DistalCoolingandSustainedAttention RyanSixtus Athesissubmittedforthedegreeof MasterofPhysicalEducation attheUniversityofOtago,Dunedin, NewZealand 20/01/2016 i ABSTRACT Introduction:Vigilanceisdirectlyrelatedtocoreandskintemperatures(TCandTsk).Biological dayreflectsahighTCandalertness;nightreflectsviceversa.Atrest,TCisregulatedlargelyby controllingbloodflow(andhenceTsk)inextremities;theirvasodilationstronglypredicts reducedvigilance(Raymannetal.,2007b)andfastersleeponset(Kräuchietal.,1999).In narcolepsy,highdaytimeextremitytemperaturesandasmallerdistal-to-proximalgradient (DPG)indicateshighersleeppropensity(Fronczeketal.,2006b).Coolextremitieshavebeen linkedobservationallytodelayedsleeponsetintheelderly,andexperimentallyshowntoreduce sleeppropensityinnarcolepsy(Fronczeketal.,2008).Therefore,theaimofthisstudywasto testthehypothesisthatcoolingthefeetwouldmaintainvigilanceduringextendedwakefulness inhealthyadults. Methods:Arandomisedcross-overexperimentwascompletedusingninehealthyyoungadult participantswithnormalsleeppatterns.Afterprovidinginformedconsent,andadaytime familiarisation,theyundertookthree4-hlaboratorysessionsinwhichwater-perfusedbooties wereusedtoprovideMildcooling,Moderatecoolingornocooling(Control).Sessionswereina dimly-litroom,beginningat2230.Each30minconsistedofquietrestinterspersedwitha10minpsychomotorvigilancetask(PVT),7-minKarolinskaDrowsinessTest(KDT),andratingsof sleepiness,perceivedbodytemperatureandthermaldiscomfort.EEGspectralpowers(theta, alphaandbeta)weredeterminedwithinthePVTandKDT.Analyseswerebyrepeatedmeasures ANOVA(α=0.05)withpost-hoccontrasts. Results:FoottemperaturesinControlandMildandModeratecoolingaveraged34.5±0.5,30.8 ±0.2and26.4±0.1OC(allP<0.01).Yet,theupper-limbDPGremainedstable(at~0.3OC) regardlessofcondition(P=0.57).ThedeclineinTC(~0.35OC)wasalsounaffectedbycondition (P=0.84),aswasvigilance(interactionforresponsespeed:P=0.45).Asmallandtransient reductioninsleepinesswasevidentwithcooling(P=0.046);otherwisesleepinessandvigilance ii deterioratedinconjunctionwiththefallinTCineachcondition(r>0.80).Participantsfeltcooler throughoutbothcoolingtrials,butthermalcomfortwasunaffected(P=0.43),aswerealmostall EEGparametersduringtheKDT.Alldependentmeasureswereaffectedbytime. DiscussionandConclusion:Inhealthy,youngadults,coretemperatureandvigilancedecline duringtheperiodofnormalsleeponsetandearlysleepregardlessofmildormoderatecooling ofthefeet,andanyeffectonsleepinessissmallandtransient. iii ACKNOWLEDGEMENTS TherearemanypeopletowhomIowethanks.Firstandforemostaremysupervisors,for whomIcouldnothavecompletedthisprojectwiththedepthofthoughtanddetailpresented. Evenmoreso,IwouldnothavebegunthisjourneywithoutJimCottertofirstlysupportmeinto postgraduatelevelandthensecondlysetmedownthispathbygivingmetheproject. Ifeelasthoughabackgroundtothisprojectisrequired.FormanyyearsJimhasbeendriving homeaftermulti-dayenduranceevents,severelysleepdeprivedandhasresortedtomanyforms ofcooling–fromdirectingtheairconditioningtohisfeet,tojumpinginrivers–tomaintainhis alertness.Thisformedthebasisformyquestioning.Jimhasforalongtimebeena thermoregulatorydictionaryformeandwithouthishelpIsincerelydoubtthatthisproject wouldhavegottenofftheground. BarbaraGallandallowedmetointroduceelectroencephalographyandvarioussleep measures,whichallowedmetoprogressthisstudyintosomethingserious.Barbarasourcedall mymaindependentmeasures–thePVTandEEG,aswellastheActicals–fromaroundthe country.Idon’tknowwhatthisstudywouldhaveturnedouttobehadBarbaranothelpedmein acquiringthisequipmentandunderstandingthecircadianandsleepaspectsofthisresearch. IoweCarmenLobb,myacticaljuggler,aheapofthanksforarrangingtheacquisitionofmy acticals.Whilealwaysbusywithotherstuff,shewasalwayscapableofassistingmeinsetting theseup. ThePEschooltechteam,alwaysworkinghardforuspostgrads,didagreatjoboftrackingmy equipmentdown,includingtheneoprenefromwhichmybootiesweremade. Fortheloanofequipment,IhaveAucklandUniversity,andMassyUniversitytothank.The compumedicsEEGequipmentallowedmetobetterrecordmyelectrophysiologicalmeasures. LeighfromMassy,fortheextendedloanofthePVT,Ioweabigthanks. Finally,GavinKennedy,Matlabwizard,abigthanksforanalysingmyEEGsignalwithMatlab. IwouldprobablyhavenoEEGdatatoaddtothisthesiswithouthim. CONTENTS ABSTRACT………………………………………………………………………………………………………. i ACKNOLEDGEMENTS………………………………………………………………………………………. iii ABREVIATIONS………………………………………………………………………………………………… viii LISTOFTABLES……………………………………………………………………………………………….. x LISTOFFIGURES……………………………………………………………………………………………….xi 1.0 INTRODUCTION……………………………………………………………………………………..1 2.0 LITERATUREREVIEW…………………………………………………………………………… 5 2.1 Driving………………………………………………………………………………………………………6 2.2 Thermoregulation………………………………………………………………………………………8 2.2.1 Homeostasis…………………………………………………………………………………..8 2.2.2 Sensation………………………………………………………………………………………..13 2.2.3 Vasomotion..…………………………………………………………………………………..20 2.2.4 ArteriovenousAnastomoses……………………………………………………………25 2.2.5 Summary………………………………………………………………………………………..26 2.3 CircadianRhythms……………………………………………………………………………………..29 2.3.1 Sleeppermissive/wakepromotingfactors………………………………………31 2.3.2 Homeostatichourglass–ProcessS…………………………………………………..33 2.3.3 Centralcircadianclock–ProcessC………………………………………………….35 2.3.4 InteractionofProcessSandProcessC…………………………………………….36 2.3.5 Circadiantemperaturerhythm………………………………………………………..40 2.3.6 Narcolepsy……………………………………………………………………………………..43 2.4 Vigilance……………………………………………………………………………………………………44 2.4.1 Psychomotorvigilance..…………………………………………………..………………45 2.4.2 Validityofthepsychomotorvigilancetask……………………………………….47 2.5 Sleeponset………………..……………………………………………………………………………….49 2.6 Electroencephalographyandelectro-oculogram.…………………………………….......51 2.6.1 Alphaandthetarhythms………………………………………………………..............53 2.6.2 Agerelatedalphafrequencychanges……………………..………………………..55 2.6.3 Betarhythm……………………………………………………………………..…………….56 2.6.4 10/20electrodepositioning……………………………………………………...........58 2.6.5 Theelectro-oculogram(EOG)………………………………………………………….59 2.7 Conclusion...………….……………………………………………………………………………………60 3.0 METHOD………………………………………………………………………………………………..62 3.1 ExperimentalProtocol………………………………………………………………………………. 64 3.2 Participants……………………………………………………………………………………………….66 3.4 ApparatusandMeasures…………………………………………………………………………….67 3.4.1 Psychomotorvigilancetask……………………………………………………………..67 3.4.2 Electrophysiologicalmeasures(EEG,EOG,ECG)………………………………67 3.4.3 Sleeponsetstaging…………………………………………………..…………………......69 3.4.4 Temperature……………………………………………………………………………….....69 3.4.5 Actigraphyandsleepdiary……………………………………………………………...71 3.4.6 Subjectivequestionnaires……………………………………………………………….71 3.4.7 Hydrationstatus………………………………………………………………………….....72 3.5 DataAnalysis……………………………………………………………………………………………..73 3.5.1 Datareduction………………………………………………………………………………..73 3.5.2 Statisticalanalyses………………………………………………………………………….74 4.0 RESULTS……..