On the Fourth Power Mean of the Two

Hindawi Publishing Corporation
ξ€ e Scientific World Journal
Volume 2014, Article ID 724840, 5 pages
http://dx.doi.org/10.1155/2014/724840
Research Article
On the Fourth Power Mean of the Two-Term Exponential Sums
Han Zhang and Wenpeng Zhang
Department of Mathematics, Northwest University, Xi’an, Shaanxi, China
Correspondence should be addressed to Wenpeng Zhang; [email protected]
Received 17 October 2013; Accepted 18 December 2013; Published 12 January 2014
Academic Editors: C.-S. Liu and C. Zhai
Copyright © 2014 H. Zhang and W. Zhang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
The main purpose of this paper is to use the analytic methods and the properties of Gauss sums to study the computational problem
of one kind fourth power mean of two-term exponential sums and give an interesting identity and asymptotic formula for it.
1. Introduction
Let π‘ž β‰₯ 3 be a positive integer. For any integers π‘š and 𝑛, the
two-term exponential sum 𝐢(π‘š, 𝑛, π‘˜; π‘ž) is defined as follows:
π‘ž
𝐢 (π‘š, 𝑛, π‘˜; π‘ž) = βˆ‘ 𝑒 (
π‘Ž=1
π‘˜
π‘šπ‘Ž + π‘›π‘Ž
),
π‘ž
(1)
where 𝑒(𝑦) = 𝑒2πœ‹π‘–π‘¦ .
Regarding the various properties of 𝐢(π‘š, 𝑛, π‘˜; π‘ž), some
authors have studied them, and obtained a series of results.
Some related works can be found in references [1–8]. For
example, Gauss’ classical work proved the remarkable formula (see [1])
π‘ž
1
𝐢 (1, 0, 2; π‘ž) = βˆšπ‘ž (1 + 𝑖) (1 + 𝑒 (βˆ’ ))
2
4
βˆšπ‘ž,
{
{
{
{0,
={
{π‘–βˆšπ‘ž,
{
{
{(1 + 𝑖) βˆšπ‘ž,
if
if
if
if
π‘ž ≑ 1 mod 4,
π‘ž ≑ 2 mod 4,
π‘ž ≑ 3 mod 4,
π‘ž ≑ 0 mod 4,
(2)
where 𝑖2 = βˆ’1.
Generally, for any odd number π‘ž and (π‘š, π‘ž) = 1, the exact
value of |𝐢(π‘š, 0, 2; π‘ž)| is βˆšπ‘ž, More relevant to it, Cochrane
and Zheng [4] showed the general sum that
󡄨󡄨󡄨𝐢 (π‘š, 𝑛, π‘˜; π‘ž)󡄨󡄨󡄨 ≀ π‘˜πœ”(π‘ž) π‘ž1/2 ,
(3)
󡄨
󡄨
where πœ”(π‘ž) denotes the number of all distinct prime divisors
of π‘ž.
In this paper, we study the fourth power mean of the twoterm exponential sum 𝐢(π‘š, 𝑛, π‘˜; π‘ž) as follows:
π‘ž
󡄨4
󡄨
βˆ‘ 󡄨󡄨󡄨𝐢 (π‘š, 𝑛, π‘˜; π‘ž)󡄨󡄨󡄨 ,
(4)
π‘š=1
where 𝑛 is any integer with (𝑛, π‘ž) = 1.
Regarding this problem, it seems that none has studied it
yet; at least we have not seen any related result before. The
problem is interesting, because it can reflect that the mean
value of 𝐢(π‘š, 𝑛, π‘˜; π‘ž) is well behaved. The main purpose of
this paper is to use the analytic methods and the properties of
Gauss sums to study the special case of (4) with π‘˜ = 5, π‘ž = 𝑝,
an odd prime and give an interesting identity and asymptotic
formula for it. That is, we will prove the following conclusion.
Theorem 1. Let 𝑝 > 3 be a prime. Then for any integer 𝑛 with
(𝑛, 𝑝) = 1, one has the identity
󡄨4
𝑝 σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
)󡄨󡄨
βˆ‘ 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨󡄨
󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
βˆ’1
βˆ’3
{3𝑝3 βˆ’ 𝑝2 (8 + 2 ( ) + 4 ( )) βˆ’ 3𝑝, 𝑖𝑓 5†𝑝 βˆ’ 1,
𝑝
𝑝
={
3
2
+
𝑂
(𝑝
)
,
𝑖𝑓 5 | 𝑝 βˆ’ 1,
3𝑝
{
(5)
where (βˆ—/𝑝) denotes the Legendre symbol.
