Supplement of Atmos. Chem. Phys., 15, 10799–10809, 2015 http://www.atmos-chem-phys.net/15/10799/2015/ doi:10.5194/acp-15-10799-2015-supplement © Author(s) 2015. CC Attribution 3.0 License. Supplement of The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer K. D. Custard et al. Correspondence to: K. D. Custard ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 Table S1. Gas-phase chemical reactions used in the model. All rate constants are calculated for a temperature of 248 K unless otherwise noted and are expressed in units of cm3 molecule-1 s-1. (Note: C2H5CHO represents propanal and C3H7CHO represents n-butanal) ____________________________________________________________________________________________________________ Reaction Rate Constant Reference ____________________________________________________________________________________________________________ O(1D) + M O(3P) 3.34 x 10-11 Ravishankara et al. [2002] 3 O( P) + O2 O3 2.12 x 10-14 Atkinson et al. [2004] O(1D) + H2O 2OH 2.2 x 10-10 Atkinson et al. [2004] OH + O3 HO2 3.84 x 10-14 Atkinson et al. [2004] OH + HO2 H2O 1.34 x 10-10 Atkinson e t al. [2004] OH + H2O2 HO2 + H2O 1.52 x 10-12 Atkinson et al. [2004] 3 OH + O( P) O2 3.74 x 10-11 Atkinson et al. [2004] OH + OH H2O + O(3P) 1.74 x 10-12 Atkinson et al. [2004] OH + OH H2O2 1.86 x 10-11 Atkinson et al. [2004] OH + NO3 HO2 + NO2 2.0 x 10-11 Atkinson et al. [2004] HO2 + NO3 HNO3 4.0 x 10-12 Atkinson et al. [2004] HO2 + O3 OH + 2O2 1.39 x 10-15 Atkinson et al. [2004] HO2 + HO2 H2O2 + O2 2.58 x 10-12 Atkinson et al. [2004] NO + OH HONO NO + HO2 NO2 + OH NO + O3 NO2 NO + NO3 NO2 + NO2 NO2 + OH HNO3 NO2 + HO2 HNO4 NO2 + O3 NO3 NO2 + NO3 N2O5 NO2 + CH3COOO PAN NO3 + NO3 NO2 + NO2 N2O5 + H2O HNO3 + HNO3 HONO + OH NO2 + H2O HNO3 + OH NO3 + H2O HNO4 + OH NO2 + H2O 3.49 x 10-11 9.59 x 10-12 7.09 x 10-15 2.98 x 10-11 1.2 x 10-10 f: 8.6 x 10-12 r: 1.32 x 10-4 6.15 x 10-18 f: 1.83 x 10-12 r: 3.76 x 10-5 f: 1.4 x 10-11 r: 3.1 x 10-8 4.36 x 10-17 2.6 x 10-22 3.74 x 10-12 1.5 x 10-13 6.2 x 10-12 CO + OH HO2 + CO2 CH4 + OH CH3OO + H2O C2H2 + OH C2H2OH C2H6 + OH C2H5OO C2H4 + OH C2H4OH C3H8 + OH nC3H7O2 C3H8 + OH iC3H7O2 C3H6 + OH C3H6OH C2H5CHO + OH Products nC3H7O2 + NO NO2 + C3H6O + HO2 iC3H7O2 + NO NO2 + CH3COCH3 + HO2 nC4H10 + OH nC4H9OO iC4H10 + OH CH3COCH3 + CH3OO nC4H9OO + NO n-Butanal + NO2 + HO2 nC4H9OO + CH3OO n-Butanal + HCHO + HO2 + HO2 nC4H9OO + CH3OO n-Butanal + CH3OH nC4H9OO + CH3OO nC4H9OH + HCHO CH3OH + OH CH3O n-Butanal + OH Products CH3OO + HO2 CH3OOH C2H5OO + HO2 C2H5OOH CH3COOO + HO2 CH3COOOH 2.4 x 10-13 1.87 x 10-15 7.8 x 10-13 1.18 x 10-13 1.02 x 10-11 1.56 x 10-13 6.64 x 10-13 3.63 x 10-11 2.51 x 10-11 5.4 x 10-11 1.2 x 10-11 1.64 x 10-12 1.65 x 10-12 5.4 x 10-11 6.7 x 10-13 2.3 x 10-13 2.3 x 10-13 7.09 x 10-13 2.0 x 10-11 8.82 x 10-12 1.12 x 10-11 2.54 x 10-11 Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Lurmann et al. [1986] hahtin et al. [2003] Harris and Kerr [1988] Harris and Kerr [1988] Atkinson et al. [2004] Atkinson et al. [2004] Eberhard et al. [1996] Eberhard and Howard [1996] Donahue et al. [1998] Donahue et al. [1998] Michalowski et al. [2000] Michalowski et al. [2000] Michalowski et al. [2000] Michalowski et al. [2000] Atkinson et al. [2004] Michalowski et al. [2000] Atkinson et al. [2004] Atkinson et al. [2004] DeMore et al. [1997] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 C2H5OOH + OH C2H5OO CH3OO + CH3OO HCHO + HO2 CH3OOH + OH HCHO + H2O + OH CH3OOH + OH CH3OO + H2O CH3OO + HO2 CH3OOH CH3OO + NO HCHO + HO2 + NO2 CH3OO + NO2 CH3OONO2 CH3OO + nC3H7O2 HCHO + C3H6O + HO2 + HO2 CH3OO + nC3H7O2 C3H6O + CH3OH CH3OO + nC3H7O2 HCHO + nC3H7OH CH3OO + iC3H7O2 HCHO + CH3COCH3 + HO2 + HO2 CH3OO + iC3H7O2 CH3COCH3 + CH3OH CH3OO + iC3H7O2 HCHO + iC3H7OH CH3OO + C2H5OO CH3CHO + HCHO + HO2 + HO2 CH3OO + CH3COOO HCHO + CH3OO + HO2 C2H5OO + NO CH3CHO + HO2 + NO2 C2H5OO + NO2 C2H5OONO2 C2H5OO + HO2 C2H5OOH C2H5OO + CH3COOO CH3CHO + CH3COO + HO2 iC3H7O2 + HO2 iPerox nC3H7O2 + HO2 nPerox HCHO + OH HO2 + CO HCHO + HO2 HOCH2O2 HCHO + NO3 HNO3 + HO2 + CO CH3CHO + OH CH3COOO + H2O CH3CHO + NO3 HNO3 + CH3COOO CH3COCH3 + OH H2O + CH3COCH2 HOCH2O2 + NO HCOOH + HO2 + NO2 HOCH2O2 + HO2 HCOOH + H2O HOCH2O2 + HOCH2O2 HCOOH + HCOOH + HO2 + HO2 HCOOH + OH HO2 + H2O + CO2 CH3COOO + NO CH3OO + NO2 + CO2 CH3COOO + HO2 CH3COOH + O3 CH3COOO + CH3COOO CH3COO + CH3COO C2H5OONO2 C2H5OO + NO2 CH3OONO2 CH3OO + NO2 6.0 x 10-12 3.64 x 10-13 2.54 x 10-12 6.01 x 10-12 1.01 x 10-11 8.76 x 10-12 9.63 x 10-12 6.70 x 10-13 2.3 x 10-13 2.3 x 10-13 1.2 x 10-14 4.1 x 10-15 4.1 x 10-15 2.0 x 10-13 1.58 x 10-11 8.68 x 10-12 8.8 x 10-12 9.23 x 10-12 4.0 x 10-12 9.23 x 10-12 9.23 x 10-12 9.3 x 10-12 7.53 x 10-14 5.8 x 10-16 1.98 x 10-11 1.4 x 10-15 1.37 x 10-13 8.68 x 10-12 2.0 x 10-12 1.0 x 10-13 4.0 x 10-13 2.4 x 10-11 1.87 x 10-11 2.5 x 10-11 3.2 x 10-3 3.4 x 10-3 Cl2 + OH HOCl + Cl Cl + O3 ClO Cl + H2 HCl Cl + HO2 HCl Cl + HO2 ClO + OH Cl + H2O2 HCl + HO2 Cl + NO3 ClO + NO2 Cl + CH4 HCl + CH3OO Cl + C2H6 HCl + C2H5OO Cl + C2H4 HCl + C2H5OO Cl + MEK HCl Cl + C2H2 ClC2CHO Cl + C3H6 HCl + C3H6Cl Cl + C3H8 HCl + iC3H7O2 Cl + C3H8 HCl + nC3H7O2 Cl + C3H6O HCl Cl + iC4H10 HCl + C4H9 Cl + nC4H10 HCl + C4H9 Cl + n-Butanal HCl + Products Cl + HCHO HCl + HO2 + CO 2.85 x 10-14 1.02 x 10-11 3.5 x 10-15 3.57 x 10-11 6.68 x 10-12 2.11 x 10-13 2.4 x 10-11 3.99 x 10-14 5.36 x 10-11 1.0 x 10-10 4.21 x 10-11 2.5 x 10-10 2.7 x 10-10 1.65 x 10-10 1.65 x 10-10 1.1 x 10-10 1.3 x 10-10 2.15 x 10-10 1.1 x 10-10 7.18 x 10-11 Atkinson et al. [2004] Lurmann et al. [1986] Sander and Crutzen [1996] Sander and Crutzen [1996] Atkinson et al. [2004] Atkinson et al. [2004] DeMore et al. [1997] Lightfoot et al. [1992] Lightfoot et al. [1992] Lightfoot et al. [1992] Lightfoot et al. [1992] Lightfoot et al. [1992] Lightfoot et al. [1992] Kirchner and Stockwell [1996] Kirchner and Stockwell [1996] Lurmann et al. [1986] Atkinson et al. [1997] Atkinson et al. [2004] Michalowski et al. [2000] Michalowski et al. [2000] Michalowski et al. [2000] Atkinson et al. [2004] Sander et al. [2006] DeMore et al. [1997] Atkinson et al. [2004] DeMore et al. [1997] Atkinson et al. [2004] Lurmann et al. [1986] Lurmann et al. [1986] Lurmann et al. [1986] DeMore et al. [1997] Atkinson et al. [2004] Kirchner and Stockwell [1996] Kirchner and Stockwell [1996] Atkinson et al. [1997] Atkinson et al. [1997] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Keil and Shepson [2006] DeMore et al. [1997] DeMore et al. [1997] Wallington et al. [1988] Hooshiyar and Niki [1995] Tyndall et al. [1997] Michalowski et al. [2000] Sander et al. [2006] 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 Cl + CH3CHO HCl + CH3COOO Cl + CH3COCH3 HCl + CH3COCH2 Cl + CH3OOH CH3OO + HCl Cl + CH3OOH CH2OOH + HCl Cl + CHBr3 HCl + Br + CBr2O Cl + OClO ClO + ClO Cl + ClNO3 Cl2 + NO3 Cl + PAN HCl + HCHO + NO3 Cl + HNO3 HCl + NO3 Cl + NO2 ClNO2 Cl + HBr HCl + Br ClO + O(3P) Cl + O2 ClO + OH Cl + HO2 ClO + OH HCl ClO + HO2 HOCl ClO + CH3OO Cl + HCHO + HO2 ClO + CH3COOO Cl + CH3OO + CO2 ClO + NO Cl + NO2 ClO + NO2 ClNO3 ClO + ClO Cl2 ClO + ClO Cl + Cl ClO + ClO Cl + OClO OClO + OH HOCl OClO + NO ClO + H2O HOCl + OH ClO + H2O HCl + OH Cl + H2O ClNO3 + OH HOCl + NO3 HOCl + O(3P) ClO + OH 8.08 x 10-11 1.39 x 10-12 2.36 x 10-11 3.54 x 10-11 2.9 x 10-13 (at 298 K) 6.35 x 10-11 1.12 x 10-11 1.0 x 10-14 1.0 x 10-16 1.43 x 10-12 (at 298 K) 4.48 x 10-12 1.6 x 10-11 2.45 x 10-11 2.37 x 10-13 8.67 x 10-12 2.08 x 10-12 2.03 x 10-12 2.04 x 10-11 7.1 x 10-12 1.64 x 10-15 1.54 x 10-15 1.40 x 10-15 1.13 x 10-11 1.51 x 10-13 4.0 x 10-13 6.84 x 10-13 3.17 x 10-13 1.7 x 10-13 Br + O3 BrO Br2 + OH HOBr Br + HO2 HBr Br + C2H2 BrCH2CHO Br + C2H4 HBr + C2H5OO Br + C3H6 HBr + C3H5 Br + HCHO HBr + CO + HO2 Br + CH3CHO HBr + CH3COOO Br + C2H5CHO HBr Br + nButanal HBr Br + CH3OOH HBr + CH3OO Br + NO2 BrNO2 Br + NO2 ↔ BrONO 6.75 x 10-13 5.0 x 10-11 1.25 x 10-12 3.7 x 10-14 1.3 x 10-13 1.60 x 10-12 6.75 x 10-13 2.8 x 10-12 9.7 x 10-12 9.7 x 10-12 4.03 x 10-15 6.3 x 10-12 f: 6.3 x 10-12 r: 0.02 Br + BrNO2 Br2 + NO2 Br + BrONO Br2 + NO2 Br + BrNO3 Br2 + NO3 Br + OClO BrO + ClO BrO + O(3P) Br BrO + OH Br + HO2 BrO + HO2 HOBr BrO + CH3OO HOBr + CH2OO BrO + CH3OO Br + HCHO + HO2 BrO + CH3COOO Br + CH3COO BrO + C3H6O HOBr BrO + NO Br + NO2 BrO + NO2 BrNO3 BrO + BrO Br + Br 5.0 x 10-11 1.0 x 10-12 4.9 x 10-11 1.43 x 10-13 4.8 x 10-11 4.93 x 10-11 3.38 x 10-11 4.1 x 10-12 1.6 x 10-12 1.7 x 10-12 1.5 x 10-14 2.48 x 10-11 1.53 x 10-11 2.82 x 10-12 Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Kamboures et al. [2002] Atkinson et al. [2004] Sander et al. [2006] Tsalkani et al. [1988] Wine et al. [1988] Ravishankara et al. [1988] Nicovich and Wine [1990] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Sander et al. [2006] Michalowski et al. [2000] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] Atkinson et al. [2004] Wallington et al. [1989] Michalowski et al. [2000] Mallard et al. [1993] Atkinson et al. [2006] Atkinson et al. [2006] Orlando and Burkholder [2000] Orlando and Burkholder [2000] Orlando and Burkholder [2000] Orlando and Tyndall [1997] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Atkinson et al. [2004] Aranda et al. [1997] Aranda et al. [1997] Michalowski et al. [2000] Michalowski et al. [2000] Atkinson et al. [2004] Atkinson et al. [2004] Sander et al. [2006] 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 BrO + BrO Br2 BrO + HBr HOBr + Br HBr + OH Br + H2O CH3Br + OH H2O + Br CHBr3 + OH H2O + Br 9.3 x 10-13 2.1 x 10-14 1.26 x 10-11 1.27 x 10-14 1.2 x 10-13 Sander et al. [2006] Hansen et al. [1999] Sander et al. [2006] Atkinson et al. [2004] Atkinson et al. [2004] Cl + BrCl Br + Cl2 f: 1.5 x 10-11 r: 1.1 x 10-15 Clyne and Cruse [1972] Cl + Br2 BrCl + Br f: 1.2 x 10-10 r: 3.3 x 10-1 Clyne and Cruse [1972] BrO + ClO Br + Cl 7.04 x 10-12 Atkinson et al. [2004] BrO + ClO BrCl 1.15 x 10-12 Atkinson et al. [2004] BrO + ClO Br + OClO 9.06 x 10-12 Atkinson et al. [2004] HOBr + OH BrO + H2O 5.0 x 10-13 Kukui et al. [1996] HOBr + Cl BrCl + OH 8.0 x 10-11 Kukui et al. [1996] HOBr + O(3P) BrO + OH 2.12 x 10-11 Atkinson et al. [2004] ____________________________________________________________________________________________________________ 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 Table S2. Photochemical reactions. Jmax values for 25 March are shown as an example. J coefficients are expressed in units of s-1. ____________________________________________________________________________________________________________ Reaction Jmax 25 March Lifetime Source ____________________________________________________________________________________________________________ O3 + hv O2 + O(1D) 3.9 x 10-6 3.0 days calculated from OASIS data 3 NO2 + hv NO + O( P) 8.6 x 10-3 1.9 min calculated from OASIS data H2O2 +hv OH + OH 3.4 x 10-6 3.4 days calculated from OASIS data NO3 +hv NO + O2 4.5 x 10-2 22 s Michalowski et al. [2000] N2O5 +hv NO2 + NO3 1.5 x 10-5 18 h calculated from OASIS data HONO +hv OH + NO 1.8 x 10-3 9.2 min calculated from OASIS data HNO3 +hv NO2 + OH 1.5 x 10-7 79 days calculated from OASIS data HNO4 +hv NO2 + HO2 7.3 x 10-7 16 days calculated from OASIS data HCHO +hv HO2 + HO2 + CO 1.5 x 10-5 19 h calculated from OASIS data HCHO +hv CO + H2 3.1 x 10-5 8.8 h calculated from OASIS data CH3CHO +hv CH3OO + HO2 + CO 1.1 x 10-6 11 days calculated from OASIS data CH3OOH +hv HCHO + HO2 + OH 3.2 x 10-6 3.7 days calculated from OASIS data C2H5CHO +hv HO2 + C2H OO + CO 1.4 x 10-6 8.3 days calculated from OASIS data PAN +hv CH3COOO + NO2 1.7 x 10-7 66 days calculated from OASIS data OClO +hv O(3P) + ClO 0.12 8.1 s estimate from Pöhler et al. [2010] Cl2 +hv Cl + Cl 2.1 x 10-3 8.1 min calculated from OASIS data ClO +hv Cl + O(3P) 2.4 x 10-5 11 h calculated from OASIS data HOCl +hv OH + Cl 1.4 x 10-4 2h estimate from Lehrer et al. [2004] ClNO3 +hv Cl + NO3 2.9 x 10-5 9.5 h calculated from OASIS data ClNO3 +hv ClO + NO2 3.4 x 10-6 3.4 days calculated from OASIS data BrNO3 +hv Br + NO3 2.1 x 10-4 1.3 h calculated from OASIS data BrNO3 +hv BrO + NO2 1.2 x 10-3 14.2 min calculated from OASIS data BrO +hv Br + O(3P) 3.0 x 10-2 33 s calculated from OASIS data Br2 +hv Br + Br 4.4 x 10-2 23 s calculated from OASIS data HOBr +hv