………………………………………………………………………………………….76 4.1 Participantcharacteristicsandcompliance………………………………………………….76 4.1.1 Screening………………………………………………………………………………………..76 4.1.2 Adherence……………………………………………………………………………………...76 4.1.3 Sleepdiaries–sleeponset………………………………………………………………77 4.1.4 Moodstatecharacteristicsandhydration………………………………………...78 4.2 Inducedtemperatures………………………………………………………………………………..80 4.2.1 Temperaturemanipulation……………………………………………………………..81 4.2.2 Foottemperatures………………………………………………………………………….81 4.2.3 Upperlimb……………………………………………………………………………………..82 4.2.4 Coretemperature………………………………………………………………………......82 4.2.5 Temperaturegradients………………………………………………………………......85 4.2.6 Temperatureperception………………………………………………………………...87 4.3 Subjectivesleepiness………………………………………………………………………………….89 4.4 Vigilance……………………………………………………………………………………………………91 4.4.1 Reciprocalreactiontime…………………………………………………………………91 4.4.2 Variability………………………………………………………………………………….......92 4.4.3 Lapses……………………………………………………………………………………………92 4.4.4 Coretemperatureandvigilance………………………………………………………94 4.4.5 CoretemperatureandSleepiness……………………………………………………94 4.5 Cognitivearousal…………………………………………………………………………………….....96 4.5.1 KarolinskaDrowsinessTest……………………………………………………………96 4.5.2 C4-A1…………………………………………………………………………………………….97 5.4.3 O2-A1………………………………………………………………………………………….... 98 4.6 HeartRate………………………………………………………………………………………………… 101 5.0 DISCUSSION……………………………………………………………………………………………103 5.1 Temperatureandvigilance…………………………………………………………………………104 5.1.1 Temperatureeffects……………………………………………………………………….104 5.1.2 Vigilanceandarousal.……………………………………………………………………..106 5.2 TransientEffects………………………………………………………………………………………..110 5.3 Limitations………………………………………………………………………………………………...111 5.3.1 Ordereffect……………………………………………………………………………………111 5.3.2 Laboratory/Equipmentsetup…………………………………………………………112 5.3.3 Statisticalpower…………………………………………………………………………….112 5.3.4 Electroencephalography…………………………………………………………………113 5.3.5 Temperature………………………………………………………………………………….114 5.3.6 Vigilance……………………………………………………………………………………….. 115 5.4 VariableTemperaturesacrossthermistorlocationsonthefeet……………………115 5.5 PracticalApplication…………………………………………………………………………………..116 5.6 ConclusionsandRecommendationsforfutureresearch………………….……………117 7.0 REFERENCES………………………………………………………………………………………….120 8.0 APPENDICES…………………………………………………………………………………………..133 AppendixA:ParticipantInformationandconsentform.………………………………….133 AppendixB:Activitymonitoringandsleepdiary.………………………………………......137 AppendixC:Depictionofparticipantsetup………………………………………………………..141 AppendixD:Criteriaforanalysisofthe10minPVT.……………………………………………142 AppendixE:Outlinefordrowsinessscoring……………………………………………………….143 AppendixF:Pilottemperatures…………………………………………………………………………144 AppendixG:Waterperfusedbooties…………………………………………………………………..146 AppendixH:KarolinskaSleepinessScale……………..………………….………………………….147 AppendixI:ThermalSensationandThermalDiscomfort…………………………………….148 AppendixJ:TheBrunelmoodstatequestionnaire..................................................................149 AppendixK:AdditionalData………………………………………………………………………………150 AppendixL:Participanteight……………………………………………………………………………..151 viii ABREVIATIONS AAS AscendingArousalSystem ANOVA AnalysisofVariance AVA ArteriovenousAnastomoses BRUMS BrunelMoodStateQuestionnaire CSN ColdSensitiveNeuron DPG DistalProximalGradient ECG Electrocardiogram EEG Electroencephalogram(ScalpabbreviationsinFigure3.3) EOG Electro-oculogram ISI Inter-stimulusInterval KDT KarolinskaDrowsinessTest KSS KarolinskaSleepinessScale LH LateralHypothalamus N1 SleepStage1 N2 SleepStage2 N3 SleepStage3/4 NREM NonRapidEyeMovementSleep PCG ProximalCoreGradient POAH PreopticAnteriorHypothalamus PSG Polysomnography PVT PsychomotorVigilanceTask REM/R RapidEyeMovementSleep RRT ReciprocalReactionTime[RRT=1000/RT] RT ReactionTime SCN SuprachiasmaticNucleus ix SD standarddeviation SEM SlowEyeMovement SWS SlowWaveSleep Tamb AmbientTemperature(drybulbtemperature) T C CoreBodyTemperature TFoot Foottemperature TForehead Foreheadtemperature TSk Skintemperature TNZ ThermoneutralZone TRPChannel TransientReceptorPotentialChannel TRPA TransientReceptorPotentialAnkyrin TRPM TransientReceptorPotentialMelastatin TRPV TransientReceptorPotentialVanilloid Tsk SkinTemperature USG UrineSpecificGravity VLPO VentrolateralPreopticHypothalamus WEM WakingEyeMovement WSN WarmSensitiveNeuron x LISTOFTABLES Page 3.1:Participantdetails.………………………………………………………………………………………………………66 4.1:Sleephours:sleeponset,waking,totalsleeptime.………………………………………………………….79 4.2:Preandpostsubjectivesleepinessandhydration.…………………………………………………………..79 4.3:Ambientandwatertemperatures.………………………………………………………………………………..81 AppendixD:Table1:Criteriafortheanalysisof10-minPVT…………………………………………………..142 AppendixE:Table1:Outlineforsignificanteventsinprogressingdrowsiness…………………………143 AppendixF:Table1:TrialcoolingprotocolforapplicationtoMildandModerateconditionsin mainstudy.…………………………………………………………….…………………………………………………………144 xi LISTOFFIGURES Page 2.1:SchematicrepresentationofthermoTRPchannelactivation………………………………………….16 2.2:Correlationbetweenskintemperatureandrestingbloodflowvelocity…………………………26 2.3:TimecourseofProcessesSandCafterregularandextendedwakingperiods………………..29 2.4:Diagrammaticrepresentationofnormallyentrainedendogenousrhythmsofcorebody temperature,melatoninandsleeppropensity.……………………………………………………………………40 3.1:Protocoloverview………………………………………………………………………………………………… 62 3.2:Studyoverview………………………………………………………………………………………………… 62 3.3:Manipulatedtestingcycle.……………………………………………………………………………….…………..65 3.4:International10/20system,electrodepositions…………………………………………………………. 68 4.1:averagefoot,upperlimbandcoretemperatureacrossconditions…………………………………83 4.2:Localisedfoottemperatureparameterscomprisingaveragefoottemperatureacross conditions…………………………………………………………….…………………………………………………………...84 4.3:Timecourseofindividualfootthermistorsacrossconditions………………………………………..84 4.4:Upperandlowerlimbdistalproximalgradients,andPCG.…………………………………………….86 4.5:Differencesinupperlimbgradientsbetweenconditions………………………………………………86 4.6:Thermalsensationandthermalcomfort………………………………………………………………………88 4.7:Progressionofsubjectivesleepiness.…………………………………………………………………………...90 4.8:CeilingeffectofKarolinskasleepinessscale.………………………………………………………………..90 4.9:ChangeinsubjectivesleepinesspreandpostPVT.………………………………………………………..91 4.10:1minaveragesofreciprocalreactiontime,andvarianceacrossPVTs………………………….93 4.11:AveragePVTlapsesacrossconditions.……………………………………………………………………….95 xii Page 4.12:CorrelationofchangeincorebodytemperatureandchangeinRRT…………………………….95 4.13:Correlationofchangeincorebodytemperatureandsubjectivesleepiness………………….96 4.14:Theta,alphaandbetaEEGfrequenciesfromC4-A1derivationacrossKDTseyesopen andeyesclosed.…………………………………………………………….………………………………………………… 99 4.15:ThetaandalphaEEGfrequenciesfromO2-A1derivationacrossKDTseyesopenand eyesclosed.…………………………………………………………….………………………………………………………...100 4.16:ChangeinthetaandalphaEEGfrequenciesbetweeneyesopenandeyesclosedwithin eachKDT…………………………………………………………….…………………………………………………………….101 4.17:Changeinheartrateacrosseachcondition…………………………………………………………………102 4.18:HeartrateprepostPVT……………………………………………………………………………………………..102 AppendixC:Figure1:Depictionofparticipantsetup…………………………………………………………..141 AppendixF:Figure1:Originalstudy,foottemperaturesacrosswarmingandcooling conditions.…………………………………………………………….………………………………………………………….145 AppendixF:Figure2:CollatedEEGforpeakalphaandbetafrequenciespreandpostcooling andwarmingprotocols.…………………………………………………………………………………………………….145 AppendixG:Figure1:Viewofinternaltubingliningthecustomfittedbooties……………………. 146 AppendixG:Figure2:Customfittedbootiesworn.