  HO2 + CO2
CH4 + OH  CH3OO + H2O
C2H2 + OH  C2H2OH
C2H6 + OH  C2H5OO
C2H4 + OH  C2H4OH
C3H8 + OH  nC3H7O2
C3H8 + OH  iC3H7O2
C3H6 + OH  C3H6OH
C2H5CHO + OH  Products
nC3H7O2 + NO  NO2 + C3H6O + HO2
iC3H7O2 + NO  NO2 + CH3COCH3 + HO2
nC4H10 + OH  nC4H9OO
iC4H10 + OH  CH3COCH3 + CH3OO
nC4H9OO + NO  n-Butanal + NO2 + HO2
nC4H9OO + CH3OO  n-Butanal + HCHO + HO2 + HO2
nC4H9OO + CH3OO  n-Butanal + CH3OH
nC4H9OO + CH3OO  nC4H9OH + HCHO
CH3OH + OH  CH3O
n-Butanal + OH  Products
CH3OO + HO2  CH3OOH
C2H5OO + HO2  C2H5OOH
CH3COOO + HO2  CH3COOOH
2.4 x 10-13
1.87 x 10-15
7.8 x 10-13
1.18 x 10-13
1.02 x 10-11
1.56 x 10-13
6.64 x 10-13
3.63 x 10-11
2.51 x 10-11
5.4 x 10-11
1.2 x 10-11
1.64 x 10-12
1.65 x 10-12
5.4 x 10-11
6.7 x 10-13
2.3 x 10-13
2.3 x 10-13
7.09 x 10-13
2.0 x 10-11
8.82 x 10-12
1.12 x 10-11
2.54 x 10-11
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Lurmann et al. [1986]
hahtin et al. [2003]
Harris and Kerr [1988]
Harris and Kerr [1988]
Atkinson et al. [2004]
Atkinson et al. [2004]
Eberhard et al. [1996]
Eberhard and Howard [1996]
Donahue et al. [1998]
Donahue et al. [1998]
Michalowski et al. [2000]
Michalowski et al. [2000]
Michalowski et al. [2000]
Michalowski et al. [2000]
Atkinson et al. [2004]
Michalowski et al. [2000]
Atkinson et al. [2004]
Atkinson et al. [2004]
DeMore et al. [1997]
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
C2H5OOH + OH  C2H5OO
CH3OO + CH3OO  HCHO + HO2
CH3OOH + OH  HCHO + H2O + OH
CH3OOH + OH  CH3OO + H2O
CH3OO + HO2  CH3OOH
CH3OO + NO  HCHO + HO2 + NO2
CH3OO + NO2  CH3OONO2
CH3OO + nC3H7O2  HCHO + C3H6O + HO2 + HO2
CH3OO + nC3H7O2  C3H6O + CH3OH
CH3OO + nC3H7O2  HCHO + nC3H7OH
CH3OO + iC3H7O2  HCHO + CH3COCH3 + HO2 + HO2
CH3OO + iC3H7O2  CH3COCH3 + CH3OH
CH3OO + iC3H7O2  HCHO + iC3H7OH
CH3OO + C2H5OO  CH3CHO + HCHO + HO2 + HO2
CH3OO + CH3COOO  HCHO + CH3OO + HO2
C2H5OO + NO  CH3CHO + HO2 + NO2
C2H5OO + NO2  C2H5OONO2
C2H5OO + HO2  C2H5OOH
C2H5OO + CH3COOO  CH3CHO + CH3COO + HO2
iC3H7O2 + HO2  iPerox
nC3H7O2 + HO2  nPerox
HCHO + OH  HO2 + CO
HCHO + HO2  HOCH2O2
HCHO + NO3  HNO3 + HO2 + CO
CH3CHO + OH  CH3COOO + H2O
CH3CHO + NO3  HNO3 + CH3COOO
CH3COCH3 + OH  H2O + CH3COCH2
HOCH2O2 + NO  HCOOH + HO2 + NO2
HOCH2O2 + HO2  HCOOH + H2O
HOCH2O2 + HOCH2O2  HCOOH + HCOOH + HO2 + HO2
HCOOH + OH  HO2 + H2O + CO2
CH3COOO + NO  CH3OO + NO2 + CO2
CH3COOO + HO2  CH3COOH + O3
CH3COOO + CH3COOO  CH3COO + CH3COO
C2H5OONO2  C2H5OO + NO2
CH3OONO2 CH3OO + NO2
6.0 x 10-12
3.64 x 10-13
2.54 x 10-12
6.01 x 10-12
1.01 x 10-11
8.76 x 10-12
9.63 x 10-12
6.70 x 10-13
2.3 x 10-13
2.3 x 10-13
1.2 x 10-14
4.1 x 10-15
4.1 x 10-15
2.0 x 10-13
1.58 x 10-11
8.68 x 10-12
8.8 x 10-12
9.23 x 10-12
4.0 x 10-12
9.23 x 10-12
9.23 x 10-12
9.3 x 10-12
7.53 x 10-14
5.8 x 10-16
1.98 x 10-11
1.4 x 10-15
1.37 x 10-13
8.68 x 10-12
2.0 x 10-12
1.0 x 10-13
4.0 x 10-13
2.4 x 10-11
1.87 x 10-11
2.5 x 10-11
3.2 x 10-3
3.4 x 10-3
Cl2 + OH  HOCl + Cl
Cl + O3  ClO
Cl + H2  HCl
Cl + HO2  HCl
Cl + HO2  ClO + OH
Cl + H2O2  HCl + HO2
Cl + NO3  ClO + NO2
Cl + CH4  HCl + CH3OO
Cl + C2H6  HCl + C2H5OO
Cl + C2H4  HCl + C2H5OO
Cl + MEK  HCl
Cl + C2H2  ClC2CHO
Cl + C3H6  HCl + C3H6Cl
Cl + C3H8  HCl + iC3H7O2
Cl + C3H8  HCl + nC3H7O2
Cl + C3H6O  HCl
Cl + iC4H10  HCl + C4H9
Cl + nC4H10  HCl + C4H9
Cl + n-Butanal  HCl + Products
Cl + HCHO  HCl + HO2 + CO
2.85 x 10-14
1.02 x 10-11
3.5 x 10-15
3.57 x 10-11
6.68 x 10-12
2.11 x 10-13
2.4 x 10-11
3.99 x 10-14
5.36 x 10-11
1.0 x 10-10
4.21 x 10-11
2.5 x 10-10
2.7 x 10-10
1.65 x 10-10
1.65 x 10-10
1.1 x 10-10
1.3 x 10-10
2.15 x 10-10
1.1 x 10-10
7.18 x 10-11
Atkinson et al. [2004]
Lurmann et al. [1986]
Sander and Crutzen [1996]
Sander and Crutzen [1996]