2
The Scientific World Journal
For any prime 𝑝 with 5 | 𝑝 βˆ’ 1, one cannot give an exact
computational formula in our theorem at present. The difficulty
is that one needs to know the value of the character sums
(this formula can be found in Hua’s book, Section 7.8,
Theorem 8.2 [9]). One has
π‘βˆ’2 π‘βˆ’2
1
βˆ‘βˆ‘
π‘Ž=1 𝑏=1
𝑝|(π‘Žβˆ’π‘)(π‘Ž+𝑏+1)(π‘Ž2 +𝑏2 +π‘Ž+𝑏+1)
4 σ΅„¨σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2
󡄨󡄨
󡄨󡄨
𝑖
5
βˆ‘σ΅„¨σ΅„¨ βˆ‘ πœ’1 (π‘Ž βˆ’ 1)󡄨󡄨󡄨 ,
󡄨
󡄨󡄨
𝑖=1 󡄨󡄨 π‘Ž=1
󡄨
(6)
π‘βˆ’2 π‘βˆ’2
=
π‘βˆ’2 π‘βˆ’2
1+
βˆ‘βˆ‘
π‘Ž=1 𝑏=1
𝑝|(π‘Žβˆ’π‘)(π‘Ž+𝑏+1)
π‘β€ π‘Ž2 +𝑏2 +π‘Ž+𝑏+1
where πœ’1 is any 5-order character mod 𝑝.
For any integer β„Ž β‰₯ 3, whether there exists an exact
computational formula for
1+
βˆ‘βˆ‘
π‘Ž=1 𝑏=1
𝑝†(π‘Žβˆ’π‘)(π‘Ž+𝑏+1)
𝑝|π‘Ž2 +𝑏2 +π‘Ž+𝑏+1
π‘βˆ’2
βˆ‘βˆ‘
1
π‘Ž=1 𝑏=1
𝑝|π‘Ž2 +𝑏2 +π‘Ž+𝑏+1
π‘βˆ’1
1βˆ’4
βˆ‘
π‘Ž=1
𝑝|(2π‘Ž+1)2 +1
(7)
1
π‘βˆ’2 π‘βˆ’2
1+
βˆ‘
π‘Ž=1
𝑝|2π‘Ž2 +2π‘Ž+1
𝑝
βˆ‘βˆ‘
π‘Ž=1 𝑏=1
𝑝|(π‘Žβˆ’π‘)(π‘Ž+𝑏+1)
𝑝|π‘Ž2 +𝑏2 +π‘Ž+𝑏+1
π‘βˆ’2
= 2 (𝑝 βˆ’ 2) βˆ’ 1 βˆ’
= 2𝑝 βˆ’ 5 βˆ’
σ΅„¨σ΅„¨π‘βˆ’1
󡄨2β„Ž
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
)󡄨󡄨
βˆ‘ 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨
󡄨󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
π‘βˆ’2 π‘βˆ’2
βˆ‘
1
π‘Ž=0
𝑝|(2π‘Ž+1)2 +3
π‘βˆ’1 π‘βˆ’1
+
is an open problem, where 𝑝 is an odd prime and (𝑛, 𝑝) = 1.
1
βˆ‘βˆ‘
(10)
π‘Ž=0 𝑏=0
𝑝|(2π‘Ž+1)2 +(2𝑏+1)2 +2
π‘βˆ’1
π‘βˆ’1
π‘βˆ’1 π‘βˆ’1
= 2𝑝 βˆ’ 5 βˆ’ βˆ‘ 1 βˆ’ 4 βˆ‘ 1 + βˆ‘ βˆ‘ 1
π‘Ž=0
𝑝|π‘Ž2 +1
2. Several Lemmas
In this section, we will give several lemmas which are
necessary in the proof of our theorem. In the proving process
of all lemmas, we used many properties of Gauss sums; all
these can be found in [1], so they will not be repeated here.
First we have the following.
Lemma 2. Letting 𝑝 be an odd prime with 𝑝 > 3, then one has
the identity
= 2𝑝 βˆ’ 5 βˆ’ (1 + (
π‘βˆ’1
+ βˆ‘ (1 + (
𝑝
𝑏=0
π‘βˆ’1
= 3𝑝 + βˆ‘ (
βˆ’ (𝑏2 + 2)
= 3𝑝 βˆ’ 10 βˆ’ 2 (
βˆ‘βˆ‘
1 = 3𝑝 βˆ’ 10 βˆ’ 2 (
π‘Ž=1 𝑏=1
𝑝|(π‘Žβˆ’π‘)(π‘Ž+𝑏+1)(π‘Ž2 +𝑏2 +π‘Ž+𝑏+1)
βˆ’1
βˆ’3
) βˆ’ 4( ),
𝑝
𝑝
(8)
where (βˆ—/𝑝) denotes the Legendre’s symbol.