……………………………………………………………..146 AppendixK:Figure1:BrunelMoodstatecharacteristicofvigouracrossconditions……………..150 AppendixK:Figure2:BrunelMoodstatecharacteristicoffatigueacrossconditions.……………150 AppendixL:Figure1:Participanteightcoretemperaturerecordingsacrossconditionswith comparisontogroupconditions.…………………………………………………………….…………………………151 AppendixL:Figure2:ParticipanteightsDPGacrossconditions,comparedtothegroup trend.…………………………………………………………….…………………………………………………………………151 1 1.0 INTRODUCTION Sleepdeprivationanditsassociatedmentalfatiguemaybeincreasinglyprevalentinmodern society(Alvarezetal.,2004;Gradisaretal.,2011;Halson,2014;Oldsetal.,2010;Zealand, 2001).Amoremechanisedindustryandmoreartificiallightinghasallowedfor24-hour operation,expandingbothworkandplayhoursfarintothenight(Wrightetal.,2013).Fatiguerelatedincidentsareespeciallyconcerninginsituationsofhighrisksuchasshiftworkordriving (Jonesetal.,2010;Laletal.,2001;Reyneretal.,2012),astheunderlyingstateofsleepinesscan leadtoseriousdecrementsinperformancecapabilities(Laletal.,2002;Lohetal.,2004).Indeed, ahighincidenceofinjuryappearstosurroundtasksofprolongedmonotonousnatureand operatinghoursoutsideofthe“biologicalday”(Jonesetal.,2010;Lohetal.,2004).Drowsy drivingaccountsfor~14%oftheNewZealand’sfatalroadtrafficaccidents(Transport,2011b), withshiftwork-relatedaccidentspresumablycontributingasimilarpercentage,especiallyin sustainedoperationsandduringnightshifts(Lohetal.,2004).Interventionsforfatigue-related incidents,especiallytheroaddeathtoll,appearlimitedandpotentiallyineffectivewithregardto adherence,indicatingagreaterfocusonwakefulnessorvigilancepromotingmethodsmerits furtherinvestigationandinsight(Horneetal.,1996;Jonesetal.,2010). Vigilanceischaracterisedbycognitivearousalandattention,with(sustained)attention encompassingthetemporalanddirectional(focal)components(Laletal.,2001).Vigilanceis commonlydefinedbyitsantonyms;drowsiness,fatigue,andsleepiness,whichareused synonymouslytomeantheneurobiologicalprocessregulatingcircadianrhythmsandthedrive tosleep.Mentalfatigueisacumulativeprocess,whichfirstaffectsthetop-downprocesses (Lorist,2008),resultingingreaterinconsistencyduringtasks,aninabilitytobiasrelevantfrom irrelevantinformation,andageneralslowingofreactiontimes(Boksemetal.,2005;Dorrianet al.,2005;Limetal.,2008;vanDongenetal.,2000). Thewakingarousalstateistonicallyaffectedbytheinteractionofboththehomeostatic hourglassandthecircadianclock–processesSandC,respectively.ProcessSisthehomeostatic 2 drivetosleep,believedtobeinfluencedbysomestructureorsubstance(probablyadenosine), whichincreasessleeppropensityaswakingtimeincreases.ProcessCisthecircadianinfluence onsleepandwakefulnesscontrolledbythesuprachiasmaticnucleus(SCN)locatedinthe anteriorhypothalamus(Jinetal.,1999;Reppertetal.,2002).TheSCNisregulatedbylightinput fromtheretinaduringtheday,andmelatoninsecretionfromthepinealglandduringthedark cycle(Cassoneetal.,1986).TheprocessSpressuretosleeprisesexponentiallyacrossthe wakingday(Moore,2007;Porkka-Heiskanenetal.,2011;Romeijnetal.,2012a),whereasthe processCdriveforwakingpeaksduringthebiologicaldayandtroughsduringbiologicalnight, enforcinga~24-hourrhythmentrainedtothelight-darkcycle(Johnsonetal.,1988).Inhealthy individuals,theadditiveeffectsofProcessesSandCareevidentintheevening,withgreater slowingandinconsistencyinreactiontime,indicativeofvigilancedecay(Dorrianetal.,2005; Limetal.,2008). Wakingfromsleepispromotedbyagroupofcellsoriginatinginthebrainstemthatactivate thethalamusandcerebralcortexviaanetworkofcellgroupsknownastheascendingarousal system(AAS).Wakefulnessisreinforcedbytheneuropeptideorexin(alsoknownashypocretin), produced exclusively by a cluster of neurons in the posterior lateral hypothalamus. Inpatients sufferingfromnarcolepsy(describedinmoredetailinsection2.3.6),thewakingstateis destabilisedduetolossoforexin,therebyallowingtheirrapidtransitionbetweenwakingand sleepingstates(Fronczeketal.,2006b;Overeemetal.,2012). ProcessCislinkedtocognitivearousalviatheAAS,butisalsooneofthenon-thermalfactors thatmodulatecorebodytemperature(TC(Sciences,2001)).ThecircadianoscillationofTCis drivenbytheSCNandcontrolledviasystemsthatalterheatlossandheatgain,withTCreaching maximumduringthedayandminimumduringthenight.ThechangesinTCrespondtoboth thermalandnon-thermalcues.TheextremitiesalsoplayalargeroleinmodulatingTCthrough theiranatomicalspecialisationsforheatloss;however,itisincreasinglyevidentthatthedistal skintemperaturemayindependentlymodulatevigilanceandsleepiness(seereviewbyVan Someren,2006).Thismodulatoryroleofthedistalskintemperatureisfurthersupported 3 practicallybytheuseofabeddingmicroclimatetomaintainhighdistaltemperatures(~34-35 OC)wheninitiatingsleep(VanSomeren,2006). Vigilanceismultifactorial,andisoftenbrokenintoitsconstituentcomponents,cognitive arousalandsustainedattention,whichareobservableusingelectroencephalography(EEG)and psychomotorvigilancetasks(PVT),respectively.TheEEGisoftenpurportedtobethegold standardoftrackingvigilancedecay,however,thePVThasalternatelybeendescribedasthe ‘archetypeneurocognitiveassayofattentionaftersleeploss’((Limetal.,2008),p.306).Thus, EEGandPVTeachofferimportantinsightsintodifferentaspectsofvigilance.EEGprovides directrecordingsofcognitivearousalbutislimitedbypoorsignal-to-noiseratiosandalackof anatomicalandphysiologicalanchorstoparticularfrequencies(e.g.,alphafrequency(Pizzagalli, 2007))(Callaway,1966).PVTprovidesinsightintosustainedattentionandthusfunctional effectsofmentalfatigueanddrowsiness(Basneretal.,2011;Limetal.,2008).Sleepdeprivation furtheraccentuatesfatigue-relatedchangesinPVTandEEGashomeostaticsleeppressureis raised(Limetal.,2008;Santamariaetal.,1987),andassuch,bothtechniquesbecomemore sensitivemeasuresofvigilanceanditsdecay. Interventionsconductedonvigilancehavetypicallyinvolvedeitherattenuatingorfacilitating itsdecline.Suchinterventionshaveincludedposturalchange(Caldwelletal.,2003;Cole,1989), stimulantssuchascaffeineandamphetamines(Limetal.,2008),mealsizeandsatiety(Reyner etal.,2012),andmorerecentlysubtlethermalmodulation(Fronczeketal.,2008;Kräuchietal., 1999;Raymannetal.,2007b;VanSomeren,2006).Indeed,somearousalalteringdrugsmay workbywayoftheireffectsonthethermoregulatorysystem(e.g.,Atenolol(VanDenHeuvelet al.,1997).Severalstudieshavefocussedonfacilitatingsleepthroughdistalwarming,observing eithertime-on-taskdegradation,orappearanceofsleepstages(Kräuchietal.,1999;Kräuchiet al.,2008;Raymannetal.,2007a;Raymannetal.,2007b),asdemonstratedusingthePVTand EEG.FacilitatingtheeveningdeclineofTChasbeenshowntoassistsleeponset(Kräuchietal., 1999).Corecoolingandsleepinesshasalsobeendemonstratedduringtheday(Fronczeketal., 4 2008;Gilbertetal.,2000).Assuch,inhibitingtheevening-relatedreductioninTCresponsemay causetheoppositeeffect,i.e.,maintainedvigilance.Thispossibilityremainslargelyunexplored. (Fronczeketal.,2008))addressedthisveryquestioninanarcolepticindividuals,whohave distaltemperaturesassociatedwithdrowsiness(Fronczeketal.,2006b).Subtlerangesof temperaturemanipulationmayofferthemostpromisingfindings(Fronczeketal.,2008; Raymannetal.,2005),asmanipulationsinvolvingwhole-bodyorexcessivetemperatureshave beenshowntoimpairpsychomotorfunction(Enander,1987),atleastpartlybytheirdistraction effect(Cheungetal.,2007). Theaimofthecurrentstudywastoexaminetheeffectsofcoolingoftheextremities– specificallysubtleandmoderatecoolingofthefeet–onsustainedattentionandsleepinessin healthyindividuals.Changesinvigilance/arousalstatewereassessedusingEEGandPVT.Itwas hypothesisedthatfootcoolingwouldproducegreaterwakefulness(indicatedfromEEG)and attenuatethedeclineinvigilance(indicatedfromPVT),relativetothenormal/controlstate. Changeinthevigilancestatewasconsideredtobeduetoeitherorbothofchangesindistalskin temperatureperse,orresultantchangesintherateofTCdecline. 