Br + OH 2.3 x 10-3 7.2 min calculated from OASIS data BrNO2 +hv Br + NO2 5.7 x 10-3 2.9 min estimate from Scheffler et al. [1997] & Landgraf & Crutzen et al. [1998] ClNO2 +hv Cl + NO2 4.4 x 10-5 6.3 h estimate from Ganske et al. [1992] BrCl +hv Br + Cl 1.26 x 10-2 1.3 min calculated from OASIS data ____________________________________________________________________________________________________________ 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 Table S3. Mass transfer reactions. All rate constants are expressed in units of s-1. ______________________________________________________________________________________ Reaction k (forward) k (reverse) ______________________________________________________________________________________ Particles + -3 HCl(g) H (p) + Cl (p) 2.58 x 10 + -3 HBr(g) H (p) + Br (p) 1.80 x 10 -3 HOCl(g) HOCl(p) 2.16 x 10 -3 HOBr(g) HOBr(p) 1.26 x 10 -4 HOI(g) HOI(p) 5.42 x 10 -5 OH(g) OH(p) 3.26 x 10 -6 5 O3(g) O3(p) 6.54 x 10 8.76 x 10 -5 7 Cl2(g) Cl2(p) 2.69 x 10 2.96 x 10 -5 8 Br2(g) Br2(p) 1.78 x 10 2.97 x 10 -4 10 BrCl(g) BrCl(p) 6.60 x 10 1.91 x 10 -4 HNO3(g) HNO3(p) 5.50 x 10 -4 N2O5(g) N2O5(p) 1.08 x 10 -4 HONO(g) HONO(p) 1.63 x 10 -5 PAN(g) PAN(p) 2.05 x 10 -4 HNO4(g) HNO4(p) 4.89 x 10 -3 ClNO2(g) ClNO2(p) 1.26 x 10 -3 BrNO2(g) BrNO2(p) 1.26 x 10 -3 ClNO3(g) ClNO3(p) 1.26 x 10 -3 BrNO3(g) BrNO3(p) 1.26 x 10 Snow + HBr(g) H (s) + Br (s) + HCl(g) H (s) + Cl (s) HOBr(g) HOBr(s) HOCl(g) HOCl(s) OH(g) OH(s) O3(g) O3(s) Cl2(g) Cl2(s) Br2(g) Br2(s) BrCl(g) BrCl(s) HNO3(g) HNO3(s) N2O5(g) N2O5(s) HONO(g) HONO(s) PAN(g) PAN(s) HNO4(g) HNO4(s) ClNO2(g) ClNO2(s) BrNO2(g) BrNO2(s) ClNO3(g) ClNO3(s) BrNO3(g) BrNO3(s) -5 1.67 x 10 -5 1.67 x 10 -5 1.67 x 10 -5 1.67 x 10 -6 1.67 x 10 -6 1.67 x 10 -6 8.0 x 10 -5 1.0 x 10 -5 1.25 x 10 -5 1.67 x 10 -5 1.67 x 10 -5 1.67 x 10 -5 1.67 x 10 -5 1.67 x 10 -4 1.67 x 10 -4 1.67 x 10 -4 1.67 x 10 -4 1.67 x 10 -2 7.71 x 10 -2 7.71 x 10 -2 7.71 x 10 285 ______________________________________________________________________ 286 287 288 289 290 291 Table S4. Aqueous-phase reactions in the model. All aqueous reaction rate constants are converted to units consistent to the gas-phase reactions to be read by the modeling program. For snow surface reactions the measured aqueous phase reactions are divided by a conversion factor of 0.005 which represents the liquid volume per snow surface cm2. For the particle reactions the measured aqueous phase reactions are divided by 1.67x10-7 which represents the liquid volume conversion factor divided by the height of the boundary layer, as in Michalowski et al. (2000) 292 293 294 * Third order rate constant, expressed in units of cm6·molecule-2·s-1 † second order rate constant, expressed in units of cm3·molecule-1·s-1 ‡ first order rate constant, expressed in units of s-1 295 Reaction Cl- + HOBr + H+ → BrCl * Br- + HOCl + H+ → BrCl * Br- + HOBr + H+ → Br2 * Cl- + HOCl + H+ → Cl2 * BrCl + Cl- → BrCl2- † BrCl2- → BrCl + Cl- ‡ BrCl + Br- → Br2Cl- † Br2Cl- →BrCl + Br- ‡ k (actual) 1.55 x 10-32 3.59 x 10-36 4.41 x 10 -32 6.07 x 10-38 1 x 10-11 1.58 x 109 1 x 10-11 3.34 x 105 k (particle) 5.17 x 10-21 1.2 x 10-24 1.47 x 10-20 2.02 x 10-26 3.3 1.58 x 109 3.3 3.34 x 105 k (snow) 9.30 x 10-26 2.15 x 10-29 2.64 x 10-25 3.63 x 10-31 5.99 x 10-5 1.58 x 109 5.99 x 10-5 3.34 x 105 Reference (Wang et al., 1994) (Sander et al., 1997) (Beckwith et al., 1996) (Wang and Margerum, 1994) (Michalowski et al., 2000) (Michalowski et al., 2000) (Michalowski et al., 2000) (Michalowski et al., 2000;Wang et al., 1994) 296 297 298 299 300 301 302 303 304 305 306 Cl2 + Br- → BrCl2- † 1.28 x 10-11 4.27 7.66 x 10-5 BrCl2- → Cl2 + Br- ‡ 6.94 x 102 6.94 x 102 6.94 x 102 O3 + Br- → HOBr † OH + Cl- → HOCl † N2O5 + Cl- → ClNO2 † ClNO2 + H+ + Cl- → Cl2 † 1.35 x 10-20 1.35 x 10-20 1.66 x 10-12 1.66 x 10-14 4.5 x 10-9 4.5 x 10-9 5.5 x 10-1 5.5 x 10-3 8.08 x 10-14 8.08 x 10-14 9.94 x 10-5 9.94 x 10-8 N2O5 + Br- → BrNO2 † BrNO2 + H+ + Br- → Br2 † 1.66 x 10-12 7.31 x 10-17 5.5 x 10-1 2.44 x 10-5 9.94 x 10-5 4.38 x 10-10 (Michalowski et al., 2000;Beckwith et