Atkinson et al. [2004]
Atkinson et al. [2004]
DeMore et al. [1997]
Lightfoot et al. [1992]
Lightfoot et al. [1992]
Lightfoot et al. [1992]
Lightfoot et al. [1992]
Lightfoot et al. [1992]
Lightfoot et al. [1992]
Kirchner and Stockwell [1996]
Kirchner and Stockwell [1996]
Lurmann et al. [1986]
Atkinson et al. [1997]
Atkinson et al. [2004]
Michalowski et al. [2000]
Michalowski et al. [2000]
Michalowski et al. [2000]
Atkinson et al. [2004]
Sander et al. [2006]
DeMore et al. [1997]
Atkinson et al. [2004]
DeMore et al. [1997]
Atkinson et al. [2004]
Lurmann et al. [1986]
Lurmann et al. [1986]
Lurmann et al. [1986]
DeMore et al. [1997]
Atkinson et al. [2004]
Kirchner and Stockwell [1996]
Kirchner and Stockwell [1996]
Atkinson et al. [1997]
Atkinson et al. [1997]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Keil and Shepson [2006]
DeMore et al. [1997]
DeMore et al. [1997]
Wallington et al. [1988]
Hooshiyar and Niki [1995]
Tyndall et al. [1997]
Michalowski et al. [2000]
Sander et al. [2006]
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
Cl + CH3CHO  HCl + CH3COOO
Cl + CH3COCH3  HCl + CH3COCH2
Cl + CH3OOH  CH3OO + HCl
Cl + CH3OOH  CH2OOH + HCl
Cl + CHBr3  HCl + Br + CBr2O
Cl + OClO  ClO + ClO
Cl + ClNO3  Cl2 + NO3
Cl + PAN  HCl + HCHO + NO3
Cl + HNO3  HCl + NO3
Cl + NO2  ClNO2
Cl + HBr  HCl + Br
ClO + O(3P)  Cl + O2
ClO + OH  Cl + HO2
ClO + OH  HCl
ClO + HO2  HOCl
ClO + CH3OO  Cl + HCHO + HO2
ClO + CH3COOO  Cl + CH3OO + CO2
ClO + NO  Cl + NO2
ClO + NO2  ClNO3
ClO + ClO  Cl2
ClO + ClO  Cl + Cl
ClO + ClO  Cl + OClO
OClO + OH  HOCl
OClO + NO  ClO + H2O
HOCl + OH  ClO + H2O
HCl + OH  Cl + H2O
ClNO3 + OH  HOCl + NO3
HOCl + O(3P)  ClO + OH
8.08 x 10-11
1.39 x 10-12
2.36 x 10-11
3.54 x 10-11
2.9 x 10-13 (at 298 K)
6.35 x 10-11
1.12 x 10-11
1.0 x 10-14
1.0 x 10-16
1.43 x 10-12 (at 298 K)
4.48 x 10-12
1.6 x 10-11
2.45 x 10-11
2.37 x 10-13
8.67 x 10-12
2.08 x 10-12
2.03 x 10-12
2.04 x 10-11
7.1 x 10-12
1.64 x 10-15
1.54 x 10-15
1.40 x 10-15
1.13 x 10-11
1.51 x 10-13
4.0 x 10-13
6.84 x 10-13
3.17 x 10-13
1.7 x 10-13
Br + O3  BrO
Br2 + OH  HOBr
Br + HO2  HBr
Br + C2H2  BrCH2CHO
Br + C2H4  HBr + C2H5OO
Br + C3H6  HBr + C3H5
Br + HCHO  HBr + CO + HO2
Br + CH3CHO  HBr + CH3COOO
Br + C2H5CHO  HBr
Br + nButanal  HBr
Br + CH3OOH  HBr + CH3OO
Br + NO2  BrNO2
Br + NO2 ↔ BrONO
6.75 x 10-13
5.0 x 10-11
1.25 x 10-12
3.7 x 10-14
1.3 x 10-13
1.60 x 10-12
6.75 x 10-13
2.8 x 10-12
9.7 x 10-12
9.7 x 10-12
4.03 x 10-15
6.3 x 10-12
f: 6.3 x 10-12 r: 0.02
Br + BrNO2  Br2 + NO2
Br + BrONO  Br2 + NO2
Br + BrNO3  Br2 + NO3
Br + OClO  BrO + ClO
BrO + O(3P)  Br
BrO + OH  Br + HO2
BrO + HO2  HOBr
BrO + CH3OO  HOBr + CH2OO
BrO + CH3OO  Br + HCHO + HO2
BrO + CH3COOO  Br + CH3COO
BrO + C3H6O  HOBr
BrO + NO  Br + NO2
BrO + NO2  BrNO3
BrO + BrO  Br + Br
5.0 x 10-11
1.0 x 10-12
4.9 x 10-11
1.43 x 10-13
4.8 x 10-11
4.93 x 10-11
3.38 x 10-11
4.1 x 10-12
1.6 x 10-12
1.7 x 10-12
1.5 x 10-14
2.48 x 10-11
1.53 x 10-11
2.82 x 10-12
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Kamboures et al. [2002]
Atkinson et al. [2004]
Sander et al. [2006]
Tsalkani et al. [1988]
Wine et al. [1988]
Ravishankara et al. [1988]
Nicovich and Wine [1990]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Sander et al. [2006]
Michalowski et al. [2000]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
Atkinson et al. [2004]
Wallington et al. [1989]
Michalowski et al. [2000]
Mallard et al. [1993]
Atkinson et al. [2006]
Atkinson et al. [2006]
Orlando and Burkholder [2000]
Orlando and Burkholder [2000]
Orlando and Burkholder [2000]
Orlando and Tyndall [1997]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Atkinson et al. [2004]