5 2.0 LITERATUREREVIEW Fatigueduetoprolongedmentalorphysicalworkprecipitatesdrowsinessandsleeponset. Thetermsfatigue,drowsinessandsleepinessareusedsynonymouslytodescribethereduction invigilancestate(Dinges,1995).Fatigue,theantonymofvigilance,canbedescribedasa disinclinationtocontinueperformingatask,orasaneffort-to-rewardimbalance,whereby motivationtoperformdeclineswithincreasingdurationand/ordifficulty(Brown,1994; Guyton,1991;Topsetal.,2004).Amyriadoffactorsinfluencevigilanceandfatigability,manyof whicharebeyondthescopethecurrentreview.Ofparticularinterestaretheinternalregulatory processesSandC,andtheirassociatedarousalandthermoregulatorychanges;i.e.,vigilanceand fatigabilityaretightlyrelatedtocircadian(ProcessC)oscillationofcorebodytemperature. Coretemperatureapproximates37±1OC(Waterhouseetal.,2005),andismaintained largelybyadjustingskintemperature(Tsk).Inanevolutionarysense,thermoregulationistiedto vigilancetomaintainhomeostaticfunctioningwhenthermoneutralityisthreatened(Romeijnet al.,2012a).Coretemperatureisperturbedbythermal(e.g.,heat)andnon-thermal(e.g.,Process C)factorsthatchangetheinterthresholdzonewithinwhichTCnormallyresides.ProcessCalters corebodytemperaturethroughadjustmentsinheatlossandheatgainsystems(andhenceTsk) acrosstheday.Thelevelofthermalresponsetoenvironmentaltemperaturecaninducechanges invigilance(Fronczeketal.,2008;Kräuchietal.,2008). Thecurrentstudyisfocussedonmaintainingvigilancethroughmodulation(cooling)offoot temperatureintheevening.Coolinghasbeendemonstratedtobeaneffectivestrategyfor vigilanceandmaintenanceofwakefulnessinNarcoleptics(Fronczeketal.,2006a;Fronczeket al.,2008).Similarly,findingsfromanobservationalstudyindicatethatthermaldiscomfortfrom coldextremitiesrelatestodifficultyinitiatingsleepinhealthypopulations(Kräuchietal.,2008). Equally,warmingtheextremitieshasbeenshowntodecreasevigilance(Raymannetal.,2007b) andsleeponsetlatency(Kräuchietal.,1999;Raymannetal.,2007a).Sincesubtlewarming 6 potentlypromotessleepinessresponses,doescoolinghaveasimilarcapacityforaltering (increasing)thevigilancestate? 2.1 Driving In2010,NewZealandhad337fatalcrashes,with47(14%)beingcausallyrelatedtofatigue (Transport,2011a,2011b).Thisproportionremainedconsistentin2011,at13%(Transport, 2012).Fatigueisthestateofdeterioratingvigilanceorattentiontoasustainedtask(Eohetal., 2005),and/orbeingunabletomaintainperformanceonatask(Dinges,1995).Thesesituations however,donotnecessarilyresultinsleep.Fatiguehasalsobeenshowntoraisereactiontime (RT)(Caldwelletal.,2003;Dingesetal.,1985;Fronczeketal.,2008;Schier,2000;VanDongenet al.,2003)andincreasethenumberoflapses(i.e.RT>500ms)inpsychomotorvigilancetasks (Fronczeketal.,2008;VanDongenetal.,2003),alongwithdecreasinginformationprocessing speedandmemorycapacity(Eohetal.,2005;Klimesch,1999).Reducedtaskperformance occurringwithfatiguehasbeenresearchedthoroughly(Altenaetal.,2008;Belyavinetal.,1987; Dingesetal.,1985;Eohetal.,2005;Fronczeketal.,2008;Laletal.,2002;VanDongenetal., 2003).Withnegativeimplicationsoffatigueanddrowsiness,itbecomesprudenttofurther assessmechanismsinvolvedandpossiblemethodsofattenuation,especiallywithregardto driving,wheretheresultsofraisedreactiontimeandlowerinformationprocessinghave potentiallydevastatingrepercussions(Dinges,1995). CurrentregulationsinNewZealandprohibitlong-hauldriversfromexceeding13hoursof operation,andrequire10hoursofrestbetweenworkperiods(Jonesetal.,2010;Transport, 2011a).Nosuchregulationisrequiredforcommuters(Jonesetal.,2010).Drivers,arguablyhave goodinsightintoincreasingdrowsinessandarealwaysawareofsleepinesspriortoincidents (Filtnessetal.,2012;Horneetal.,1996),yetyoungeverydaycommutershavethehighest fatigue-relatedincidenceofcrashes(Filtnessetal.,2012;Reyneretal.,2012;Transport,2011a, 7 2011b).Technologicaladvanceshaveallowedthelong-haulindustrytoimplementsensors withinmanycabstodetectsleepinessandfatiguethroughshortandlongblinks(e.g.,Driver FatigueMonitor,HaoNaiIndustrialCo,China).Thecurrent“goldstandard”methodof preventingfatigueforgeneralcommutersinvolvesapowernap(Horneetal.,1996),however worldwidethisisfoundtohaveminimaladherence(Jonesetal.,2010),andmaybeoflimited benefit(Gillbergetal.,1996).Researchregardingfatiguepreventionfocusesonpolicychange anddrivingconditions,withfewstudiesinvestigatingthecontributionofthedriverperse(Jones etal.,2010).Currently,themostresearcheddriver-orientedfatiguepreventionmethodis caffeine,foritsadenosineinhibiting,andsympatheticstimulatingeffects(Eohetal.,2005;Horne etal.,1996;Porkka-Heiskanenetal.,2002;Reyneretal.,1998).However,anecdotalreports havelongsuggestedthatcoolingoftheskin(suchasairconditioning)aidsdrivingperformance whendrowsy. Previously,coldconvectiveairflowdirectedatthefacehashadminimalimpactonfatigue preventionwhiledriving(Reyneretal.,1998),however,thedistalextremitiesappeartobemore intimatelyrelatedtoheatlosspathwaysandsleepiness(discussedbelow),andthereforemay offeranalternatemethodoffatigueprevention.Unfortunately,itisdifficulttoevaluatefatiguepreventionmethodsandtheirunderlyingmechanismsforuseinmotorvehicles.Driving simulatorshavethusbeendevelopedandvalidatedastoolstotestsustainedattentionforthe laboratorysetting(Gillbergetal.,1996).Thistoohaslimitations,despiteitsexternalvalidity, duetothedifficultyofcombiningdrivingsimulationwithotherequipmentandrecordings,such astheelectroencephalogram(EEG).Thecurrentstudyreducedthesustainedattention componentofdrowsydrivingtoasimplepsychomotorvigilancetask(Dingesetal.,1985)in conjunctionwithEEG,toassessthevigilancedecrement,asatestofconcept. 8 2.2 Thermoregulation 2.2.1 Homeostasis Humans,likeothermammals,are,homeotherms(Gaggeetal.,1996;Refinettietal.,1992; Romanovsky,2007).Thatis,weself-regulatetheinternalthermalstatethoughvarious metabolicprocesses(e.g.,basalmetabolism,dietaryintake,exercise,shiveringandnonshiveringthermogenesis,andlikelybrownadiposetissue(Nagashimaetal.,2000))(Gaggeetal., 1996;Lvetal.,2007).TheTCisideallymaintainedwithinatightrangeofaround37OC,subject tooscillationsfromthermalandnon-thermalfactors(Mekjavicetal.,2006;Romanovsky,2007). Attheextremes,corebodytemperaturesoutside35-41OCcannotbetoleratedforlong(Taylor etal.,2008a),although,overheatingisofgreaterimmediatephysiologicalconcernthan overcooling(Romanovsky,2007).Thesmallrangeofcontrolnecessitatesmultipleregulatory mechanismstoensurethermalstability.Deviationsof~1OCawayfromneutralTCareenoughto fullyactivatethermoeffectors(Mekjavicetal.,1989;Tayloretal.,2014).Maintenanceofthe corewithinsuchrangesoccursattheexpenseoftheskinifnecessary(Werneretal.,1980). Despitetheskin’stightoptimalrange(30-33OC)(Clineetal.,2004;Mekjavicetal.,1989),itcan toleratewidedeviationsto~10OCand~50OCwithoutdamage(See(Werneretal.,1980)).Such deviationsinskintemperatureinvolvethickeningorthinningofa“shell”layerthroughfine adjustmentsofcutaneousandsubcutaneousbloodflows. Thethermoregulatorycentremaintainingcorebodytemperaturelieswithinthepreoptic