Proof. For any prime 𝑝, note that if π‘Ž passes through a complete residue system mod 𝑝, then 2π‘Ž + 1 also passes through
a complete residue system mod 𝑝, so note the identity
𝑝
βˆ‘(
π‘Ž=1
βˆ’1,
π‘Ž2 + 𝑛
)={
𝑝 βˆ’ 1,
𝑝
if (𝑛, 𝑝) = 1,
if (𝑛, 𝑝) = 𝑝
(9)
π‘Ž=0 𝑏=0
𝑝|π‘Ž2 +𝑏2 +2
βˆ’1
βˆ’3
)) βˆ’ 4 (1 + ( ))
𝑝
𝑝
βˆ’ (𝑏2 + 2)
𝑝
𝑏=0
π‘βˆ’2 π‘βˆ’2
π‘Ž=0
𝑝|π‘Ž2 +3
))
) βˆ’ 10 βˆ’ 4 (
βˆ’3
βˆ’1
)βˆ’( )
𝑝
𝑝
βˆ’1
βˆ’3
) βˆ’ 4( ).
𝑝
𝑝
This proves Lemma 2.
Lemma 3. Let 𝑝 be an odd prime πœ’ be any nonprincipal
character mod 𝑝. Then for any integer 𝑛 with (𝑛, 𝑝) = 1, one
has the identity
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2 󡄨󡄨󡄨
󡄨󡄨󡄨 π‘βˆ’1
5
󡄨
󡄨󡄨
󡄨󡄨
󡄨󡄨 βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 ( π‘šπ‘Ž + π‘›π‘Ž )󡄨󡄨󡄨 󡄨󡄨󡄨
󡄨󡄨
󡄨󡄨 󡄨󡄨
󡄨󡄨
𝑝
σ΅„¨σ΅„¨π‘Ž=1
󡄨󡄨 󡄨󡄨
σ΅„¨σ΅„¨π‘š=1
󡄨
󡄨
σ΅„¨σ΅„¨π‘βˆ’2
󡄨󡄨
󡄨󡄨󡄨
󡄨󡄨
4
3
2
{
{
𝑝 󡄨󡄨 βˆ‘ πœ’ (5π‘Ž + 10π‘Ž + 10π‘Ž + 5π‘Ž + 1)󡄨󡄨󡄨 ,
{
{
󡄨
󡄨󡄨
{
σ΅„¨σ΅„¨π‘Ž=1
{
󡄨
{
{
{
𝑖𝑓 πœ’ 𝑖𝑠 π‘›π‘œπ‘‘ π‘Ž 5-π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘β„Žπ‘Žπ‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿ mod 𝑝,
={ 󡄨
󡄨󡄨
π‘βˆ’1
π‘βˆ’1
{
󡄨󡄨
{
󡄨󡄨
󡄨󡄨
{
2
󡄨
{
{
{βˆšπ‘ σ΅„¨σ΅„¨σ΅„¨βˆ’2 + 2 βˆ‘ πœ’ (π‘Ž (1 βˆ’ π‘Ž)) + βˆ‘ πœ’ (π‘Ž (π‘Ž βˆ’ 1))󡄨󡄨󡄨 ,
{
󡄨󡄨
{ 󡄨󡄨
π‘Ž=1
π‘Ž=1
𝑖𝑓 πœ’ 𝑖𝑠 π‘Ž 5-π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘β„Žπ‘Žπ‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿ mod 𝑝.
{
(11)
The Scientific World Journal
3
π‘βˆ’1
Proof. Note that πœ’ is a non-principal character mod 𝑝, so if
πœ’ is not a 5-order character mod𝑝, (i.e., πœ’5 =ΜΈ πœ’0 , the principal character mod𝑝), then from the properties of Gauss
sums we have
= βˆ’πœ (πœ’) βˆ‘ (πœ’4 (π‘Ž) + πœ’3 (π‘Ž) + πœ’2 (π‘Ž) + πœ’ (π‘Ž) + 1) πœ’ (π‘Ž βˆ’ 1)
π‘Ž=1
π‘βˆ’1
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2
5
󡄨󡄨
󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
)󡄨󡄨󡄨
βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
σ΅„¨σ΅„¨π‘Ž=1
󡄨󡄨
𝑝
π‘š=1
󡄨
󡄨
π‘βˆ’1
π‘βˆ’1 π‘βˆ’1 π‘βˆ’1
= βˆ‘ βˆ‘ βˆ‘ πœ’ (π‘š) 𝑒 (
π‘βˆ’1 π‘βˆ’1 π‘βˆ’1
= βˆ‘ βˆ‘ βˆ‘ πœ’ (π‘š) 𝑒 (
π‘Ž=1
π‘βˆ’1
𝑝
π‘Ž=1
)
π‘šπ‘5 (π‘Ž5 βˆ’ 1) + 𝑛𝑏 (π‘Ž βˆ’ 1)
𝑝
π‘Ž=1 𝑏=1 π‘š=1
π‘βˆ’1
π‘βˆ’1
π‘Ž=1
𝑏=1
= 𝜏 (πœ’) βˆ‘ πœ’ (π‘Ž5 βˆ’ 1) βˆ‘ πœ’5 (𝑏) 𝑒 (
𝑛𝑏 (π‘Ž βˆ’ 1)
)
𝑝
Lemma 4. Let 𝑝 be an odd prime and let πœ’ be a 5th character
mod 𝑝. Then one has the identity
π‘βˆ’1
βˆ‘ πœ’ (π‘Ž (π‘Ž βˆ’ 1)) =
π‘βˆ’2
π‘Ž=1
π‘βˆ’1
π‘Ž=1
βˆ‘ πœ’ (π‘Ž2 (π‘Ž βˆ’ 1)) =
π‘βˆ’2
󡄨󡄨
σ΅„¨σ΅„¨π‘βˆ’1
󡄨
󡄨󡄨
󡄨󡄨 βˆ‘ πœ’ (π‘Ž (π‘Ž βˆ’ 1))󡄨󡄨󡄨 = βˆšπ‘,
󡄨󡄨
󡄨󡄨
󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
= πœ’5 (𝑛) 𝜏 (πœ’) 𝜏 (πœ’5 ) βˆ‘ πœ’ (5π‘Ž4 + 10π‘Ž3 + 10π‘Ž2 + 5π‘Ž + 1) ,
π‘Ž=1
(12)
π‘βˆ’1
βˆ‘π‘Ž=1
where 𝜏(πœ’) =
πœ’(π‘Ž)𝑒(π‘Ž/𝑝) denotes the classical Gauss
sums.