al., 1996;Wang et al., 1994) (Michalowski et al., 2000;Wang et al., 1994) (Michalowski et al., 2000) assumed same as O3 + Brassume diffusion limited estimated from (Roberts et al., 2008) assume diffusion limited estimated from (Schweitzer et al., 1998) 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 Table S5. Summary of the ambient measurements from OASIS that were used to constrain the model and the instrumental method used. Constrained parameters were input into the model at 10 minute intervals. Measured Species O3 and NOx Method Chemiluminescence HONO CO Cl2 and Br2 HCHO Long Path Absorption Photometer CO Monitor CIMS Tunable Diode Laser Absorption Spectroscopy Online GC-MS CH3CHO, CH3COCH3, MEK, n-C4H10, i-C4H10, C2H5CHO C2H2, C2H4, C2H6, C3H8, n-C4H10, i-C4H10 Photolysis Frequencies Method Reference Ridley et al. [1992]; Ryerson et al. [2000]; Weinheimer et al., [1998] Villena et al., [2011] Liao et al. [2011, 2012] Fried et al., [2003]; Lancaster et al. [2000] Apel et al. [2010] Canister samples, offline GC-MS Russo et al. [2010] Spectral Actinic Flux Density Shetter and Muller et al. [1999] 331 332 333 Figure S1. 5 minute averages of observed concentrations of Br2 and NOx from OASIS 2009. It should be noted that the Br2 axis has pptv units and the NOx axis has ppbv units. 334 335 (DeMore et al., 1997;Lightfoot et al., 1992;Ravishankara et al., 1988;Ravishankara et al., 2002;Sander et al., 2006) 336 337 338 339 340 341 342 343 344 345 (Atkinson et al., 2004;Lehrer et al., 2004;Orlando and Tyndall, 1996;Lurmann et al., 1986;Vakhtin et al., 2003;Harris and Kerr, 1988;Eberhard et al., 1996;Eberhard and Howard, 1996;Donahue et al., 1998;Kirchner and Stockwell, 1996;Kukui et al., 1996;Keil and Shepson, 2006;Wallington et al., 1988;Wallington et al., 1989;Apel et al., 2010;Tyndall et al., 1997;Kamboures et al., 2002;Tsalkani et al., 1988;Nicovich and Wine, 1990;Wine et al., 1988;Lancaster et al., 2000;Russo et al., 2010;Shetter and Muller, 1999;Mallard et al., 1993;Orlando and Burkholder, 2000;Aranda et al., 1997;Clyne and Cruse, 1972;Pohler et al., 2010;Ganske et al., 1992;Ridley et al., 1992;Weinheimer et al., 1998;Ryerson et al., 2000;Villena et al., 2011;Liao et al., 2011;Liao et al., 2012;Fried et al., 2003) 346 347 348 349 (Sander and Crutzen, 1996;Hooshiyar and Niki, 1995) 350 351 352 353 Figure S2. Simulated BrONO2 mole ratio (low NOx & high NOx cases) plotted against the production rate of BrONO2. 354 355 356 357 358 359 360 361 Apel, E. C., Emmons, L. K., Karl, T., Flocke, F., Hills, A. J., Madronich, S., Lee-Taylor, J., Fried, A., Weibring, P., Walega, J., Richter, D., Tie, X., Mauldin, L., Campos, T., Weinheimer, A., Knapp, D., Sive, B., Kleinman, L., Springston, S., Zaveri, R., Ortega, J., Voss, P., Blake, D., Baker, A., Warneke, C., Welsh-Bon, D., de Gouw, J., Zheng, J., Zhang, R., Rudolph, J., Junkermann, W., and Riemer, D. D.: Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area, Atmospheric Chemistry and Physics, 10, 23532375, 2010. 362 363 364 Aranda, A., LeBras, G., LaVerdet, G., and Poulet, G.: The BrO+Ch3O2 reaction: Kinetics and role in the atmospheric ozone budget, Geophysical Research Letters, 24, 2745-2748, 10.1029/97gl02686, 1997. 365 366 367 368 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O-x, HOx, NOx and SOx species, Atmospheric Chemistry and Physics, 4, 1461-1738, 2004. 369 370 Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorganic Chemistry, 35, 995-1000, 10.1021/ic950909w, 1996. 371 372 373 Clyne, M. A. A., and Cruse, H. W.: Atomic resonance fluorescence spectrometry for rate constants of rapid bimolecular reactions .1. Reactions O+NO2, Cl+ClNO,Br+CINO, Journal of the Chemical Society-Faraday Transactions Ii, 68, 1281-&, 10.1039/f29726801281, 1972. 374 375 376 377 DeMore, W. B., Sander, S., Golden, D., Hampson, R., Kurylo, M., Howard, C., Ravishankara, A., Kolb, C., Molina, M., and T, C. I. o.: Jet Propulsion Lab., Pasadena (1997), Chemical kinetics and photochemical data for use in stratospheric modeling, Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA 1997. 