anteriorhypothalamus(POAH),andhasbeenwellestablished(Nagashimaetal.,2000;PorkkaHeiskanenetal.,2002;Raymannetal.,2005;Raymannetal.,2007b;Romanovsky,2007; Romeijnetal.,2012a).ThePOAHcontainsthelargestcentralconcentrationofwarm-sensitive neurons(WSN)andcold-sensitiveneurons(CSN).WSNsaredominantwithinthePOAH (Boulant,1996),andaremostresponsivetochangesinheatingandcooling(Nagashimaetal., 2000).Warm-andcold-sensitiveneuronsarereactivetochangesincoreandskintemperatures, facilitatingmanyparallelthermoregulatoryresponsestodeviationsinskinandcorebody 9 temperature.TheWSNshaveaninhibitoryactiononCSNs,suchthattheactivityassociatedwith thermalchangeisactuallydrivenbyincreasesordecreasesinWSNactivityandtheirinhibitory actiononCSNs(Furtherdiscussedin(VanSomerenetal.,2002;VanSomeren,2004)and (Romanovsky,2007)).WSNexcitation,occurringwithbodyheating,resultsinhierarchical recruitmentofthermoeffectorresponses.Whereas,WSNinhibitionresultsinCSNexcitationand hierarchicalactivationofthermoeffectorresponsesassociatedwithcooling.Theextentof thermoafferentsignallingdeterminesrecruitmentofthermoeffectorresponse(Romanovsky, 2007;Stevensetal.,1979;Stevensetal.,1974).Suchsignallingshowsgradedinputfromany thermosensitivestructure,andspatialsummationofthermoafferentfeedbackforcoldand somewhatforwarmth(Romanovsky,2007;Stevensetal.,1979;Stevensetal.,1974). Previoustheoriesofthermoregulation,encouragedbyengineeringterminologyfor thermostats,utilisedtheideaofasetpoint(Ranson,1939;Romanovsky,2007;Werner,1980). Although,thebeliefinasetpointhasbeenchallenged(Kobayashietal.,2006;Mekjavicetal., 1989;Mekjavicetal.,1991;Mekjavicetal.,2006;Romanovsky,2007).The2001glossaryof termsforthermalphysiology(Sciences,2001)statesthatthesetpointreferstothevalueofa regulatedvariablethatisstabilisedatbywayofregulatoryprocesses.Theintegrativecontrolfor thethermoregulatorysetpointwasoriginallysuggestedtobethehypothalamus(Benzinger, 1961);however,todate,nointegrationcentreforcomparingidealtoactualtemperatureshas beendiscovered(Nagashimaetal.,2000;Romanovsky,2007).Rather,thesystemregulating homeostatictemperaturerangesappearstoberegulatedbyheatlossandheatgainsystems, actingsemi-independentlybutregulatingeithersideofanideallevel(Kobayashietal.,2006). ThesetwosystemsappeartooperatefromwithinthePOAH,withallthermoreceptors ultimatelytransmittingthermalsignalstohypothalamicneurons(Kräuchi,2002).WhileWSNs andCSNswithinthePOAHarelikelytobetheregulatorsoftheheatgainandheatlosssystems, littleisknownoftheirprojectingpathways(Nagashimaetal.,2000).Thecriticalcore temperaturetheory,originatingfrombeliefinasetpointvariable,initiallyheldthatdeviations awayfromthesetpointinstigatedthermoeffectorresponses.Resultantsignificanteffector 10 signallingwoulddriveheatlossorheatgainmechanismstoamendthechanges.(Sciences,2001; Waterhouseetal.,2005). InBenzinger’sseriesoforiginalstudies(Benzinger,1961a,1961b,1963),thetermsetpoint waswidelyused,despiteathermoregulatory‘nullzone’of~0.5OCbetweenTCsweatingand shiveringthresholdswhenskintemperaturewasbetween28OCand32OC(Mekjavicetal., 1989).Thenotionofanullzonehasbeendiscussedthoroughlyinmanystudies(See(Kingmaet al.,2012)forareview).Thenullzone,formallyreferredtoastheinterthresholdzoneor thermoeffectorthresholdzone,is‘thetemperaturerangebetweentwothresholdbody temperatures,foractivationofanythermoeffectorresponses’((Sciences,2001)p.273). Consolidationoftheinterthresholdzoneoccurredfollowinganinvestigationby(Cababacetal., 1977),whoobservedaninterthresholdzonenegligibleenoughtojustifythetermsetpoint. OtherresearchbyMekjavicandcolleagues(Mekjavicetal.,1989;Mekjavicetal.,1991;Mekjavic etal.,2006)alsoestablishedtheeffectorinterthresholdzone.Complicationsincurredintheir firststudy(Mekjavicetal.,1989)encounteredsignificantmethodologicalerrors,whichwere refinedintheirsecondstudy(Mekjavicetal.,1991).UsingaprotocolinwhichTskwasclamped usingimmersed(28OCwater)cycling,experimentalobservationwasmadeofa“nullzone”of ~0.5OC,asmeasuredintheoesophagusandrectum(Mekjavicetal.,1991).Assuch,thenotion ofaninterthreshold(null)zonehasbecomeincreasinglyprominentasanexplanationof thermoeffectorresponsetothermalcues. Distinctfromtheinterthresholdzone,thethermoneutralzone(TNZ)istheambient temperatureatwhichdeviationsinTCarecontrolledbysensibleheatloss(discussedlater) (Mekjavicetal.,2006;Sciences,2001).Thethermoneutralrangeisnotrigidbutaltersaccording toendogenousthermalandnon-thermalfactors,suchaspostureorbasalmetabolicrate,oreven clothing(Crawshawetal.,1975;Sciences,2001).Wengeretal(1976)observedaloweringofthe thermoeffectorthresholdatnight,requiringearlieronsetofsweatingtomaintainthelower circadian-associatedTC.Outsidethethermoneutralzone,thermalhomeostasisismaintained 11 throughincreasesinthermoeffectoractivity(i.e.,sweating,non-shiveringthermogenesis,and shiveringthermogenesis,additionaltofurtherchangesinvasoconstrictortone),withgraded increasesbeinglinearlyproportionaltotheperturbation(Mekjavicetal.,2006;Werner,2010). Whilethermalfactorchanges(i.e.,ambienttemperaturedeviation)obviouslyleadto thermoregulatoryopposition,sotoodonon-thermalfactors,someofwhichoscillatein modulatingTC(Kräuchi,2002;Tayloretal.,2008a;Waterhouseetal.,2005).Suchnon-thermal factorsincludediurnalfluctuationssuchasactivity-reststates(Refinettietal.,1992;Sciences, 2001),circadianfluctuationssuchashormonalandsleep-wakeregulation(Karaseketal.,2006; Kräuchietal.,1994;VanSomeren,2006;Waterhouseetal.,2005),andultradiancyclessuchas theovulatorycycle(Charkoudian,2003;Refinettietal.,1992).Brightlight,bywayof modulationofsuchcircadianhormonerelease,produceschangesinTC(Cajochenetal.,2000). Agingalsoactsasanon-thermalfactorduetodecreasedresponsivenesstodeviationsinTC, alteredsurface-to-volumeratiosandreducedthermoeffectorcapacities(i.e.,reducedvasomotor tone,etc.)(Raymannetal.,2005;VanSomerenetal.,2002).Theconfoundingeffectsof thermoregulationoftenmaskthenon-thermalfactors(Kräuchietal.,1994).Forthepurposeof thecurrentreview,onlythecircadian-relatedofthenon-thermalfactorswillbeconsidered. DailyTCoscillationisdrivenbythenon-thermalcentralcircadianclock(discussedin2.3.5 Circadiantemperaturerhythm),andservesasanexcellentindirectmarkerofthecircadian systemtiming(Helleretal.,2011;Kräuchietal.,1994;Refinettietal.,1992).Theoscillation occurswithin-andmodulates-thethermoneutralzone,withanamplitudeofbasalTC fluctuationbetween~0.5-1.0OC(Aschoff,1983;Wrightetal.,2002).Thisrhythmisachieved mainlybymodifyingheatexchange(Waterhouseetal.,2005),whichnecessitatesinteractionof thermalandnon-thermalsystems.Non-thermalfactorsinteractwiththermoregulationtoeither enhanceorimpairtemperature-inducedvasomotoractivity(Mekjavicetal.,2006).This interactionhasbeenshowninhumansperformingnocturnalexercise(Wengeretal.,1976). 