If πœ’ is a 5-order character mod 𝑝, then πœ’5 = πœ’0 ; note that
for any integer π‘Ž with (π‘Ž, 𝑝) = 1, we have πœ’4 (π‘Ž) = πœ’(π‘Ž),
πœ’3 (π‘Ž) = πœ’2 (π‘Ž), πœ’(βˆ’1) = βˆ’1, and
π‘βˆ’1 π‘βˆ’1
π‘Ž=1 𝑏=1
π‘βˆ’1
(13)
π‘Ž=1
= 𝜏 (πœ’2 ) βˆ‘ πœ’ (π‘Ž) πœ’ ((π‘Ž + 1)2 )
π‘Ž=1
𝑝
π‘Ž=2
𝑛𝑏 (π‘Ž βˆ’ 1)
)
𝑝
π‘βˆ’1
π‘βˆ’1
π‘Ž=2
π‘Ž=1
= 𝜏 (πœ’2 ) βˆ‘ πœ’ ((1 βˆ’ π‘Ž) π‘Ž) = 𝜏 (πœ’2 ) βˆ‘ πœ’ (π‘Ž (1 βˆ’ π‘Ž))
(17)
π‘βˆ’1
or
π‘βˆ’1
5
= βˆ’πœ (πœ’) βˆ‘ πœ’ (π‘Ž βˆ’ 1)
π‘Ž=1
𝑏=1
𝑏 (π‘Ž + 1)
)
𝑝
= 𝜏 (πœ’2 ) βˆ‘ πœ’ (π‘Ž βˆ’ 1) πœ’ (π‘Ž2 )
𝑛𝑏 (π‘Ž βˆ’ 1)
= 𝜏 (πœ’) βˆ‘ πœ’ (π‘Ž βˆ’ 1) βˆ‘ 𝑒 (
)
𝑝
π‘Ž=1
𝑏=1
π‘βˆ’1
π‘βˆ’1
π‘βˆ’1
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
)󡄨󡄨
βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
𝑝
π‘š=1
󡄨
󡄨
5
(16)
π‘Ž+𝑏
)
𝑝
= βˆ‘ πœ’ (π‘Ž) βˆ‘ πœ’2 (𝑏) 𝑒 (
󡄨2
π‘βˆ’1
.
󡄨󡄨
σ΅„¨σ΅„¨π‘βˆ’1
󡄨
󡄨󡄨
󡄨󡄨 βˆ‘ πœ’ (π‘Ž2 (π‘Ž βˆ’ 1))󡄨󡄨󡄨 = βˆšπ‘.
󡄨󡄨
󡄨󡄨
󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
𝜏2 (πœ’) = βˆ‘ βˆ‘ πœ’ (π‘Ž) πœ’ (𝑏) 𝑒 (
From the method of proving (12) we have the identity
𝑏=1
𝜏 (πœ’3 )
(15)
Proof. Noting that πœ’(βˆ’1) = 1, from the definition and
properties of the classical Gauss sums, we have
πœ’4 (π‘Ž) + πœ’3 (π‘Ž) + πœ’2 (π‘Ž) + πœ’ (π‘Ž) + 1
π‘Ž=1
𝜏 (πœ’) 𝜏 (πœ’2 )
Therefore
π‘Ž=1
π‘βˆ’2
if π‘Ž is a 5th residue mod 𝑝,
otherwise.
𝜏2 (πœ’)
,
𝜏 (πœ’2 )
π‘Ž=1
= πœ’5 (𝑛) 𝜏 (πœ’) 𝜏 (πœ’5 ) βˆ‘ πœ’ ((π‘Ž + 1)5 βˆ’ π‘Ž5 )
π‘βˆ’1
π‘Ž=1
Now note that |𝜏(πœ’)| = βˆšπ‘ if πœ’ =ΜΈ πœ’0 . From (12) and (14) we
may immediately deduce Lemma 3.