Aranda et al. [1997]
Aranda et al. [1997]
Michalowski et al. [2000]
Michalowski et al. [2000]
Atkinson et al. [2004]
Atkinson et al. [2004]
Sander et al. [2006]
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
BrO + BrO  Br2
BrO + HBr  HOBr + Br
HBr + OH  Br + H2O
CH3Br + OH  H2O + Br
CHBr3 + OH  H2O + Br
9.3 x 10-13
2.1 x 10-14
1.26 x 10-11
1.27 x 10-14
1.2 x 10-13
Sander et al. [2006]
Hansen et al. [1999]
Sander et al. [2006]
Atkinson et al. [2004]
Atkinson et al. [2004]
Cl + BrCl  Br + Cl2
f: 1.5 x 10-11 r: 1.1 x 10-15
Clyne and Cruse [1972]
Cl + Br2  BrCl + Br
f: 1.2 x 10-10 r: 3.3 x 10-1
Clyne and Cruse [1972]
BrO + ClO  Br + Cl
7.04 x 10-12
Atkinson et al. [2004]
BrO + ClO  BrCl
1.15 x 10-12
Atkinson et al. [2004]
BrO + ClO  Br + OClO
9.06 x 10-12
Atkinson et al. [2004]
HOBr + OH  BrO + H2O
5.0 x 10-13
Kukui et al. [1996]
HOBr + Cl  BrCl + OH
8.0 x 10-11
Kukui et al. [1996]
HOBr + O(3P)  BrO + OH
2.12 x 10-11
Atkinson et al. [2004]
____________________________________________________________________________________________________________
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
Table S2. Photochemical reactions. Jmax values for 25 March are shown as an example. J coefficients
are expressed in units of s-1.
____________________________________________________________________________________________________________
Reaction
Jmax 25 March
Lifetime
Source
____________________________________________________________________________________________________________
O3 + hv O2 + O(1D)
3.9 x 10-6
3.0 days
calculated from OASIS data
3
NO2 + hv NO + O( P)
8.6 x 10-3
1.9 min
calculated from OASIS data
H2O2 +hv OH + OH
3.4 x 10-6
3.4 days
calculated from OASIS data
NO3 +hv NO + O2
4.5 x 10-2
22 s
Michalowski et al. [2000]
N2O5 +hv NO2 + NO3
1.5 x 10-5
18 h
calculated from OASIS data
HONO +hv OH + NO
1.8 x 10-3
9.2 min
calculated from OASIS data
HNO3 +hv NO2 + OH
1.5 x 10-7
79 days
calculated from OASIS data
HNO4 +hv NO2 + HO2
7.3 x 10-7
16 days
calculated from OASIS data
HCHO +hv HO2 + HO2 + CO
1.5 x 10-5
19 h
calculated from OASIS data
HCHO +hv CO + H2
3.1 x 10-5
8.8 h
calculated from OASIS data
CH3CHO +hv CH3OO + HO2 + CO
1.1 x 10-6
11 days
calculated from OASIS data
CH3OOH +hv HCHO + HO2 + OH
3.2 x 10-6
3.7 days
calculated from OASIS data
C2H5CHO +hv HO2 + C2H OO + CO
1.4 x 10-6
8.3 days
calculated from OASIS data
PAN +hv CH3COOO + NO2
1.7 x 10-7
66 days
calculated from OASIS data
OClO +hv O(3P) + ClO
0.12
8.1 s
estimate from Pöhler et al. [2010]
Cl2 +hv Cl + Cl
2.1 x 10-3
8.1 min
calculated from OASIS data
ClO +hv  Cl + O(3P)
2.4 x 10-5
11 h
calculated from OASIS data
HOCl +hv  OH + Cl
1.4 x 10-4
2h
estimate from Lehrer et al. [2004]
ClNO3 +hv  Cl + NO3
2.9 x 10-5
9.5 h
calculated from OASIS data
ClNO3 +hv  ClO + NO2
3.4 x 10-6
3.4 days
calculated from OASIS data
BrNO3 +hv  Br + NO3
2.1 x 10-4
1.3 h
calculated from OASIS data
BrNO3 +hv  BrO + NO2
1.2 x 10-3
14.2 min
calculated from OASIS data
BrO +hv  Br + O(3P)
3.0 x 10-2
33 s
calculated from OASIS data
Br2 +hv  Br + Br
4.4 x 10-2
23 s
calculated from OASIS data
HOBr +hv  Br + OH
2.3 x 10-3
7.2 min
calculated from OASIS data
BrNO2 +hv  Br + NO2
5.7 x 10-3
2.9 min
estimate from Scheffler et al. [1997] &
Landgraf & Crutzen et al. [1998]
ClNO2 +hv  Cl + NO2
4.4 x 10-5
6.3 h
estimate from Ganske et al. [1992]
BrCl +hv  Br + Cl
1.26 x 10-2
1.3 min
calculated from OASIS data
____________________________________________________________________________________________________________
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
Table S3. Mass transfer reactions. All rate constants are expressed in units of s-1.