12 ThermoregulationissignificantlyimpairedduringREMsleep(newterminology,stageR)in humans;andtoalesserextentinNREMsleep(Helleretal.,2011).Manyanimalstudiesshow reducedresponsestothermalcues,ordisruptedsleepinordertomaintainhomeothermy (Helleretal.,2011).Parmeggianietal(1970)werethefirsttonotereductionsinstageRsleepin catsathighandlowambienttemperatures,aswellascessationofthermoeffectoractivityupon onsetofREMsleep.InNREMsleepthermoeffectorthresholds(forbothnon-shiveringand shiveringthermogenesis)areloweredduringNREMsleepcomparedtowaking,inboththecold andtheheat(Helleretal.,2011).Followinginvestigationoftheeffectofarangeofambient temperatures(21-34OC)onsleepinmen,Haskelletal(1981)assertedthatthermoregulationis incompatiblewithstageRsleep.Participantshadthehighestrateofsleepdisruptionsat ambienttemperaturesof21OC,withtheleasttimespentatNREMstages3and4,andinstageR sleep,andthelargestsleeponsetlatencyandshortesttotalsleep.Similarsleepdisruptions occurredat34OC(Haskelletal.,1981).Observationsonwomenproducedcomparableresults (Sewitchetal.,1986).However,menselectedfortheirabilitytosleepincoolenvironments, showednodecreaseinRsleepincoolcomparedtothermoneutralconditions(Palcaetal.,1986). Insummary,sleepsubstantiallyreducesthecapacityforbothheatlossandheatgain(Haskellet al.,1981),profoundlysoduringRsleep(Helleretal.,2011;Refinettietal.,1992).Thedetailed natureofthermoregulationinsleepiscomplexandisbeyondthescopeofthecurrentreview duetodisassociationsfromthewakingstate(see(Driveretal.,2000;Helleretal.,2011)for extensivereviewsofexercise,thermoregulationandsleep). Thetiming,natureandextentofphysicalactivitythroughoutthedayaltertheamplitudeofTC oscillation,therebyimpactingthesleep-associatednadir.Innocturnalrodents,theuseofa runningwheelinconstantroutinedarkenvironmentshasbeenshowntophase-advancetherest periodofthecircadianclock(Yamanakaetal.,2006).Exerciseinducingphasemodulationis furthersupportedinmen,withexerciseintheafternoonenhancingsleep,andviceversainthe evening(Driveretal.,2000).Theplacementofsleepenhancingexercisemaybeinpartdueto thepyrogeniceffectsofexerciseenhancingtheTCoscillation,howeverexerciseintheevening 13 hasalsobeenshowntoassisttheheatlosscomponentoftheTCcycle.Yoshidaetal(1998) demonstrated1hoflateevening(20:30-21:30h)exerciseat50-60%𝑉"#$%& significantly reducedsleeponsetlatency.Tanaka(2001)similarlydemonstratedimprovedsleeponset latenciesinelderlyindividualsfollowingalunchtimenap(30minat~1300h)andexercisein theevening(30minat~1700h).Thenon-thermalTCcycleactivelypromotesheatloss.Toriiet al(1995)demonstratedthiswithsignificantlyhigherheartratesandsweatratesinmen exercisingat30%and60%𝑉"#'() intheevening(2000h)whencomparedtothemorning (0900h).Thesethermoregulatoryresponseswererelatedtochangesinthecircadianphaseof TC(oral),withlowintensitymorningexercisefacilitatingamuchmorerapidriseinTC(Toriiet al.,1995).ThebluntedriseineveningTCinthemildintensityreflectsthelowernon-thermal thermoeffectorzones(Toriietal.,1995). Thermalhomeostasisismaintaineddespitethermalandnon-thermalfactorsimpingingupon it.ThermalhomeostasisisfocussedonmaintainingTCwithinanullzoneof~0.5OC.Duetononthermalfactors,thisnullzoneisnotstaticbutoscillatesthroughoutthecycle.Temperaturecan significantlymodulatethiscycleandtherebyimpactsleep.Thethermalfactorscanbeambient temperaturesorthetimingexercise. 2.2.2 Sensation Thermosensationisamodalityoftheskin(Schepersetal.,2010).Thermosensitivereceptors drivethermoeffectorfunctionbyprovidinginputofbothstate(static)andchange(dynamic)of internalandexternalenvironments(Tayloretal.,2008a).Receptorslocatedinthecoreare primarilywarmsensitive,whilethoselocatedintheskinarepredominantlycoldsensitive (Romanovsky,2007;Werner,2010).Thisreflectstheasymmetricalnatureofcoretemperature, residingclosetotheuppertemperaturelimitofsurvivalwhilecomparativelyfarfromthelower limit(Romanovsky,2007;Tayloretal.,2008a).Inthermoneutralenvironments,cutaneouscold thermoreceptorsdisplayatonicfiringpatterntocodeforthecutaneoustemperaturestate 14 (Boulant,1996;Schepersetal.,2010),whilehypothalamicthermalpacemakercellsdisplay burstfiringtocodeforbraintemperature(Pierau,1996). Thehighprevalenceofcoldrelativetowarmthermoreceptorsintheskinismorerelevantto thethermoregulatorysystemincombattingchangeincoretemperature.Bothcoldandwarm receptorsdisplayabell-shapedcurveofactivationwithregardtotheirrespectivetemperature ranges.Coldreceptorsdisplaymaximumdischargeintherangeof20-30OC(Boulant,1996; Pierau,1996;Schepersetal.,2010;VanSomerenetal.,2002),whilewarmreceptorsdisplay maximumdischargebetween40-45OC(Schepersetal.,2010;Tayloretal.,2008b;VanSomeren etal.,2002).Beyondthesereceptorfiringranges,supplemental(e.g.,highthresholdcold receptors;see(Schepersetal.,2010))andpainreceptorsareactive. Coldreceptorsarelocatedwithinthedermal/epidermalborderat~150µmfromthesurface, andconductprimarilyalongmyelinatedAδfibres.Warmreceptorsarelocatedslightlydeeperin thedermallayerandconductsignalsalongunmyelinatedC-fibres.Coldreceptoractivityis transducedmuchmorerapidlytothePOAH.Assuch,peripheralthermoregulationisfurther sensitisedtocooling.Peripheralthermoafferentstravelviatheanterolateral,spinothalamic pathways(Pierau,1996).Centrally,thecorethermoreceptorsarearrangedsoastodetectbrain temperatureoscillations,particularlyfluctuationstowardbrainwarming(Romanovsky,2007). Centralthermoreceptorsarearrangedhorizontallywithdendriteslocatedmediallyatthe3rd ventricleandlaterallyatthemedialforebrain(Tayloretal.,2008a),butcanbefoundalloverthe brain(Nagashimaetal.,2000).Theorientationofcentralthermoreceptorsoptimisesdetection ofcerebrospinalfluidtemperatureandthetemperatureofbloodsupplyflowingaroundthe brain.Thisrelationshipbetweenwarmcentralandcoldperipheralthermoreceptors,allowsfor efficientdetectionofthemostlikelyadversethermalchallenges,frominternalandexternal sources,respectively. Twoeffectorsystemsaredrivenbythermo-sensitivity:autonomicandperceptual/ alliesthesialsensation.Autonomicthermo-sensitivitydescribesthephysiologicalresponses 15 whereasalliesthesialthermo-sensitivitydescribes‘thechangedperceptionofagivenperipheral stimulusresultingfromthestimulationofinternalsensors’((Sciences,2001),p.247).Thesetwo effectorsystemsaredifferentiallydrivenbetweencoreandskin,andbetweenskinsites,as showninbothclosedloopandopenloopsettings(Cotteretal.,1996;Cotteretal.,2005; Crawshawetal.,1975;Greenspanetal.,1993;Simmonsetal.,2008).Theratiobetweenthecore andskinindrivingautonomicthermoeffectorsis~9:1(Tayloretal.,2008b),however,this differsbetweenautonomiceffectors.Forexample,theTC:Tskratioisbetween6:1and20:1in drivingthesweatingresponse(Nadeletal.,1971;Wyssetal.,1974),and3:1to5:1formetabolic heatproduction(Chengetal.,1995;Mekjavicetal.,1986).Theratioforbehavioural/alliesthesial effectorstimulusiscloserto1:1(Bulcaoetal.,2000).Thegreatercontributionoftheskintothe behaviouralstimulationminimisestheenergeticallycostlymetabolic/autonomicresponses broughtaboutthroughcorebodystimulation.Despitetheirtypicallysmallerrelative contribution,skinreceptorsconstituteaprimaryinputforbothautonomicandalliesthesial thermoregulation(Crawshawetal.,1975),especiallyinstableenvironments(Caldwelletal., 2014). Clarificationofthethermosensitivebasisofthermoreceptorshascomewiththediscoveryof TRP(TransientReceptorPotential)channels(Boulant,1996;Romanovsky,2007;Schepersetal., 2010).TRPchannelsarenon-specificcationchannelsthataredividedintosixsubfamilies dependentontheirreceptivity(Figure2.1)(Romanovsky,2007).Withinthesesubfamilies, TRPM8(melastatin)andA1(ankyrin)areresponsivetocold,andTRPV(vanilloid)andsome additionalMchannelsareresponsivetowarm(Romanovsky,2007).Togetherthesechannels (TRPM,TRPA,TRPV)arereferredtoasthermoTRPchannels(Romanovsky,2007;Scheperset al.,2010).CollectivelyTRPV4andTRPM4&5appeartobefocalforresponsetoinnocuouscool stimuli,whereasTRPV3,1&2respondtoincreasinglywarmstimuli(Romanovsky,2007; Schepersetal.,2010).Thearrangementofthesethermoreceptivechannelsissuchthat individuallytheycovermodesttemperatureranges,butoverlapinactivationtocumulatively