= πœ’5 (𝑛) 𝜏 (πœ’) 𝜏 (πœ’5 ) βˆ‘ πœ’ ((π‘Ž + 1)5 βˆ’ 1) πœ’ (π‘Ž5 )
π‘βˆ’1
π‘Ž=1
(14)
π‘Ž=1
= 𝜏 (πœ’) βˆ‘ πœ’ (π‘Ž5 βˆ’ 1) βˆ‘ πœ’5 (𝑏) 𝑒 (
π‘βˆ’1
)
π‘βˆ’1
π‘βˆ’1
π‘βˆ’1
= βˆ’πœ (πœ’) (βˆ’2 + 2 βˆ‘ πœ’ (π‘Ž (1 βˆ’ π‘Ž)) + βˆ‘ πœ’ (π‘Ž2 (π‘Ž βˆ’ 1))) .
= 𝜏 (πœ’) 𝜏 (πœ’5 ) βˆ‘ πœ’ (π‘Ž5 βˆ’ 1) πœ’5 (𝑛 (π‘Ž βˆ’ 1))
5,
={
0,
π‘Ž=1
+ βˆ‘ πœ’ (π‘Ž2 (π‘Ž βˆ’ 1)))
π‘š (π‘Ž5 βˆ’ 𝑏5 ) + 𝑛 (π‘Ž βˆ’ 𝑏)
π‘Ž=1 𝑏=1 π‘š=1
π‘βˆ’1
= βˆ’πœ (πœ’) (2 βˆ‘ πœ’ (π‘Ž βˆ’ 1) + 2 βˆ‘ πœ’ (π‘Ž (1 βˆ’ π‘Ž))
βˆ‘ πœ’ (π‘Ž (π‘Ž βˆ’ 1)) =
π‘Ž=1
𝜏2 (πœ’)
.
𝜏 (πœ’2 )
(18)
4
The Scientific World Journal
Similarly, we also have
π‘βˆ’1 π‘βˆ’1
𝜏 (πœ’) 𝜏 (πœ’2 ) = βˆ‘ βˆ‘ πœ’ (π‘Ž) πœ’2 (𝑏) 𝑒 (
π‘Ž=1 𝑏=1
π‘βˆ’1
π‘βˆ’1
π‘Ž=1
𝑏=1
= βˆ‘ πœ’ (π‘Ž) βˆ‘ πœ’3 (𝑏) 𝑒 (
From (22) and Lemma 3 we have
󡄨󡄨 π‘βˆ’1
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2 󡄨󡄨󡄨2
5
󡄨󡄨
󡄨󡄨
󡄨󡄨 󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
󡄨󡄨
)󡄨󡄨󡄨 󡄨󡄨󡄨
βˆ‘ 󡄨󡄨 βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨
σ΅„¨σ΅„¨π‘Ž=1
󡄨󡄨 󡄨󡄨
𝑝
πœ’ mod π‘σ΅„¨σ΅„¨σ΅„¨π‘š=1
󡄨
󡄨 󡄨󡄨
󡄨󡄨 π‘βˆ’1
󡄨󡄨2 󡄨󡄨󡄨2
σ΅„¨σ΅„¨π‘βˆ’1
5
󡄨󡄨󡄨
󡄨󡄨 󡄨󡄨
󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
= 󡄨󡄨󡄨 βˆ‘ πœ’0 (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
)󡄨󡄨󡄨 󡄨󡄨󡄨
σ΅„¨σ΅„¨π‘š=1
󡄨󡄨 󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
𝑝
󡄨󡄨
󡄨 󡄨󡄨
󡄨
󡄨󡄨 π‘βˆ’1
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2 󡄨󡄨󡄨2
5
󡄨󡄨
󡄨󡄨󡄨
󡄨󡄨 󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
+ βˆ‘ 󡄨󡄨󡄨 βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
)󡄨󡄨󡄨 󡄨󡄨󡄨
󡄨
𝑝
σ΅„¨σ΅„¨σ΅„¨π‘Ž=1
󡄨󡄨󡄨 󡄨󡄨󡄨
πœ’ mod π‘σ΅„¨σ΅„¨σ΅„¨π‘š=1
󡄨
π‘Ž+𝑏
)
𝑝
𝑏 (π‘Ž + 1)
)
𝑝
π‘βˆ’1
= 𝜏 (πœ’3 ) βˆ‘ πœ’ (π‘Ž) πœ’ ((π‘Ž + 1)3 )
π‘Ž=1
πœ’ =ΜΈ πœ’0
(19)
𝑝
= (𝑝2 βˆ’ 𝑝 βˆ’ 1)
= 𝜏 (πœ’3 ) βˆ‘ πœ’ (π‘Ž βˆ’ 1) πœ’ (π‘Ž3 )
π‘Ž=2
2
σ΅„¨σ΅„¨π‘βˆ’2
󡄨󡄨2
󡄨󡄨
󡄨󡄨