378 379 380 Donahue, N. M., Anderson, J. G., and Demerjian, K. L.: New rate constants for ten OH alkane reactions from 300 to 400 K: An assessment of accuracy, Journal of Physical Chemistry A, 102, 3121-3126, 10.1021/jp980532q, 1998. 381 382 383 Eberhard, J., and Howard, C. J.: Temperature-dependent kinetics studies of the reactions of C2H5O2 and n-C3H7O2 radicals with NO, International Journal of Chemical Kinetics, 28, 731740, 10.1002/(sici)1097-4601(1996)28:10<731::aid-kin3>3.0.co;2-o, 1996. 384 385 386 Eberhard, J., Villalta, P. W., and Howard, C. J.: Reaction of isopropyl peroxy radicals with NO over the temperature range 201-401 K, Journal of Physical Chemistry, 100, 993-997, 10.1021/jp951824j, 1996. 387 388 389 390 391 392 Fried, A., Crawford, J., Olson, J., Walega, J., Potter, W., Wert, B., Jordan, C., Anderson, B., Shetter, R., Lefer, B., Blake, D., Blake, N., Meinardi, S., Heikes, B., O'Sullivan, D., Snow, J., Fuelberg, H., Kiley, C. M., Sandholm, S., Tan, D., Sachse, G., Singh, H., Faloona, I., Harward, C. N., and Carmichael, G. R.: Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons, Journal of Geophysical ResearchAtmospheres, 108, 23, 10.1029/2003jd003451, 2003. 393 394 395 Ganske, J. A., Berko, H. N., and Finlaysonpitts, B. J.: Absorption cross-section for gaseous ClNO2 and Cl2 at 298-K - potential organic oxidant source in the marine troposphere, Journal of Geophysical Research-Atmospheres, 97, 7651-7656, 1992. 396 397 Hansen, J. C., Li, Y. M., Li, Z. J., and Francisco, J. S.: On the mechanism of the BrO plus HBr reaction, Chemical Physics Letters, 314, 341-346, 10.1016/s0009-2614(99)01093-3, 1999. 398 399 400 Harris, S. J., and Kerr, J. A.: Relative rate measurements of some reactions of hydroxyl radicals with alkanes studied under atmospheric conditions, International Journal of Chemical Kinetics, 20, 939-955, 10.1002/kin.550201203, 1988. 401 402 403 Hooshiyar, P. A., and Niki, H.: Rate constants for the gas-phase reactions of Cl-atoms with C2C8 alkanes at T=296 +/-2K, International Journal of Chemical Kinetics, 27, 1197-1206, 10.1002/kin.550271206, 1995. 404 405 406 Kamboures, M. A., Hansen, J. C., and Francisco, J. S.: A study of the kinetics and mechanisms involved in the atmospheric degradation of bromoform by atomic chlorine, Chemical Physics Letters, 353, 335-344, 10.1016/s0009-2614(01)01439-7, 2002. 407 408 409 Keil, A. D., and Shepson, P. B.: Chlorine and bromine atom ratios in the springtime Arctic troposphere as determined from measurements of halogenated volatile organic compounds, Journal of Geophysical Research-Atmospheres, 111, 11, 10.1029/2006jd007119, 2006. 410 411 412 Kirchner, F., and Stockwell, W. R.: Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, Journal of Geophysical ResearchAtmospheres, 101, 21007-21022, 10.1029/96jd01519, 1996. 413 414 415 Kukui, A., Kirchner, U., Benter, T., and Schindler, R. N.: A gaskinetic investigation of HOBr reactions with Cl(P-2), O(P-3) and OH((2)Pi). The reaction of BrCl with OH((2)Pi), Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 100, 455-461, 1996. 416 417 418 Lancaster, D. G., Fried, A., Wert, B., Henry, B., and Tittel, F. K.: Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde, Applied Optics, 39, 4436-4443, 10.1364/ao.39.004436, 2000. 419 420 421 Landgraf, J., and Crutzen, P. J.: An efficient method for online calculations of photolysis and heating rates, Journal of the Atmospheric Sciences, 55, 863-878, 10.1175/15200469(1998)055<0863:aemfoc>2.0.co;2, 1998. 422 423 424 Lehrer, E., Honninger, G., and Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere, Atmospheric Chemistry and Physics, 4, 2427-2440, 2004. 425 426 427 428 429 430 Liao, J., Sihler, H., Huey, L., Neuman, J., Tanner, D., Friess, U., Platt, U., Flocke, F., Orlando, J., Shepson, P., Beine, H., Weinheimer, A., Sjostedt, S., Nowak, J., Knapp, D., Staebler, R., Zheng, W., Sander, R., Hall, S., and Ullmann, K.: A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy, Journal of Geophysical Research-Atmospheres, 116, 10.1029/2010JD014788, 2011. 