coveralargeactivetemperaturerange(Romanovsky,2007).ActivationofanyTRPchannel 16 resultsininwardioncurrentssuchthatrestingmembranepotentialisdepolarised (Romanovsky,2007).Inresponsetocoldstimuli(menthol),Reidetal(2001)observedthis inwardionfluxtobepredominantlycalciummediated.ThermoTRPM8isselectivelyexpressed withinCSNs(Boulant,1996).InhibitionofK+channels,asaresultofcoolinghasalsobeen observed,whichfacilitatesthedepolarisationandsignallingofcold-sensitivethermoreceptors (Boulant,1996). Mammalianthermoreceptorsarespecialisedatdetectinginnocuoustemperaturesimpinging ontheskin(Boulant,1996).ThisisreflectedintheconvergenceofthermoTRPchannels sensitisedintheseranges(Romanovsky,2007;Schepersetal.,2010).Wheninnocuouschangein thermalstateisdetected,receptorsrespond dynamicallybytransiently,butvigorously increasingfiringrate(Pierau,1996; Schepersetal.,2010).Thefiringrateof thermoreceptorsduringtemperature changeisasmuchas5-10timesgreater thanatsteadystate(Hensel,1982).The thresholdfordetectionappearstosensitize withincreasedrateofcoolingaswell Figure2.1:Schematicrepresentationofthe dependenceoftheactivityofthecoldactivated (blue)andwarmactivated(red)thermoTRP channels.FromPatapoutianetal(2003) (Greenspanetal.,1993),althoughsomepostulatethatthisisambiguous(Crawshawetal., 1975).Followinginitialreceptorresponses,thermoreceptorsrapidlyadapttonewsteadystates (Zhangetal.,2010c).Beyondinnocuousranges,however,thermosensorsdonotadapt (Schepersetal.,2010). Detectionofthermalchangeisdependentonthelocationandarealextentofstimulation;e.g., theface,handsandfeethavegreaterreceptordensities,improvingtheirsensitivity.Spatial summationcanalsoreducethethresholdandincreasedetectabilityandtheperceivedintensity ofaparticulartemperature(Greenspanetal.,1993).Peripheralthermosensitivityisbetterat 17 detectingchangemorethanactualtemperature(See(Kobayashietal.,2006)forcomparator theory).Clineetal(2004)arguedthathumansare‘poorestimatorsoftheirownthermalstate’ (p.2302).Cline’s(2004)assertioniscorroboratedbyGreenspanetal(1993),whonotedthat individualsaremoreaptatrecognisingtemperaturedecreasethandetectingstaticcoolnessper se,followinganexperimentinwhichthemajorityofparticipantsfailedtocompletecooling staircasesduetoratesofcoolingbeingperceptuallyunbearable.Behaviouralresponsesto changesinthethermalenvironmentalsoappeartobebimodal(Humphreysetal.,1999),with adjustmentsconsistentlyovershootingthermoneutral(Clineetal.,2004).Arensetal(2006a, 2006b)andZhangetal(2010a,2010b,2010c)havedemonstratedinbothuniformandnonuniformenvironmentsthatindividualsrespondedinordinatelytoonsetofcoolingorheatingin bothlocalandwhole-bodymanipulationsettings.Bimodal,exaggeratedbehaviouralstimulation servestoprotectthebodyagainstpotentiallydamagingtemperatures(Weissetal.,1961), especiallyatbodylocationsmostpronetoenvironmentalinfluence. Thethermalsensationassociatedwithsuddenchangeintemperatureislikelyduetothe magnitudeofthedynamicthermoreceptorresponsementionedabove(Arensetal.,2006b; Zhangetal.,2010a).Theovershoottotemperaturechangeismorepronouncedforthermal comfortthanforthermalsensation,andforlocalthanoverallthermalcomfort(Arensetal., 2006b;Zhangetal.,2010c).Despiteanovershootforthermalcomfort,thermalsensation displaysaroughlylinearrelationshiptoskintemperatureintherange29OCand34OC(Zhanget al.,2010c).Outsidethisrange,thermalsensationdisassociatesfromskintemperature, exaggeratingtheperceivedchange(Zhangetal.,2010c).Asawhole,thermalcomfortthresholds outsidetheneutralrangearehighlydependentuponwhole-bodythermalsensation/stateand comfort,sizeoftheaffectedareaandtherateatwhichwarmingorcoolingisoccurring(Cotter etal.,1996;Greenspanetal.,1993;VanSomerenetal.,2002;Wangetal.,2007). Ofallskinregions,thefacehasthegreatestalliesthesialandautonomicsensitivity(Arenset al.,2006a;Cotteretal.,1996;Cotteretal.,2005;Crawshawetal.,1975;Simmonsetal.,2008); 18 thisismoreapparentincoolingthanwarming(Cotteretal.,2005;Zhangetal.,2010c).The face’ssensitivityisinpartduetothepredominanceofnon-convergentthermalafferents–a greatnumberofwhicharestillunaccountedfor-whichisnotpresenttothesameextentinother regions(Cotteretal.,2005;Nagashimaetal.,2000;Romanovsky,2007).Itisthedistributionof thermoafferentsthatdeterminesthedominanceofwhole-bodythermalsensitivityandcomfort (Arensetal.,2006b;Cotteretal.,1996).Headtemperatureappearstobecriticalforwhole-body thermalcomfort(Arensetal.,2006a),andcoolingtheheadappearstobethebestmethodof reducingthermaldiscomfortassociatedwithheat,irrespectiveofcorebodytemperature changes(Simmonsetal.,2008).Inuniformambientheatstress,theheadisalsolesscomfortable thantherestofthebody,promptingcorrectivebehaviour(Arensetal.,2006a).Arensetal’s (2006a,2006b)appraisalofthehead’sroleinwhole-bodythermalsensationandcomfort corroboratesstudiessuchasCotteretal(1996)andSimmonsetal(2008).Simmonsetal(2008) arguefacialcoolingismoreefficientatdissipatingheat,reducingthermalstrain,andimproving comfortthanbodyareasofequalsize(i.e.,10%oftotalbodyarea(Duboisetal.,1916)). Theheadandfacehavemajorthermoafferentandthermoefferentrolesalsoforautonomic thermoregulation.Heatingthefacegeneratespowerfulsudomotorresponses(Cotteretal., 2005);presumablyfacialcoolingwouldelicitasimilarlypowerfulshiveringresponse.Thelarge vascularsupplyinconjunctionwithspecialisedskinontheface(discussedlater)alsofacilitates vasomotorandsudomotor-mediatedcooling(Cotteretal.,2005).Thismaybewhyinwarm environments(i.e.,32OC),theheadandfacebecomesignificantlywarmerthantherestofthe bodyexceptingthehands(Arensetal.,2006a)andtoes(Love,1948;Werneretal.,1980). Coolingtheheadinhotenvironmentscanbluntthecoretemperaturerisebyupto50% (Simmonsetal.,2008)despiteseeminglycounterintuitivesuppressionofsweating,whichis2-5 timesmorepowerfulthanotherskinareas(Cotteretal.,2005).WhileCotteretal(2005)agree thatfacialcoolingcanbeusedtooptimallyreducethermaldiscomfort,theyindicatethatthe extremitiesarebetterforalleviatingheatstorage,inpartduetotheirminimalautonomicdrive (Cotteretal.,1996). 19 Thehandsandfeethavelargeperceptualrepresentationstoprovideearlyawarenessof temperaturechange;furthermore,thehandsaremoresensitivetotemperaturechangesthan thefeet(Cotteretal.,2005;Tayloretal.,2014).Thedistanceoftheextremitiesfromthecore makesthemmostsensitivetoenvironmentalchange.However,thesensitivityoftheextremities doesnotnecessarilytranslatetoautonomicthermoregulation(Cotteretal.,1996;Crawshawet al.,1975),asthiswouldbecounterproductivetomaintainingthermalhomeostasisinactive humans.Theextremitiesundergothegreatesttemperaturefluctuationofallbodyareas (Greenspanetal.,1993;Werneretal.,1980),whichmaybeinstrumentalinthefeet’shigh thresholdsfortemperaturerecognitionandlowthermosensitivity(Crawshawetal.,1975; Greenspanetal.,1993).Conversely,thehandsappeartohavesignificantlylowercoolness thresholdsthanotherlimbsegmentsobserved(arm,leg,foot)(Greenspanetal.,1993).Atlocal skintemperaturesof~26OCthermalsensationsareofslightlycoolandneutralforthefeet (Arensetal.,2006b);thissuggeststhatdiscomfortthresholdwouldoccuratmuchlower temperatures.Thehandsreachtheirdiscomfortthresholdat20.7OC(Candasetal.,2007).The apparentlyattenuatedthermalsensationofthefeetcanbebeneficialforstudiesconducting subtlemanipulationsastheydonoteasilyinducethermoregulatoryorbehaviouralresponses, however,thismayyetbedetrimentalforsleeponset(See2.3CircadianRhythms). Theextremitiesareabletohavesomeimpactwhole-bodythermaldiscomfort.In observationsofwhole-bodyandlocalthermalsensationsandcomfort,(Arensetal.,2006a) observedthatoverallperceptionisdominatedbytheoneortwomostuncomfortablelocations. Inhotambientsituationswhereboththebodyandtheheadarehot,thenthetemperatureofthe headhasbeendemonstratedtodominatethermalcomfort;likewiseinwarmsituationswith warmwhole-bodyandsegments,coolingthefeetisabletoremediatethethermaldiscomfort (Arensetal.,2006b).Incoolenvironments(TAmb=20OC),thegreatestincreaseinlocaland overallthermalcomfortisproducedbywarmingthefeetasopposedtotheneckorhead(Arens etal.,2006b)(i.e.,bywarmingthecoolestregion). 