______________________________________________________________________________________
Reaction
k (forward)
k (reverse)
______________________________________________________________________________________
Particles
+
-3
HCl(g)  H (p) + Cl (p)
2.58 x 10
+
-3
HBr(g)  H (p) + Br (p)
1.80 x 10
-3
HOCl(g)  HOCl(p)
2.16 x 10
-3
HOBr(g)  HOBr(p)
1.26 x 10
-4
HOI(g)  HOI(p)
5.42 x 10
-5
OH(g)  OH(p)
3.26 x 10
-6
5
O3(g)  O3(p)
6.54 x 10
8.76 x 10
-5
7
Cl2(g)  Cl2(p)
2.69 x 10
2.96 x 10
-5
8
Br2(g)  Br2(p)
1.78 x 10
2.97 x 10
-4
10
BrCl(g)  BrCl(p)
6.60 x 10
1.91 x 10
-4
HNO3(g)  HNO3(p)
5.50 x 10
-4
N2O5(g)  N2O5(p)
1.08 x 10
-4
HONO(g)  HONO(p)
1.63 x 10
-5
PAN(g)  PAN(p)
2.05 x 10
-4
HNO4(g)  HNO4(p)
4.89 x 10
-3
ClNO2(g)  ClNO2(p)
1.26 x 10
-3
BrNO2(g)  BrNO2(p)
1.26 x 10
-3
ClNO3(g)  ClNO3(p)
1.26 x 10
-3
BrNO3(g)  BrNO3(p)
1.26 x 10
Snow
+
HBr(g)  H (s) + Br (s)
+
HCl(g)  H (s) + Cl (s)
HOBr(g)  HOBr(s)
HOCl(g)  HOCl(s)
OH(g)  OH(s)
O3(g)  O3(s)
Cl2(g)  Cl2(s)
Br2(g)  Br2(s)
BrCl(g)  BrCl(s)
HNO3(g)  HNO3(s)
N2O5(g)  N2O5(s)
HONO(g)  HONO(s)
PAN(g)  PAN(s)
HNO4(g)  HNO4(s)
ClNO2(g)  ClNO2(s)
BrNO2(g)  BrNO2(s)
ClNO3(g)  ClNO3(s)
BrNO3(g)  BrNO3(s)
-5
1.67 x 10
-5
1.67 x 10
-5
1.67 x 10
-5
1.67 x 10
-6
1.67 x 10
-6
1.67 x 10
-6
8.0 x 10
-5
1.0 x 10
-5
1.25 x 10
-5
1.67 x 10
-5
1.67 x 10
-5
1.67 x 10
-5
1.67 x 10
-5
1.67 x 10
-4
1.67 x 10
-4
1.67 x 10
-4
1.67 x 10
-4
1.67 x 10
-2
7.71 x 10
-2
7.71 x 10
-2
7.71 x 10
285
______________________________________________________________________
286
287
288
289
290
291
Table S4. Aqueous-phase reactions in the model. All aqueous reaction rate constants are converted to
units consistent to the gas-phase reactions to be read by the modeling program. For snow surface
reactions the measured aqueous phase reactions are divided by a conversion factor of 0.005 which
represents the liquid volume per snow surface cm2. For the particle reactions the measured aqueous
phase reactions are divided by 1.67x10-7 which represents the liquid volume conversion factor divided
by the height of the boundary layer, as in Michalowski et al. (2000)
292
293
294
* Third order rate constant, expressed in units of cm6·molecule-2·s-1
† second order rate constant, expressed in units of cm3·molecule-1·s-1
‡ first order rate constant, expressed in units of s-1
295
Reaction
Cl- + HOBr + H+ → BrCl *
Br- + HOCl + H+ → BrCl *
Br- + HOBr + H+ → Br2 *
Cl- + HOCl + H+ → Cl2 *
BrCl + Cl- → BrCl2- †
BrCl2- → BrCl + Cl- ‡
BrCl + Br- → Br2Cl- †
Br2Cl- →BrCl + Br- ‡
k (actual)
1.55 x 10-32
3.59 x 10-36
4.41 x 10 -32
6.07 x 10-38
1 x 10-11
1.58 x 109
1 x 10-11
3.34 x 105
k (particle)
5.17 x 10-21
1.2 x 10-24
1.47 x 10-20
2.02 x 10-26
3.3
1.58 x 109
3.3
3.34 x 105
k (snow)
9.30 x 10-26
2.15 x 10-29
2.64 x 10-25
3.63 x 10-31
5.99 x 10-5
1.58 x 109
5.99 x 10-5
3.34 x 105
Reference
(Wang et al., 1994)
(Sander et al., 1997)
(Beckwith et al., 1996)
(Wang and Margerum,
1994)
(Michalowski et al., 2000)
(Michalowski et al., 2000)
(Michalowski et al., 2000)
(Michalowski
et
al.,
2000;Wang et al., 1994)
296
297
298
299
300
301
302
303
304
305
306
Cl2 + Br- → BrCl2- †
1.28 x 10-11
4.27
7.66 x 10-5
BrCl2- → Cl2 + Br- ‡
6.94 x 102
6.94 x 102
6.94 x 102
O3 + Br- → HOBr †
OH + Cl- → HOCl †
N2O5 + Cl- → ClNO2 †
ClNO2 + H+ + Cl- → Cl2 †
1.35 x 10-20
1.35 x 10-20
1.66 x 10-12
1.66 x 10-14
4.5 x 10-9
4.5 x 10-9
5.5 x 10-1
5.5 x 10-3
8.08 x 10-14
8.08 x 10-14
9.94 x 10-5
9.94 x 10-8