431 432 433 434 435 Liao, J., Huey, L., Tanner, D., Flocke, F., Orlando, J., Neuman, J., Nowak, J., Weinheimer, A., Hall, S., Smith, J., Fried, A., Staebler, R., Wang, Y., Koo, J., Cantrell, C., Weibring, P., Walega, J., Knapp, D., Shepson, P., and Stephens, C.: Observations of inorganic bromine (HOBr, BrO, and Br-2) speciation at Barrow, Alaska, in spring 2009, Journal of Geophysical ResearchAtmospheres, 117, 10.1029/2011JD016641, 2012. 436 437 438 439 Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E., Moortgat, G. K., and Zabel, F.: Organic peroxy-radicals - kinetics, spectroscopy and tropospheric chemistry, Atmospheric Environment Part a-General Topics, 26, 1805-1961, 10.1016/0960-1686(92)90423-i, 1992. 440 441 442 Lurmann, F. W., Lloyd, A. C., and Atkinson, R.: A chemical mechanism for use in long-range transport acid deposition computer modeling, Journal of Geophysical Research-Atmospheres, 91, 905-936, 10.1029/JD091iD10p10905, 1986. 443 444 445 Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST Chemical Kinetics Database: Version 5.0 National Institute of Standards and Technology, Gaithersburg, MD. , 1993. 446 447 448 Michalowski, B., Francisco, J., Li, S., Barrie, L., Bottenheim, J., and Shepson, P.: A computer model study of multiphase chemistry in the Arctic boundary layer during polar sunrise, Journal of Geophysical Research-Atmospheres, 105, 15131-15145, 10.1029/2000JD900004, 2000. 449 450 Nicovich, J. M., and Wine, P. H.: Kinetics of the reactions of O(3P) and Cl(2P) with HBr and Br2, International Journal of Chemical Kinetics, 22, 379-397, 10.1002/kin.550220406, 1990. 451 452 453 Orlando, J. J., and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO2 and the heat of formation of BrONO2, Journal of Physical Chemistry, 100, 19398-19405, 10.1021/jp9620274, 1996. 454 455 456 Orlando, J. J., and Burkholder, J. B.: Identification of BrONO as the major product in the gasphase reaction of Br with NO2, Journal of Physical Chemistry A, 104, 2048-2053, 10.1021/jp993713g, 2000. 457 458 459 460 Pohler, D., Vogel, L., Friess, U., and Platt, U.: Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy, Proceedings of the National Academy of Sciences of the United States of America, 107, 6582-6587, 10.1073/pnas.0912231107, 2010. 461 462 Ravishankara, A. R., Smith, G. J., and Davis, D. D.: A kinetics study of the reaction of Cl with NO2, International Journal of Chemical Kinetics, 20, 811-814, 10.1002/kin.550201005, 1988. 463 464 465 466 Ravishankara, A. R., Dunlea, E. J., Blitz, M. A., Dillon, T. J., Heard, D. E., Pilling, M. J., Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Redetermination of the rate coefficient for the reaction of O(D-1) with N-2, Geophysical Research Letters, 29, 4, 10.1029/2002gl014850, 2002. 467 468 469 Ridley, B. A., Grahek, F. E., and Walega, J. G.: A small, high-sensitivity, medium-response ozone detector suitable for measurements from light aircraft, Journal of Atmospheric and Oceanic Technology, 9, 142-148, 10.1175/1520-0426(1992)009<0142:ashsmr>2.0.co;2, 1992. 470 471 Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.: N2O5 oxidizes chloride to Cl-2 in acidic atmospheric aerosol, Science, 321, 1059-1059, 10.1126/science.1158777, 2008. 472 473 474 475 Russo, R. S., Zhou, Y., White, M. L., Mao, H., Talbot, R., and Sive, B. C.: Multi-year (20042008) record of nonmethane hydrocarbons and halocarbons in New England: seasonal variations and regional sources, Atmospheric Chemistry and Physics, 10, 4909-4929, 10.5194/acp-104909-2010, 2010. 476 477 478 Ryerson, T. B., Williams, E. J., and Fehsenfeld, F. C.: An efficient photolysis system for fastresponse NO2 measurements, Journal of Geophysical Research-Atmospheres, 105, 2644726461, 10.1029/2000jd900389, 2000. 479 480 481 Sander, R., and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, Journal of Geophysical Research-Atmospheres, 101, 9121-9138, 10.1029/95jd03793, 1996. 482 483 484 Sander, R., Vogt, R., Harris, G., and Crutzen, P.: Modeling the chemistry ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring, Tellus Series B-Chemical and Physical Meteorology, 49, 522-532, 10.1034/j.1600-0889.49.issue5.8.x, 1997. 