4
3
2
+ βˆ‘ 𝑝 β‹… 󡄨󡄨󡄨 βˆ‘ πœ’ (5π‘Ž + 10π‘Ž + 10π‘Ž + 5π‘Ž + 1)󡄨󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
󡄨󡄨
πœ’ mod 𝑝
󡄨
󡄨
π‘βˆ’1
2
= 𝜏 (πœ’3 ) βˆ‘ πœ’ ((1 βˆ’ π‘Ž) π‘Ž2 )
π‘Ž=2
πœ’ =ΜΈ πœ’0
π‘βˆ’1
= (𝑝2 βˆ’ 𝑝 βˆ’ 1)
= 𝜏 (πœ’3 ) βˆ‘ πœ’ (π‘Ž2 (1 βˆ’ π‘Ž))
π‘Ž=1
2
σ΅„¨σ΅„¨π‘βˆ’2
󡄨󡄨2
󡄨󡄨
󡄨󡄨
4
3
2
+ 𝑝 βˆ‘ 󡄨󡄨󡄨 βˆ‘ πœ’ (5π‘Ž + 10π‘Ž + 10π‘Ž + 5π‘Ž + 1)󡄨󡄨󡄨
󡄨
󡄨󡄨
πœ’ mod 𝑝󡄨󡄨 π‘Ž=1
󡄨
2
or
π‘βˆ’1
2
βˆ‘ πœ’ (π‘Ž (π‘Ž βˆ’ 1)) =
𝜏 (πœ’) 𝜏 (πœ’2 )
π‘Ž=1
𝜏 (πœ’3 )
.
(20)
2
2
π‘βˆ’2
4
3
2
βˆ’ 𝑝 ( βˆ‘ πœ’0 (5π‘Ž + 10π‘Ž + 10π‘Ž + 5π‘Ž + 1))
π‘Ž=1
2
= (𝑝2 βˆ’ 𝑝 βˆ’ 1) + 𝑝2 (𝑝 βˆ’ 1)
This proves Lemma 4.
π‘βˆ’2 π‘βˆ’2
×
3. Proof of the Theorem
×
(21)
π‘βˆ’1 σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨4
5
󡄨󡄨
󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
= (𝑝 βˆ’ 1) βˆ‘ 󡄨󡄨󡄨 βˆ‘ 𝑒 (
)󡄨󡄨󡄨 .
󡄨
󡄨󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
π‘Ž=1 𝑏=1
(π‘Žβˆ’π‘)(π‘Ž+𝑏+1)(π‘Ž2 +𝑏2 +π‘Ž+𝑏+1)≑0 mod 𝑝
2
× (3𝑝 βˆ’ 10 βˆ’ 2 (
󡄨2
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
)󡄨󡄨
βˆ‘ πœ’0 (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
𝑝
π‘š=1
󡄨
󡄨
π‘βˆ’1
2
2
1 βˆ’ 𝑝2 (𝑝 βˆ’ 2)
βˆ‘βˆ‘
= (𝑝2 βˆ’ 𝑝 βˆ’ 1) + 𝑝2 (𝑝 βˆ’ 1)
On the other hand, if 5†𝑝 βˆ’ 1, then any non-principal
character πœ’ is not a 5-order character mod 𝑝. Note that
π‘Ž=1 𝑏=1 π‘š=1
2
= (𝑝2 βˆ’ 𝑝 βˆ’ 1) + 𝑝2 (𝑝 βˆ’ 1)
π‘βˆ’2 π‘βˆ’2
󡄨󡄨 π‘βˆ’1
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2 󡄨󡄨󡄨2
5
󡄨󡄨
󡄨󡄨
󡄨󡄨 󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
󡄨󡄨
)󡄨󡄨󡄨 󡄨󡄨󡄨
βˆ‘ 󡄨󡄨 βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨
󡄨
󡄨󡄨 󡄨󡄨
𝑝
σ΅„¨σ΅„¨π‘Ž=1
πœ’ mod π‘σ΅„¨σ΅„¨σ΅„¨π‘š=1
󡄨 󡄨󡄨
= βˆ‘ βˆ‘ βˆ‘π‘’(
2
1 βˆ’ 𝑝2 (𝑝 βˆ’ 2)
π‘Ž=1 𝑏=1
π‘Ž4 +2π‘Ž3 +2π‘Ž2 +π‘Žβ‰‘π‘4 +2𝑏3 +2𝑏2 +𝑏 mod 𝑝
In this section, we shall complete the proof of our theorem.