N2O5 + Br- → BrNO2 †
BrNO2 + H+ + Br- → Br2 †
1.66 x 10-12
7.31 x 10-17
5.5 x 10-1
2.44 x 10-5
9.94 x 10-5
4.38 x 10-10
(Michalowski et al.,
2000;Beckwith et al.,
1996;Wang et al., 1994)
(Michalowski et al.,
2000;Wang et al., 1994)
(Michalowski et al., 2000)
assumed same as O3 + Brassume diffusion limited
estimated from (Roberts et
al., 2008)
assume diffusion limited
estimated from (Schweitzer
et al., 1998)
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
Table S5. Summary of the ambient measurements from OASIS that were used to constrain the model
and the instrumental method used. Constrained parameters were input into the model at 10 minute
intervals.
Measured Species
O3 and NOx
Method
Chemiluminescence
HONO
CO
Cl2 and Br2
HCHO
Long Path Absorption Photometer
CO Monitor
CIMS
Tunable Diode Laser Absorption
Spectroscopy
Online GC-MS
CH3CHO, CH3COCH3, MEK,
n-C4H10, i-C4H10, C2H5CHO
C2H2, C2H4, C2H6, C3H8,
n-C4H10, i-C4H10
Photolysis Frequencies
Method Reference
Ridley et al. [1992];
Ryerson et al. [2000];
Weinheimer et al., [1998]
Villena et al., [2011]
Liao et al. [2011, 2012]
Fried et al., [2003];
Lancaster et al. [2000]
Apel et al. [2010]
Canister samples, offline GC-MS
Russo et al. [2010]
Spectral Actinic Flux Density
Shetter and Muller et al. [1999]
331
332
333
Figure S1. 5 minute averages of observed concentrations of Br2 and NOx from OASIS 2009. It
should be noted that the Br2 axis has pptv units and the NOx axis has ppbv units.
334
335
(DeMore et al., 1997;Lightfoot et al., 1992;Ravishankara et al., 1988;Ravishankara et al., 2002;Sander et
al., 2006)
336
337
338
339
340
341
342
343
344
345
(Atkinson et al., 2004;Lehrer et al., 2004;Orlando and Tyndall, 1996;Lurmann et al., 1986;Vakhtin et al.,
2003;Harris and Kerr, 1988;Eberhard et al., 1996;Eberhard and Howard, 1996;Donahue et al.,
1998;Kirchner and Stockwell, 1996;Kukui et al., 1996;Keil and Shepson, 2006;Wallington et al.,
1988;Wallington et al., 1989;Apel et al., 2010;Tyndall et al., 1997;Kamboures et al., 2002;Tsalkani et al.,
1988;Nicovich and Wine, 1990;Wine et al., 1988;Lancaster et al., 2000;Russo et al., 2010;Shetter and
Muller, 1999;Mallard et al., 1993;Orlando and Burkholder, 2000;Aranda et al., 1997;Clyne and Cruse,
1972;Pohler et al., 2010;Ganske et al., 1992;Ridley et al., 1992;Weinheimer et al., 1998;Ryerson et al.,
2000;Villena et al., 2011;Liao et al., 2011;Liao et al., 2012;Fried et al., 2003)
346
347
348
349
(Sander and Crutzen, 1996;Hooshiyar and Niki, 1995)
350
351
352
353
Figure S2. Simulated BrONO2 mole ratio (low NOx & high NOx cases) plotted against the
production rate of BrONO2.
354
355
356
357
358
359
360
361
Apel, E. C., Emmons, L. K., Karl, T., Flocke, F., Hills, A. J., Madronich, S., Lee-Taylor, J.,
Fried, A., Weibring, P., Walega, J., Richter, D., Tie, X., Mauldin, L., Campos, T., Weinheimer,
A., Knapp, D., Sive, B., Kleinman, L., Springston, S., Zaveri, R., Ortega, J., Voss, P., Blake, D.,
Baker, A., Warneke, C., Welsh-Bon, D., de Gouw, J., Zheng, J., Zhang, R., Rudolph, J.,
Junkermann, W., and Riemer, D. D.: Chemical evolution of volatile organic compounds in the
outflow of the Mexico City Metropolitan area, Atmospheric Chemistry and Physics, 10, 23532375, 2010.
362
363
364
Aranda, A., LeBras, G., LaVerdet, G., and Poulet, G.: The BrO+Ch3O2 reaction: Kinetics and
role in the atmospheric ozone budget, Geophysical Research Letters, 24, 2745-2748,
10.1029/97gl02686, 1997.
