Hindawi Publishing Corporation ξ e Scientiο¬c World Journal Volume 2014, Article ID 724840, 5 pages http://dx.doi.org/10.1155/2014/724840 Research Article On the Fourth Power Mean of the Two-Term Exponential Sums Han Zhang and Wenpeng Zhang Department of Mathematics, Northwest University, Xiβan, Shaanxi, China Correspondence should be addressed to Wenpeng Zhang; [email protected] Received 17 October 2013; Accepted 18 December 2013; Published 12 January 2014 Academic Editors: C.-S. Liu and C. Zhai Copyright © 2014 H. Zhang and W. Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The main purpose of this paper is to use the analytic methods and the properties of Gauss sums to study the computational problem of one kind fourth power mean of two-term exponential sums and give an interesting identity and asymptotic formula for it. 1. Introduction Let π β₯ 3 be a positive integer. For any integers π and π, the two-term exponential sum πΆ(π, π, π; π) is defined as follows: π πΆ (π, π, π; π) = β π ( π=1 π ππ + ππ ), π (1) where π(π¦) = π2πππ¦ . Regarding the various properties of πΆ(π, π, π; π), some authors have studied them, and obtained a series of results. Some related works can be found in references [1β8]. For example, Gaussβ classical work proved the remarkable formula (see [1]) π 1 πΆ (1, 0, 2; π) = βπ (1 + π) (1 + π (β )) 2 4 βπ, { { { {0, ={ {πβπ, { { {(1 + π) βπ, if if if if π β‘ 1 mod 4, π β‘ 2 mod 4, π β‘ 3 mod 4, π β‘ 0 mod 4, (2) where π2 = β1. Generally, for any odd number π and (π, π) = 1, the exact value of |πΆ(π, 0, 2; π)| is βπ, More relevant to it, Cochrane and Zheng [4] showed the general sum that σ΅¨σ΅¨σ΅¨πΆ (π, π, π; π)σ΅¨σ΅¨σ΅¨ β€ ππ(π) π1/2 , (3) σ΅¨ σ΅¨ where π(π) denotes the number of all distinct prime divisors of π. In this paper, we study the fourth power mean of the twoterm exponential sum πΆ(π, π, π; π) as follows: π σ΅¨4 σ΅¨ β σ΅¨σ΅¨σ΅¨πΆ (π, π, π; π)σ΅¨σ΅¨σ΅¨ , (4) π=1 where π is any integer with (π, π) = 1. Regarding this problem, it seems that none has studied it yet; at least we have not seen any related result before. The problem is interesting, because it can reflect that the mean value of πΆ(π, π, π; π) is well behaved. The main purpose of this paper is to use the analytic methods and the properties of Gauss sums to study the special case of (4) with π = 5, π = π, an odd prime and give an interesting identity and asymptotic formula for it. That is, we will prove the following conclusion. Theorem 1. Let π > 3 be a prime. Then for any integer π with (π, π) = 1, one has the identity σ΅¨4 π σ΅¨σ΅¨πβ1 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ )σ΅¨σ΅¨ β σ΅¨σ΅¨σ΅¨ β π ( σ΅¨σ΅¨ σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ β1 β3 {3π3 β π2 (8 + 2 ( ) + 4 ( )) β 3π, ππ 5β π β 1, π π ={ 3 2 + π (π ) , ππ 5 | π β 1, 3π { (5) where (β/π) denotes the Legendre symbol. 2 The Scientific World Journal For any prime π with 5 | π β 1, one cannot give an exact computational formula in our theorem at present. The difficulty is that one needs to know the value of the character sums (this formula can be found in Huaβs book, Section 7.8, Theorem 8.2 [9]). One has πβ2 πβ2 1 ββ π=1 π=1 π|(πβπ)(π+π+1)(π2 +π2 +π+π+1) 4 σ΅¨σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ π 5 βσ΅¨σ΅¨ β π1 (π β 1)σ΅¨σ΅¨σ΅¨ , σ΅¨ σ΅¨σ΅¨ π=1 σ΅¨σ΅¨ π=1 σ΅¨ (6) πβ2 πβ2 = πβ2 πβ2 1+ ββ π=1 π=1 π|(πβπ)(π+π+1) πβ π2 +π2 +π+π+1 where π1 is any 5-order character mod π. For any integer β β₯ 3, whether there exists an exact computational formula for 1+ ββ π=1 π=1 πβ (πβπ)(π+π+1) π|π2 +π2 +π+π+1 πβ2 ββ 1 π=1 π=1 π|π2 +π2 +π+π+1 πβ1 1β4 β π=1 π|(2π+1)2 +1 (7) 1 πβ2 πβ2 1+ β π=1 π|2π2 +2π+1 π ββ π=1 π=1 π|(πβπ)(π+π+1) π|π2 +π2 +π+π+1 πβ2 = 2 (π β 2) β 1 β = 2π β 5 β σ΅¨σ΅¨πβ1 σ΅¨2β σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ )σ΅¨σ΅¨ β σ΅¨σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ πβ2 πβ2 β 1 π=0 π|(2π+1)2 +3 πβ1 πβ1 + is an open problem, where π is an odd prime and (π, π) = 1. 1 ββ (10) π=0 π=0 π|(2π+1)2 +(2π+1)2 +2 πβ1 πβ1 πβ1 πβ1 = 2π β 5 β β 1 β 4 β 1 + β β 1 π=0 π|π2 +1 2. Several Lemmas In this section, we will give several lemmas which are necessary in the proof of our theorem. In the proving process of all lemmas, we used many properties of Gauss sums; all these can be found in [1], so they will not be repeated here. First we have the following. Lemma 2. Letting π be an odd prime with π > 3, then one has the identity = 2π β 5 β (1 + ( πβ1 + β (1 + ( π π=0 πβ1 = 3π + β ( β (π2 + 2) = 3π β 10 β 2 ( ββ 1 = 3π β 10 β 2 ( π=1 π=1 π|(πβπ)(π+π+1)(π2 +π2 +π+π+1) β1 β3 ) β 4( ), π π (8) where (β/π) denotes the Legendreβs symbol. Proof. For any prime π, note that if π passes through a complete residue system mod π, then 2π + 1 also passes through a complete residue system mod π, so note the identity π β( π=1 β1, π2 + π )={ π β 1, π if (π, π) = 1, if (π, π) = π (9) π=0 π=0 π|π2 +π2 +2 β1 β3 )) β 4 (1 + ( )) π π β (π2 + 2) π π=0 πβ2 πβ2 π=0 π|π2 +3 )) ) β 10 β 4 ( β3 β1 )β( ) π π β1 β3 ) β 4( ). π π This proves Lemma 2. Lemma 3. Let π be an odd prime π be any nonprincipal character mod π. Then for any integer π with (π, π) = 1, one has the identity σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ πβ1 5 σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( ππ + ππ )σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ π σ΅¨σ΅¨π=1 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π=1 σ΅¨ σ΅¨ σ΅¨σ΅¨πβ2 σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ 4 3 2 { { π σ΅¨σ΅¨ β π (5π + 10π + 10π + 5π + 1)σ΅¨σ΅¨σ΅¨ , { { σ΅¨ σ΅¨σ΅¨ { σ΅¨σ΅¨π=1 { σ΅¨ { { { ππ π ππ πππ‘ π 5-πππππ πβπππππ‘ππ mod π, ={ σ΅¨ σ΅¨σ΅¨ πβ1 πβ1 { σ΅¨σ΅¨ { σ΅¨σ΅¨ σ΅¨σ΅¨ { 2 σ΅¨ { { {βπ σ΅¨σ΅¨σ΅¨β2 + 2 β π (π (1 β π)) + β π (π (π β 1))σ΅¨σ΅¨σ΅¨ , { σ΅¨σ΅¨ { σ΅¨σ΅¨ π=1 π=1 ππ π ππ π 5-πππππ πβπππππ‘ππ mod π. { (11) The Scientific World Journal 3 πβ1 Proof. Note that π is a non-principal character mod π, so if π is not a 5-order character modπ, (i.e., π5 =ΜΈ π0 , the principal character modπ), then from the properties of Gauss sums we have = βπ (π) β (π4 (π) + π3 (π) + π2 (π) + π (π) + 1) π (π β 1) π=1 πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 5 σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ )σ΅¨σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨σ΅¨π=1 σ΅¨σ΅¨ π π=1 σ΅¨ σ΅¨ πβ1 πβ1 πβ1 πβ1 = β β β π (π) π ( πβ1 πβ1 πβ1 = β β β π (π) π ( π=1 πβ1 π π=1 ) ππ5 (π5 β 1) + ππ (π β 1) π π=1 π=1 π=1 πβ1 πβ1 π=1 π=1 = π (π) β π (π5 β 1) β π5 (π) π ( ππ (π β 1) ) π Lemma 4. Let π be an odd prime and let π be a 5th character mod π. Then one has the identity πβ1 β π (π (π β 1)) = πβ2 π=1 πβ1 π=1 β π (π2 (π β 1)) = πβ2 σ΅¨σ΅¨ σ΅¨σ΅¨πβ1 σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ β π (π (π β 1))σ΅¨σ΅¨σ΅¨ = βπ, σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π=1 = π5 (π) π (π) π (π5 ) β π (5π4 + 10π3 + 10π2 + 5π + 1) , π=1 (12) πβ1 βπ=1 where π(π) = π(π)π(π/π) denotes the classical Gauss sums. If π is a 5-order character mod π, then π5 = π0 ; note that for any integer π with (π, π) = 1, we have π4 (π) = π(π), π3 (π) = π2 (π), π(β1) = β1, and πβ1 πβ1 π=1 π=1 πβ1 (13) π=1 = π (π2 ) β π (π) π ((π + 1)2 ) π=1 π π=2 ππ (π β 1) ) π πβ1 πβ1 π=2 π=1 = π (π2 ) β π ((1 β π) π) = π (π2 ) β π (π (1 β π)) (17) πβ1 or πβ1 5 = βπ (π) β π (π β 1) π=1 π=1 π (π + 1) ) π = π (π2 ) β π (π β 1) π (π2 ) ππ (π β 1) = π (π) β π (π β 1) β π ( ) π π=1 π=1 πβ1 πβ1 πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ )σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨σ΅¨ σ΅¨σ΅¨π=1 π π=1 σ΅¨ σ΅¨ 5 (16) π+π ) π = β π (π) β π2 (π) π ( σ΅¨2 πβ1 . σ΅¨σ΅¨ σ΅¨σ΅¨πβ1 σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ β π (π2 (π β 1))σ΅¨σ΅¨σ΅¨ = βπ. σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π=1 π2 (π) = β β π (π) π (π) π ( From the method of proving (12) we have the identity π=1 π (π3 ) (15) Proof. Noting that π(β1) = 1, from the definition and properties of the classical Gauss sums, we have π4 (π) + π3 (π) + π2 (π) + π (π) + 1 π=1 π (π) π (π2 ) Therefore π=1 πβ2 if π is a 5th residue mod π, otherwise. π2 (π) , π (π2 ) π=1 = π5 (π) π (π) π (π5 ) β π ((π + 1)5 β π5 ) πβ1 π=1 Now note that |π(π)| = βπ if π =ΜΈ π0 . From (12) and (14) we may immediately deduce Lemma 3. = π5 (π) π (π) π (π5 ) β π ((π + 1)5 β 1) π (π5 ) πβ1 π=1 (14) π=1 = π (π) β π (π5 β 1) β π5 (π) π ( πβ1 ) πβ1 πβ1 πβ1 = βπ (π) (β2 + 2 β π (π (1 β π)) + β π (π2 (π β 1))) . = π (π) π (π5 ) β π (π5 β 1) π5 (π (π β 1)) 5, ={ 0, π=1 + β π (π2 (π β 1))) π (π5 β π5 ) + π (π β π) π=1 π=1 π=1 πβ1 = βπ (π) (2 β π (π β 1) + 2 β π (π (1 β π)) β π (π (π β 1)) = π=1 π2 (π) . π (π2 ) (18) 4 The Scientific World Journal Similarly, we also have πβ1 πβ1 π (π) π (π2 ) = β β π (π) π2 (π) π ( π=1 π=1 πβ1 πβ1 π=1 π=1 = β π (π) β π3 (π) π ( From (22) and Lemma 3 we have σ΅¨σ΅¨ πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨2 5 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ σ΅¨σ΅¨ )σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ β σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨σ΅¨π=1 σ΅¨σ΅¨ σ΅¨σ΅¨ π π mod πσ΅¨σ΅¨σ΅¨π=1 σ΅¨ σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨2 σ΅¨σ΅¨πβ1 5 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ = σ΅¨σ΅¨σ΅¨ β π0 (π) σ΅¨σ΅¨σ΅¨ β π ( )σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨π=1 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π=1 π σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨2 5 σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ + β σ΅¨σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( )σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ σ΅¨ π σ΅¨σ΅¨σ΅¨π=1 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ π mod πσ΅¨σ΅¨σ΅¨π=1 σ΅¨ π+π ) π π (π + 1) ) π πβ1 = π (π3 ) β π (π) π ((π + 1)3 ) π=1 π =ΜΈ π0 (19) π = (π2 β π β 1) = π (π3 ) β π (π β 1) π (π3 ) π=2 2 σ΅¨σ΅¨πβ2 σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ 4 3 2 + β π β σ΅¨σ΅¨σ΅¨ β π (5π + 10π + 10π + 5π + 1)σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨π=1 σ΅¨σ΅¨ π mod π σ΅¨ σ΅¨ πβ1 2 = π (π3 ) β π ((1 β π) π2 ) π=2 π =ΜΈ π0 πβ1 = (π2 β π β 1) = π (π3 ) β π (π2 (1 β π)) π=1 2 σ΅¨σ΅¨πβ2 σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ 4 3 2 + π β σ΅¨σ΅¨σ΅¨ β π (5π + 10π + 10π + 5π + 1)σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ π mod πσ΅¨σ΅¨ π=1 σ΅¨ 2 or πβ1 2 β π (π (π β 1)) = π (π) π (π2 ) π=1 π (π3 ) . (20) 2 2 πβ2 4 3 2 β π ( β π0 (5π + 10π + 10π + 5π + 1)) π=1 2 = (π2 β π β 1) + π2 (π β 1) This proves Lemma 4. πβ2 πβ2 × 3. Proof of the Theorem × (21) πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨4 5 σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ = (π β 1) β σ΅¨σ΅¨σ΅¨ β π ( )σ΅¨σ΅¨σ΅¨ . σ΅¨ σ΅¨σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ π=1 π=1 (πβπ)(π+π+1)(π2 +π2 +π+π+1)β‘0 mod π 2 × (3π β 10 β 2 ( σ΅¨2 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ )σ΅¨σ΅¨ β π0 (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨σ΅¨ σ΅¨σ΅¨π=1 π π=1 σ΅¨ σ΅¨ πβ1 2 2 1 β π2 (π β 2) ββ = (π2 β π β 1) + π2 (π β 1) On the other hand, if 5β π β 1, then any non-principal character π is not a 5-order character mod π. Note that π=1 π=1 π=1 2 = (π2 β π β 1) + π2 (π β 1) πβ2 πβ2 σ΅¨σ΅¨ πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨2 5 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ σ΅¨σ΅¨ )σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ β σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ π σ΅¨σ΅¨π=1 π mod πσ΅¨σ΅¨σ΅¨π=1 σ΅¨ σ΅¨σ΅¨ = β β βπ( 2 1 β π2 (π β 2) π=1 π=1 π4 +2π3 +2π2 +πβ‘π4 +2π3 +2π2 +π mod π In this section, we shall complete the proof of our theorem. First from the orthogonality of characters mod π we have πβ1 πβ1 πβ1 ββ β1 β3 2 ) β 4 ( )) β π2 (π β 2) π π = (π β 1) [3π3 β π2 (8 + 2 ( β1 β3 ) + 4 ( )) β 3π β 1] . π π (23) If 5β π β 1, then combining (21) and (23) we may immediately deduce the identity ππ5 (π5 β 1) + ππ (π β 1) π = (π β 1) + π β 2 = π2 β π β 1. ) (22) πβ1 σ΅¨σ΅¨πβ1 σ΅¨4 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨ )σ΅¨σ΅¨ β σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ β1 β3 = 3π β π (8 + 2 ( ) + 4 ( )) β 3π β 1 π π 3 2 (24) The Scientific World Journal 5 So if 5 | π β 1, then combining (21) and (27) we can deduce the asymptotic formula or σ΅¨4 π σ΅¨σ΅¨πβ1 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨ )σ΅¨σ΅¨ β σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ = 3π3 β π2 (8 + 2 ( σ΅¨σ΅¨πβ1 σ΅¨4 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨ )σ΅¨σ΅¨ β σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ π (25) β1 β3 ) + 4 ( )) β 3π. π π If 5 | π β 1, since π1 =ΜΈ π0 is a 5-order character modπ, π1 = π14 and π1 2 = π13 are also 5-order characters mod π, then note that σ΅¨σ΅¨πβ1 σ΅¨2 πβ1 σ΅¨σ΅¨ ππ5 + ππ σ΅¨σ΅¨σ΅¨σ΅¨ )σ΅¨σ΅¨ β π0 (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨σ΅¨π=1 σ΅¨σ΅¨ π π=1 σ΅¨ σ΅¨ πβ1 σ΅¨σ΅¨πβ1 σ΅¨4 σ΅¨σ΅¨ ππ + ππ σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨ = 1 + β σ΅¨σ΅¨ β π ( )σ΅¨σ΅¨ = 3π3 + π (π2 ) . σ΅¨ σ΅¨σ΅¨ π π=1σ΅¨σ΅¨ π=1 σ΅¨ (28) 5 Now our theorem follows from (25) and (28). Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. 2 = (π β 1) β 4 (π β 1) + π β 6 = π2 β 5π β 1 πβ2 β π1 ((π + 1)5 β π5 ) Acknowledgments π=1 πβ2 5 πβ1 The authors express their gratitude to the referee for very helpful and detailed comments. This work is supported by the N. S. F. (11371291), S. R. F. D. P. (20136101110014), and N. S. F. (2013JZ001) of Shaanxi Province of China. 