First from the orthogonality of characters mod 𝑝 we have
π‘βˆ’1 π‘βˆ’1 π‘βˆ’1
βˆ‘βˆ‘
βˆ’1
βˆ’3
2
) βˆ’ 4 ( )) βˆ’ 𝑝2 (𝑝 βˆ’ 2)
𝑝
𝑝
= (𝑝 βˆ’ 1) [3𝑝3 βˆ’ 𝑝2 (8 + 2 (
βˆ’1
βˆ’3
) + 4 ( )) βˆ’ 3𝑝 βˆ’ 1] .
𝑝
𝑝
(23)
If 5†𝑝 βˆ’ 1, then combining (21) and (23) we may immediately
deduce the identity
π‘šπ‘5 (π‘Ž5 βˆ’ 1) + 𝑛𝑏 (π‘Ž βˆ’ 1)
𝑝
= (𝑝 βˆ’ 1) + 𝑝 βˆ’ 2 = 𝑝2 βˆ’ 𝑝 βˆ’ 1.
)
(22)
π‘βˆ’1 σ΅„¨σ΅„¨π‘βˆ’1
󡄨4
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
󡄨
)󡄨󡄨
βˆ‘ 󡄨󡄨 βˆ‘ 𝑒 (
󡄨
󡄨󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
βˆ’1
βˆ’3
= 3𝑝 βˆ’ 𝑝 (8 + 2 ( ) + 4 ( )) βˆ’ 3𝑝 βˆ’ 1
𝑝
𝑝
3
2
(24)
The Scientific World Journal
5
So if 5 | 𝑝 βˆ’ 1, then combining (21) and (27) we can deduce
the asymptotic formula
or
󡄨4
𝑝 σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
󡄨
)󡄨󡄨
βˆ‘ 󡄨󡄨 βˆ‘ 𝑒 (
󡄨
󡄨󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
= 3𝑝3 βˆ’ 𝑝2 (8 + 2 (
σ΅„¨σ΅„¨π‘βˆ’1
󡄨4
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
󡄨
)󡄨󡄨
βˆ‘ 󡄨󡄨 βˆ‘ 𝑒 (
󡄨
󡄨󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
𝑝
(25)
βˆ’1
βˆ’3
) + 4 ( )) βˆ’ 3𝑝.
𝑝
𝑝
If 5 | 𝑝 βˆ’ 1, since πœ’1 =ΜΈ πœ’0 is a 5-order character mod𝑝,
πœ’1 = πœ’14 and πœ’1 2 = πœ’13 are also 5-order characters mod 𝑝,
then note that
σ΅„¨σ΅„¨π‘βˆ’1
󡄨2
π‘βˆ’1
󡄨󡄨
π‘šπ‘Ž5 + π‘›π‘Ž 󡄨󡄨󡄨󡄨
)󡄨󡄨
βˆ‘ πœ’0 (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
σ΅„¨σ΅„¨π‘Ž=1
󡄨󡄨
𝑝
π‘š=1
󡄨
󡄨
π‘βˆ’1 σ΅„¨σ΅„¨π‘βˆ’1
󡄨4
󡄨󡄨
π‘šπ‘Ž + π‘›π‘Ž 󡄨󡄨󡄨󡄨
󡄨
= 1 + βˆ‘ 󡄨󡄨 βˆ‘ 𝑒 (
)󡄨󡄨 = 3𝑝3 + 𝑂 (𝑝2 ) .
󡄨
󡄨󡄨
𝑝
π‘š=1󡄨󡄨 π‘Ž=1
󡄨
(28)
5
Now our theorem follows from (25) and (28).
Conflict of Interests
The authors declare that there is no conflict of interests
regarding the publication of this paper.
2
= (𝑝 βˆ’ 1) βˆ’ 4 (𝑝 βˆ’ 1) + 𝑝 βˆ’ 6 = 𝑝2 βˆ’ 5𝑝 βˆ’ 1
π‘βˆ’2
βˆ‘ πœ’1 ((π‘Ž + 1)5 βˆ’ π‘Ž5 )
Acknowledgments
π‘Ž=1
π‘βˆ’2
5
π‘βˆ’1
The authors express their gratitude to the referee for very
helpful and detailed comments. This work is supported by the
N. S. F. (11371291), S. R. F. D. P. (20136101110014), and N. S. F.
(2013JZ001) of Shaanxi Province of China.
5
= βˆ‘ πœ’1 ((π‘Ž + 1) βˆ’ 1) = βˆ‘ πœ’1 (π‘Ž βˆ’ 1)
π‘Ž=1
π‘Ž=1
π‘βˆ’1
= βˆ‘ (πœ’12 (π‘Ž) + πœ’1 (π‘Ž) + πœ’1 2 (π‘Ž) + πœ’1 (π‘Ž) + 1) πœ’1 (π‘Ž βˆ’ 1)
π‘Ž=1
π‘βˆ’1
π‘βˆ’1
π‘Ž=1
π‘Ž=1
= βˆ‘ πœ’1 (π‘Ž2 (1 βˆ’ π‘Ž)) + 2 βˆ‘ πœ’1 (π‘Ž (1 βˆ’ π‘Ž)) βˆ’ 2.