365
366
367
368
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric
chemistry: Volume I - gas phase reactions of O-x, HOx, NOx and SOx species, Atmospheric
Chemistry and Physics, 4, 1461-1738, 2004.
369
370
Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine
hydrolysis, Inorganic Chemistry, 35, 995-1000, 10.1021/ic950909w, 1996.
371
372
373
Clyne, M. A. A., and Cruse, H. W.: Atomic resonance fluorescence spectrometry for rate
constants of rapid bimolecular reactions .1. Reactions O+NO2, Cl+ClNO,Br+CINO, Journal of
the Chemical Society-Faraday Transactions Ii, 68, 1281-&, 10.1039/f29726801281, 1972.
374
375
376
377
DeMore, W. B., Sander, S., Golden, D., Hampson, R., Kurylo, M., Howard, C., Ravishankara,
A., Kolb, C., Molina, M., and T, C. I. o.: Jet Propulsion Lab., Pasadena (1997), Chemical
kinetics and photochemical data for use in stratospheric modeling, Jet Propulsion Lab.,
California Inst. of Tech., Pasadena, CA 1997.
378
379
380
Donahue, N. M., Anderson, J. G., and Demerjian, K. L.: New rate constants for ten OH alkane
reactions from 300 to 400 K: An assessment of accuracy, Journal of Physical Chemistry A, 102,
3121-3126, 10.1021/jp980532q, 1998.
381
382
383
Eberhard, J., and Howard, C. J.: Temperature-dependent kinetics studies of the reactions of
C2H5O2 and n-C3H7O2 radicals with NO, International Journal of Chemical Kinetics, 28, 731740, 10.1002/(sici)1097-4601(1996)28:10<731::aid-kin3>3.0.co;2-o, 1996.
384
385
386
Eberhard, J., Villalta, P. W., and Howard, C. J.: Reaction of isopropyl peroxy radicals with NO
over the temperature range 201-401 K, Journal of Physical Chemistry, 100, 993-997,
10.1021/jp951824j, 1996.
387
388
389
390
391
392
Fried, A., Crawford, J., Olson, J., Walega, J., Potter, W., Wert, B., Jordan, C., Anderson, B.,
Shetter, R., Lefer, B., Blake, D., Blake, N., Meinardi, S., Heikes, B., O'Sullivan, D., Snow, J.,
Fuelberg, H., Kiley, C. M., Sandholm, S., Tan, D., Sachse, G., Singh, H., Faloona, I., Harward,
C. N., and Carmichael, G. R.: Airborne tunable diode laser measurements of formaldehyde
during TRACE-P: Distributions and box model comparisons, Journal of Geophysical ResearchAtmospheres, 108, 23, 10.1029/2003jd003451, 2003.
393
394
395
Ganske, J. A., Berko, H. N., and Finlaysonpitts, B. J.: Absorption cross-section for gaseous
ClNO2 and Cl2 at 298-K - potential organic oxidant source in the marine troposphere, Journal of
Geophysical Research-Atmospheres, 97, 7651-7656, 1992.
396
397
Hansen, J. C., Li, Y. M., Li, Z. J., and Francisco, J. S.: On the mechanism of the BrO plus HBr
reaction, Chemical Physics Letters, 314, 341-346, 10.1016/s0009-2614(99)01093-3, 1999.
398
399
400
Harris, S. J., and Kerr, J. A.: Relative rate measurements of some reactions of hydroxyl radicals
with alkanes studied under atmospheric conditions, International Journal of Chemical Kinetics,
20, 939-955, 10.1002/kin.550201203, 1988.
401
402
403
Hooshiyar, P. A., and Niki, H.: Rate constants for the gas-phase reactions of Cl-atoms with C2C8 alkanes at T=296 +/-2K, International Journal of Chemical Kinetics, 27, 1197-1206,
10.1002/kin.550271206, 1995.
404
405
406
Kamboures, M. A., Hansen, J. C., and Francisco, J. S.: A study of the kinetics and mechanisms
involved in the atmospheric degradation of bromoform by atomic chlorine, Chemical Physics
Letters, 353, 335-344, 10.1016/s0009-2614(01)01439-7, 2002.
407
408
409
Keil, A. D., and Shepson, P. B.: Chlorine and bromine atom ratios in the springtime Arctic
troposphere as determined from measurements of halogenated volatile organic compounds,
Journal of Geophysical Research-Atmospheres, 111, 11, 10.1029/2006jd007119, 2006.
410
411
412
Kirchner, F., and Stockwell, W. R.: Effect of peroxy radical reactions on the predicted
concentrations of ozone, nitrogenous compounds, and radicals, Journal of Geophysical ResearchAtmospheres, 101, 21007-21022, 10.1029/96jd01519, 1996.
413
414
415
Kukui, A., Kirchner, U., Benter, T., and Schindler, R. N.: A gaskinetic investigation of HOBr
reactions with Cl(P-2), O(P-3) and OH((2)Pi). The reaction of BrCl with OH((2)Pi), Berichte
Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 100, 455-461, 1996.
416
417
418
Lancaster, D. G., Fried, A., Wert, B., Henry, B., and Tittel, F. K.: Difference-frequency-based
tunable absorption spectrometer for detection of atmospheric formaldehyde, Applied Optics, 39,
4436-4443, 10.1364/ao.39.004436, 2000.
419
420
421
Landgraf, J., and Crutzen, P. J.: An efficient method for online calculations of photolysis and
heating rates, Journal of the Atmospheric Sciences, 55, 863-878, 10.1175/15200469(1998)055<0863:aemfoc>2.0.co;2, 1998.