5 = β π1 ((π + 1) β 1) = β π1 (π β 1) π=1 π=1 πβ1 = β (π12 (π) + π1 (π) + π1 2 (π) + π1 (π) + 1) π1 (π β 1) π=1 πβ1 πβ1 π=1 π=1 = β π1 (π2 (1 β π)) + 2 β π1 (π (1 β π)) β 2. (26) From Lemma 4 and the method of proving (23) we have σ΅¨σ΅¨ πβ1 σ΅¨σ΅¨πβ1 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨2 5 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ + ππ ππ σ΅¨σ΅¨ )σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ β σ΅¨σ΅¨ β π (π) σ΅¨σ΅¨σ΅¨ β π ( σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ π σ΅¨σ΅¨π=1 π mod πσ΅¨σ΅¨σ΅¨π=1 σ΅¨ σ΅¨σ΅¨ 2 = (π2 β 5π β 1) + σ΅¨σ΅¨πβ2 σ΅¨σ΅¨σ΅¨2 σ΅¨ 4 3 2 π σ΅¨σ΅¨ β π (5π + 10π + 10π + 5π + 1)σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π=1 σ΅¨ σ΅¨ 2 σ΅¨σ΅¨σ΅¨ β π mod π π =ΜΈ π0 ,π1 ,π12 ,π13 ,π14 σ΅¨σ΅¨2 πβ1 σ΅¨σ΅¨ σ΅¨σ΅¨ π 2 π + πβσ΅¨σ΅¨ β π1 (π (1 β π)) + 2 β π1 (π (1 β π)) β 2σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ π=1 π=1 σ΅¨σ΅¨ π=1 σ΅¨ 4 σ΅¨σ΅¨σ΅¨πβ1 2 = (π2 β 5π β 1) + π2 (π β 1) (3π β 10 β 2 ( β1 β3 ) β 4 ( )) π π σ΅¨σ΅¨2 πβ1 4 σ΅¨σ΅¨σ΅¨πβ1 σ΅¨σ΅¨ σ΅¨ + (π β π2 ) βσ΅¨σ΅¨σ΅¨ β π1π (π2 (1 β π)) + 2 β π1π (π (1 β π)) β 2σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ π=1 π=1 σ΅¨σ΅¨ π=1 σ΅¨ 2 β π2 (π β 6) = 3π4 + π (π3 ) . (27) References [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, NY, USA, 1976. [2] T. M. Apostol, βAn extension of the Lehmersβ picturesque exponential sums,β Mathematics of Computation, vol. 61, no. 203, pp. 25β28, 1993. [3] B. C. Berndt, βOn Gaussian sums and other exponential sums with periodic coefficients,β Duke Mathematical Journal, vol. 40, no. 1, pp. 145β156, 1973. [4] T. Cochrane and Z. Zheng, βBounds for certain exponential sums,β Asian Journal of Mathematics, vol. 4, no. 4, pp. 757β774, 2000. [5] T. Cochrane and C. Pinner, βUsing Stepanovβs method for exponential sums involving rational functions,β Journal of Number Theory, vol. 116, no. 2, pp. 270β292, 2006. [6] K. S. Williams, βExponential sums over GF(2n),β Pacific Journal of Mathematics, vol. 40, no. 2, pp. 511β519, 1972. [7] A. Weil, βOn some exponential sums,β Proceedings of the National Academy of Sciences of the United States of America, vol. 34, no. 5, pp. 204β207, 1948. [8] T. Wang, βOn the fourth power mean of generalized two-term exponential sums,β Bulletin of the Korean Mathematical Society, vol. 50, pp. 233β240, 2013. [9] L. K. Hua, Introducetion to Number Theory, Science Press, Beijing, China, 1957. Advances in Operations Research Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Applied Mathematics Algebra Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Probability and Statistics Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Differential Equations Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com International Journal of Advances in Combinatorics Hindawi Publishing Corporation http://www.hindawi.com Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences Mathematical Problems in Engineering Journal of Mathematics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Discrete Mathematics Journal of Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Discrete Dynamics in Nature and Society Journal of Function Spaces Hindawi Publishing Corporation http://www.hindawi.com Abstract and Applied Analysis Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Journal of Stochastic Analysis Optimization Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014
© Copyright 2026 Paperzz