485 486 487 Sander, S. P., Golden, D., Kurylo, M., Moortgat, G., Wine, P., Ravishankara, A., Kolb, C., Molina, M., Finlayson-Pitts, B., and Huie, R.: Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15 2006. 488 489 490 Scheffler, D., Grothe, H., Willner, H., Frenzel, A., and Zetzsch, C.: Properties of pure nitryl bromide. Thermal behavior, UV/Vs and FTIR spectra, and photoisomerization to trans-BrONO in an argon matrix, Inorganic Chemistry, 36, 335-338, 10.1021/ic9606946, 1997. 491 492 Schweitzer, F., Mirabel, P., and George, C.: Multiphase chemistry of N2O5, ClNO2, and BrNO2, Journal of Physical Chemistry A, 102, 3942-3952, 10.1021/jp980748s, 1998. 493 494 495 496 Shetter, R. E., and Muller, M.: Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics mission: Instrumentation description and some results, Journal of Geophysical Research-Atmospheres, 104, 5647-5661, 10.1029/98jd01381, 1999. 497 498 499 Tsalkani, N., Mellouki, A., Poulet, G., Toupance, G., and Lebras, G.: Rate constants measurements for the reactions of OH and Cl with peroxyacetyl nitrate at 298 K, Journal of Atmospheric Chemistry, 7, 409-419, 10.1007/bf00058713, 1988. 500 501 502 Tyndall, G. S., Orlando, J. J., Wallington, T. J., Dill, M., and Kaiser, E. W.: Kinetics and mechanisms of the reactions of chlorine atoms with ethane, propane, and n-butane, International Journal of Chemical Kinetics, 29, 43-55, 1997. 503 504 505 Vakhtin, A. B., Murphy, J. E., and Leone, S. R.: Low-temperature kinetics of reactions of OH radical with ethene, propene, and 1-butene, Journal of Physical Chemistry A, 107, 10055-10062, 10.1021/jp030230a, 2003. 506 507 508 509 510 Villena, G., Wiesen, P., Cantrell, C., Flocke, F., Fried, A., Hall, S., Hornbrook, R., Knapp, D., Kosciuch, E., Mauldin, R., McGrath, J., Montzka, D., Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R., Liao, J., Huey, L., and Kleffmann, J.: Nitrous acid (HONO) during polar spring in Barrow, Alaska: A net source of OH radicals?, Journal of Geophysical Research-Atmospheres, 116, 10.1029/2011JD016643, 2011. 511 512 513 Wallington, T. J., Skewes, L. M., Siegl, W. O., Wu, C. H., and Japar, S. M.: Gas phase reaction of Cl atoms with a series of oxygenated organic species at 295 K, International Journal of Chemical Kinetics, 20, 867-875, 10.1002/kin.550201105, 1988. 514 515 516 Wallington, T. J., Skewes, L. M., Siegl, W. O., and Japar, S. M.: A relative rate study of the reaction of bromine atoms with a variety of organic compounds at 295 K, International Journal of Chemical Kinetics, 21, 1069-1076, 10.1002/kin.550211108, 1989. 517 518 519 Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, Kinetic, and UV-Spectral Characteristics of Aqueous Bromine Chloride, Bromine, and Chlorine Species, Inorganic Chemistry, 33, 5872-5878, 10.1021/ic00103a040, 1994. 520 521 522 Wang, T. X., and Margerum, D. W.: Kinetics of Reversible Chlorine Hydrolysis: Temperature Dependence and General-Acid/Base-Assisted Mechanisms, Inorganic Chemistry, 33, 1050-1055, 10.1021/ic00084a014, 1994. 523 524 525 526 527 528 529 530 Weinheimer, A. J., Montzka, D. D., Campos, T. L., Walega, J. G., Ridley, B. A., Donnelly, S. G., Keim, E. R., Del Negro, L. A., Proffitt, M. H., Margitan, J. J., Boering, K. A., Andrews, A. E., Daube, B. C., Wofsy, S. C., Anderson, B. E., Collins, J. E., Sachse, G. W., Vay, S. A., Elkins, J. W., Wamsley, P. R., Atlas, E. L., Flocke, F., Schauffler, S., Webster, C. R., May, R. D., Loewenstein, M., Podolske, J. R., Bui, T. P., Chan, K. R., Bowen, S. W., Schoeberl, M. R., Lait, L. R., and Newman, P. A.: Comparison between DC-8 and ER-2 species measurements in the tropical middle troposphere: NO, NOy, O-3, CO2, CH4, and N2O, Journal of Geophysical Research-Atmospheres, 103, 22087-22096, 10.1029/98jd01421, 1998. 531 532 Wine, P. H., Wells, J. R., and Nicovich, J. M.: Kinetics of the reaction of F(2P) and Cl(2P) with HNO3, Journal of Physical Chemistry, 92, 2223-2228, 10.1021/j100319a028, 1988. 533
© Copyright 2026 Paperzz