422
423
424
Lehrer, E., Honninger, G., and Platt, U.: A one dimensional model study of the mechanism of
halogen liberation and vertical transport in the polar troposphere, Atmospheric Chemistry and
Physics, 4, 2427-2440, 2004.
425
426
427
428
429
430
Liao, J., Sihler, H., Huey, L., Neuman, J., Tanner, D., Friess, U., Platt, U., Flocke, F., Orlando,
J., Shepson, P., Beine, H., Weinheimer, A., Sjostedt, S., Nowak, J., Knapp, D., Staebler, R.,
Zheng, W., Sander, R., Hall, S., and Ullmann, K.: A comparison of Arctic BrO measurements by
chemical ionization mass spectrometry and long path-differential optical absorption
spectroscopy, Journal of Geophysical Research-Atmospheres, 116, 10.1029/2010JD014788,
2011.
431
432
433
434
435
Liao, J., Huey, L., Tanner, D., Flocke, F., Orlando, J., Neuman, J., Nowak, J., Weinheimer, A.,
Hall, S., Smith, J., Fried, A., Staebler, R., Wang, Y., Koo, J., Cantrell, C., Weibring, P., Walega,
J., Knapp, D., Shepson, P., and Stephens, C.: Observations of inorganic bromine (HOBr, BrO,
and Br-2) speciation at Barrow, Alaska, in spring 2009, Journal of Geophysical ResearchAtmospheres, 117, 10.1029/2011JD016641, 2012.
436
437
438
439
Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E.,
Moortgat, G. K., and Zabel, F.: Organic peroxy-radicals - kinetics, spectroscopy and
tropospheric chemistry, Atmospheric Environment Part a-General Topics, 26, 1805-1961,
10.1016/0960-1686(92)90423-i, 1992.
440
441
442
Lurmann, F. W., Lloyd, A. C., and Atkinson, R.: A chemical mechanism for use in long-range
transport acid deposition computer modeling, Journal of Geophysical Research-Atmospheres, 91,
905-936, 10.1029/JD091iD10p10905, 1986.
443
444
445
Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST Chemical
Kinetics Database: Version 5.0 National Institute of Standards and Technology, Gaithersburg,
MD. , 1993.
446
447
448
Michalowski, B., Francisco, J., Li, S., Barrie, L., Bottenheim, J., and Shepson, P.: A computer
model study of multiphase chemistry in the Arctic boundary layer during polar sunrise, Journal
of Geophysical Research-Atmospheres, 105, 15131-15145, 10.1029/2000JD900004, 2000.
449
450
Nicovich, J. M., and Wine, P. H.: Kinetics of the reactions of O(3P) and Cl(2P) with HBr and
Br2, International Journal of Chemical Kinetics, 22, 379-397, 10.1002/kin.550220406, 1990.
451
452
453
Orlando, J. J., and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO2
and the heat of formation of BrONO2, Journal of Physical Chemistry, 100, 19398-19405,
10.1021/jp9620274, 1996.
454
455
456
Orlando, J. J., and Burkholder, J. B.: Identification of BrONO as the major product in the gasphase reaction of Br with NO2, Journal of Physical Chemistry A, 104, 2048-2053,
10.1021/jp993713g, 2000.
457
458
459
460
Pohler, D., Vogel, L., Friess, U., and Platt, U.: Observation of halogen species in the Amundsen
Gulf, Arctic, by active long-path differential optical absorption spectroscopy, Proceedings of the
National Academy of Sciences of the United States of America, 107, 6582-6587,
10.1073/pnas.0912231107, 2010.
461
462
Ravishankara, A. R., Smith, G. J., and Davis, D. D.: A kinetics study of the reaction of Cl with
NO2, International Journal of Chemical Kinetics, 20, 811-814, 10.1002/kin.550201005, 1988.
463
464
465
466
Ravishankara, A. R., Dunlea, E. J., Blitz, M. A., Dillon, T. J., Heard, D. E., Pilling, M. J.,
Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Redetermination of the rate coefficient for
the reaction of O(D-1) with N-2, Geophysical Research Letters, 29, 4, 10.1029/2002gl014850,
2002.
467
468
469
Ridley, B. A., Grahek, F. E., and Walega, J. G.: A small, high-sensitivity, medium-response
ozone detector suitable for measurements from light aircraft, Journal of Atmospheric and
Oceanic Technology, 9, 142-148, 10.1175/1520-0426(1992)009<0142:ashsmr>2.0.co;2, 1992.
470
471
Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.: N2O5 oxidizes chloride to
Cl-2 in acidic atmospheric aerosol, Science, 321, 1059-1059, 10.1126/science.1158777, 2008.
472
473
474
475
Russo, R. S., Zhou, Y., White, M. L., Mao, H., Talbot, R., and Sive, B. C.: Multi-year (20042008) record of nonmethane hydrocarbons and halocarbons in New England: seasonal variations
and regional sources, Atmospheric Chemistry and Physics, 10, 4909-4929, 10.5194/acp-104909-2010, 2010.
476
477
478
Ryerson, T. B., Williams, E. J., and Fehsenfeld, F. C.: An efficient photolysis system for fastresponse NO2 measurements, Journal of Geophysical Research-Atmospheres, 105, 2644726461, 10.1029/2000jd900389, 2000.
479
480
481
Sander, R., and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction
in polluted air masses transported to the sea, Journal of Geophysical Research-Atmospheres,
101, 9121-9138, 10.1029/95jd03793, 1996.