(26)
From Lemma 4 and the method of proving (23) we have
󡄨󡄨 π‘βˆ’1
σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨2 󡄨󡄨󡄨2
5
󡄨󡄨
󡄨󡄨
󡄨󡄨 󡄨󡄨
+
π‘›π‘Ž
π‘šπ‘Ž
󡄨󡄨
)󡄨󡄨󡄨 󡄨󡄨󡄨
βˆ‘ 󡄨󡄨 βˆ‘ πœ’ (π‘š) 󡄨󡄨󡄨 βˆ‘ 𝑒 (
󡄨
󡄨󡄨 󡄨󡄨
󡄨
𝑝
σ΅„¨σ΅„¨π‘Ž=1
πœ’ mod π‘σ΅„¨σ΅„¨σ΅„¨π‘š=1
󡄨 󡄨󡄨
2
= (𝑝2 βˆ’ 5𝑝 βˆ’ 1)
+
σ΅„¨σ΅„¨π‘βˆ’2
󡄨󡄨󡄨2
󡄨
4
3
2
𝑝 󡄨󡄨 βˆ‘ πœ’ (5π‘Ž + 10π‘Ž + 10π‘Ž + 5π‘Ž + 1)󡄨󡄨󡄨
󡄨󡄨
σ΅„¨σ΅„¨π‘Ž=1
󡄨
󡄨
2 󡄨󡄨󡄨
βˆ‘
πœ’ mod 𝑝
πœ’ =ΜΈ πœ’0 ,πœ’1 ,πœ’12 ,πœ’13 ,πœ’14
󡄨󡄨2
π‘βˆ’1
󡄨󡄨
󡄨󡄨
𝑖
2
𝑖
+ π‘βˆ‘σ΅„¨σ΅„¨ βˆ‘ πœ’1 (π‘Ž (1 βˆ’ π‘Ž)) + 2 βˆ‘ πœ’1 (π‘Ž (1 βˆ’ π‘Ž)) βˆ’ 2󡄨󡄨󡄨
󡄨󡄨
󡄨
π‘Ž=1
𝑖=1 󡄨󡄨 π‘Ž=1
󡄨
4 σ΅„¨σ΅„¨σ΅„¨π‘βˆ’1
2
= (𝑝2 βˆ’ 5𝑝 βˆ’ 1)
+ 𝑝2 (𝑝 βˆ’ 1) (3𝑝 βˆ’ 10 βˆ’ 2 (
βˆ’1
βˆ’3
) βˆ’ 4 ( ))
𝑝
𝑝
󡄨󡄨2
π‘βˆ’1
4 σ΅„¨σ΅„¨σ΅„¨π‘βˆ’1
󡄨󡄨
󡄨
+ (𝑝 βˆ’ 𝑝2 ) βˆ‘σ΅„¨σ΅„¨σ΅„¨ βˆ‘ πœ’1𝑖 (π‘Ž2 (1 βˆ’ π‘Ž)) + 2 βˆ‘ πœ’1𝑖 (π‘Ž (1 βˆ’ π‘Ž)) βˆ’ 2󡄨󡄨󡄨
󡄨󡄨
󡄨
π‘Ž=1
𝑖=1 󡄨󡄨 π‘Ž=1
󡄨
2
βˆ’ 𝑝2 (𝑝 βˆ’ 6)
= 3𝑝4 + 𝑂 (𝑝3 ) .
(27)
References
[1] T. M. Apostol, Introduction to Analytic Number Theory,
Springer, New York, NY, USA, 1976.
[2] T. M. Apostol, β€œAn extension of the Lehmers’ picturesque
exponential sums,” Mathematics of Computation, vol. 61, no.
203, pp. 25–28, 1993.
[3] B. C. Berndt, β€œOn Gaussian sums and other exponential sums
with periodic coefficients,” Duke Mathematical Journal, vol. 40,
no. 1, pp. 145–156, 1973.
[4] T. Cochrane and Z. Zheng, β€œBounds for certain exponential
sums,” Asian Journal of Mathematics, vol. 4, no. 4, pp. 757–774,
2000.
[5] T. Cochrane and C. Pinner, β€œUsing Stepanov’s method for exponential sums involving rational functions,” Journal of Number
Theory, vol. 116, no. 2, pp. 270–292, 2006.
[6] K. S. Williams, β€œExponential sums over GF(2n),” Pacific Journal
of Mathematics, vol. 40, no. 2, pp. 511–519, 1972.
[7] A. Weil, β€œOn some exponential sums,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 34, no. 5, pp. 204–207, 1948.
[8] T. Wang, β€œOn the fourth power mean of generalized two-term
exponential sums,” Bulletin of the Korean Mathematical Society,
vol. 50, pp. 233–240, 2013.
[9] L. K. Hua, Introducetion to Number Theory, Science Press,
Beijing, China, 1957.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014