482
483
484
Sander, R., Vogt, R., Harris, G., and Crutzen, P.: Modeling the chemistry ozone, halogen
compounds, and hydrocarbons in the arctic troposphere during spring, Tellus Series B-Chemical
and Physical Meteorology, 49, 522-532, 10.1034/j.1600-0889.49.issue5.8.x, 1997.
485
486
487
Sander, S. P., Golden, D., Kurylo, M., Moortgat, G., Wine, P., Ravishankara, A., Kolb, C.,
Molina, M., Finlayson-Pitts, B., and Huie, R.: Chemical kinetics and photochemical data for use
in atmospheric studies evaluation number 15 2006.
488
489
490
Scheffler, D., Grothe, H., Willner, H., Frenzel, A., and Zetzsch, C.: Properties of pure nitryl
bromide. Thermal behavior, UV/Vs and FTIR spectra, and photoisomerization to trans-BrONO
in an argon matrix, Inorganic Chemistry, 36, 335-338, 10.1021/ic9606946, 1997.
491
492
Schweitzer, F., Mirabel, P., and George, C.: Multiphase chemistry of N2O5, ClNO2, and
BrNO2, Journal of Physical Chemistry A, 102, 3942-3952, 10.1021/jp980748s, 1998.
493
494
495
496
Shetter, R. E., and Muller, M.: Photolysis frequency measurements using actinic flux
spectroradiometry during the PEM-Tropics mission: Instrumentation description and some
results, Journal of Geophysical Research-Atmospheres, 104, 5647-5661, 10.1029/98jd01381,
1999.
497
498
499
Tsalkani, N., Mellouki, A., Poulet, G., Toupance, G., and Lebras, G.: Rate constants
measurements for the reactions of OH and Cl with peroxyacetyl nitrate at 298 K, Journal of
Atmospheric Chemistry, 7, 409-419, 10.1007/bf00058713, 1988.
500
501
502
Tyndall, G. S., Orlando, J. J., Wallington, T. J., Dill, M., and Kaiser, E. W.: Kinetics and
mechanisms of the reactions of chlorine atoms with ethane, propane, and n-butane, International
Journal of Chemical Kinetics, 29, 43-55, 1997.
503
504
505
Vakhtin, A. B., Murphy, J. E., and Leone, S. R.: Low-temperature kinetics of reactions of OH
radical with ethene, propene, and 1-butene, Journal of Physical Chemistry A, 107, 10055-10062,
10.1021/jp030230a, 2003.
506
507
508
509
510
Villena, G., Wiesen, P., Cantrell, C., Flocke, F., Fried, A., Hall, S., Hornbrook, R., Knapp, D.,
Kosciuch, E., Mauldin, R., McGrath, J., Montzka, D., Richter, D., Ullmann, K., Walega, J.,
Weibring, P., Weinheimer, A., Staebler, R., Liao, J., Huey, L., and Kleffmann, J.: Nitrous acid
(HONO) during polar spring in Barrow, Alaska: A net source of OH radicals?, Journal of
Geophysical Research-Atmospheres, 116, 10.1029/2011JD016643, 2011.
511
512
513
Wallington, T. J., Skewes, L. M., Siegl, W. O., Wu, C. H., and Japar, S. M.: Gas phase reaction
of Cl atoms with a series of oxygenated organic species at 295 K, International Journal of
Chemical Kinetics, 20, 867-875, 10.1002/kin.550201105, 1988.
514
515
516
Wallington, T. J., Skewes, L. M., Siegl, W. O., and Japar, S. M.: A relative rate study of the
reaction of bromine atoms with a variety of organic compounds at 295 K, International Journal
of Chemical Kinetics, 21, 1069-1076, 10.1002/kin.550211108, 1989.
517
518
519
Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium,
Kinetic, and UV-Spectral Characteristics of Aqueous Bromine Chloride, Bromine, and Chlorine
Species, Inorganic Chemistry, 33, 5872-5878, 10.1021/ic00103a040, 1994.
520
521
522
Wang, T. X., and Margerum, D. W.: Kinetics of Reversible Chlorine Hydrolysis: Temperature
Dependence and General-Acid/Base-Assisted Mechanisms, Inorganic Chemistry, 33, 1050-1055,
10.1021/ic00084a014, 1994.
523
524
525
526
527
528
529
530
Weinheimer, A. J., Montzka, D. D., Campos, T. L., Walega, J. G., Ridley, B. A., Donnelly, S.
G., Keim, E. R., Del Negro, L. A., Proffitt, M. H., Margitan, J. J., Boering, K. A., Andrews, A.
E., Daube, B. C., Wofsy, S. C., Anderson, B. E., Collins, J. E., Sachse, G. W., Vay, S. A., Elkins,
J. W., Wamsley, P. R., Atlas, E. L., Flocke, F., Schauffler, S., Webster, C. R., May, R. D.,
Loewenstein, M., Podolske, J. R., Bui, T. P., Chan, K. R., Bowen, S. W., Schoeberl, M. R., Lait,
L. R., and Newman, P. A.: Comparison between DC-8 and ER-2 species measurements in the
tropical middle troposphere: NO, NOy, O-3, CO2, CH4, and N2O, Journal of Geophysical
Research-Atmospheres, 103, 22087-22096, 10.1029/98jd01421, 1998.
531
532
Wine, P. H., Wells, J. R., and Nicovich, J. M.: Kinetics of the reaction of F(2P) and Cl(2P) with
HNO3, Journal of Physical Chemistry, 92, 2223-2228, 10.1021/j100319a028, 1988.
533