20 Themagnitudeofthermalsensationdiffersdependingonthebodylocationundergoingthe thermalstimulusandthetypeofreceptoractivatedatthatparticulartemperature.Thisisin regardtoboththesensitivityofthereceptoraswellthedominantthermoafferentfeedbackit delivers;autonomicoralliesthesial.Theextremitiesaremostheavilyinfluencedbythe environmentandthereforearemostcapableofprovidingperceptualinformation,tominimise theneedforphysiologicaleffectorresponses.Ifsufficientthermoafferentfeedbackarrivesto driveanautonomicthermoeffectorresponse,however,thevasomotorresponseisthemost energeticallyefficientthermoeffector. 2.2.3 Vasomotion Inhumans,thereareessentiallythreeautonomiceffectorcategoriesforthermoregulation: metabolicheatproduction,sweatingandactivevasodilation,andreleaseofvasoconstriction (Werner,2010).Variousbehaviouralmechanismsactinsynergywiththeseautonomiceffectors. Thesystemsofefferentcontrolofeffectororganscanbesimilar,asforactivevasodilationand sweating(Charkoudian,2003),orbrownadiposetissueandskinvasculature(Romanovsky, 2007),butareoftenfunctionallyindependentofeachother(Charkoudian,2003;Nagashimaet al.,2000;Romanovsky,2007).Thethermoeffectorsystemsoftenoperateinparallel,inresponse toperturbations(actualorimpending)oftheTC.Almostallthermalafferentsconvergeatthe POAH,whichalsodrivesthermoeffectors,thoughcompletepathwaysarenotyetfully understood(Nagashimaetal.,2000).Incompleteknowledgeofintegrativeandefferent pathwaysappliestoallthermoeffectors. WithinTNZs,TCismodulatedsolelythroughvasodilationandvasoconstrictiontocontrol sensibleheatloss.Atrest,thesethermallyinducedchangesarerestrictedtothecutaneous compartment(Caldwelletal.,2014;Edholmetal.,1956);thesearepresumablyviawithdrawal ofvasoconstrictortone.Neuralpathwaysforvasomotionareknowntotransmitdirectlytothe medulla,throughthemedialforebrainbundle(Nagashimaetal.,2000;Romanovsky,2007). Withinthemedulla,thereappearstobeafunctionalseparationinvasoconstrictionand 21 vasodilationpathways.Experimentalstudieshaveidentifiedtwomedullaryareasdifferentially responsivetoheatingorcoolingsignals(Kanosueetal.,1999);thesearethecaudalprojection fromthelateralhypothalamustothereticularformation,andtheventraltegmentalarea.The anatomicaldivisionsinheatlossandheatgainpathwayssupportscurrenttheoryof thermoregulatorycontrol.Nagashimaetal(2000)postulatethatWSNslikelysendexcitatory signalstothevasodilatoryheatlosspathwaysandinhibitorysignalstothevasoconstrictoryheat gainpathways. Efferentpathwaysarelargelyinhibitory(Romanovsky,2007).Assuch,thermoeffector activationrequiresdisinhibitionoftonicallyinhibitedneurons.Uponactivationofsuchneurons, excitatorysignalstypicallyflowthroughsympatheticganglionicpathways(Folkow,1955). Evidenceindicatesthatdilatorypathwaysalsousesympatheticnerves(Tayloretal.,2014), especiallythosesupplyingvesselswithinglabrousskin.Theexistenceofsympatheticallyactive vasodilationhasbeenapparentsincethe1930’s(Grantetal.,1938;Lewisetal.,1931).However, vasodilatorycontrolisnotorganisedsolelythroughtheganglionicpathway,asshowninlesion studiesinmammals(Folkow,1955).Currentevidenceindicatesthatvasodilationismediated throughco-transmissioninsympatheticcholinergicnerves(Charkoudian,2003).Theexact mechanismsofactivevasodilationarestillelusivedespitemanyproposedmechanisms.Some possiblecontributorsthathavebeenproposedincludeacetylcholine,nitricoxide,vasoactive intestinalpeptideand/orsubstanceP(Charkoudian,2010). Changesinvasomotortonearedrivenlargelybycentralsympatheticoutflow,viaeither cholinergicoradrenergictransmittingfibres.Innormothermia,centralmodulationislargelyvia sympatheticadrenergicnervesmodulatingvasoconstrictortone(Charkoudian,2003). Disinhibitionofthissympatheticadrenergicdriveistermedpassivedilation(Caldwelletal., 2014;Tayloretal.,2014).WithintheTNZ,neuralinputisconstantlychangingvasomotorand venomotortone,leadingtohighlyunstableskintemperatures(Tayloretal.,2014;Werner, 2010)asobservedbyKräuchietal(1994).Indeed,withinnormothermicenvironments, 22 cutaneousbloodflowfluctuatesmoreoftenthanitdoesatextremes.Fagrell(1985)observed periodicfluctuationsinthecapillariesof6-10cycles/min.Similarly,Wangetal(2007)observed frequentfluctuationsinfingertemperatureof~1-2OC,occurringat2-5minintervals; presumablytoalterTCheatexchange. Thecontrolofskinvasomotionisdeterminedbycentral(neuraloutflowandhydrostatic pressure)andlocalfactors(e.g.,nitricoxide,andendocrineadrenaline)–asidefromthefactthat localTskisalsopartofthethermoafferentdrive.Whilelocalfactorsarepowerful,theycannot abolishordominatethecentraldrive(Tayloretal.,2014).Thedegreeoflocalandcentral controldiffersbetweenskinlocations.Withheating,Kingmaetal(2012)observedbloodflow increasesof~29-foldinthehandsintheheat,butonly~3-foldincreasesintheforearm. Conversely,incoldenvironments,theheadreducesheatlossby17%,thearmsandlegsby25% andthehandsandfeetby50%(Kingmaetal.,2012).Suchdifferencescanbeattributedto differingskintypes,asthedegreeofcentralcontrol,andpresenceofspecialisedvessels(AVA’s; discussedlater)differswidely.Thecontrolofskinvasculaturefrombothcentralandlocal factorsinconjunctionwithspecificvascularadaptation(AVAs)allowsfortheextravagant rangesinskinbloodflow. Theratioofcontrolinthehandsandfeetisdominatedbycentralthermoefferentswith minimallocalmodulatorycontrol.Thismeansthatwhilelocalfactorscan–anddo–sensitise regionalvesselsintheextremitiestheydosotoalesserextentduetothecontrolexhibitedby thecentralthermoeffectors.Thevolarsurfaces(palmarandplantaraspects)areinnervated solelybyadrenergicconstrictortone(Caldwelletal.,2014;Tayloretal.,2014).Innon-glabrous skin(ondorsalaspectsofhands/feet),passivedilation,broughtonthroughwithdrawalof constrictortoneisaccompaniedbyactive(perhapscholinergic)dilation.Activedilationis responsiblefor80-95%oftheflowincreaseinnon-glabrousskin(Tayloretal.,2014). Incoldenvironments(e.g.,10OC),vasoconstrictionofthelimbsismaximalinlightlyclothed individualsatrest,leadingtogreaterenvironmentalinfluence.Eveninmoderateair 23 temperatures(e.g.,20OC)cold-inducedvasoconstrictortonecanbemaximal(Tayloretal., 2008b).Theinter-regionaldifferencesinlocalskintemperaturescanbeasgreatas17OC(foot toforehead),whereasinwarmenvironments(40OC)thedifferencebetweenthecoreandskin temperaturesandalsobetweenskinregionsisassmallas~2OC,duetochangesinvasomotor control(Werneretal.,1980).Thesympatheticadrenergicoutflow,actsonarterialvasculature (arteriolesandAVAs)andalsotheveins.Thereservoirsinveinsliedistally(i.e.,legsandfeet); assuch,constrictionofveinsreducesthesereservoirsandhasanamplifyingeffectofcentral constrictoryinput. Thehandsandfeethavespecificmorphologicalcharacteristicsallowingthemtoserveas excellentradiators(Charkoudian,2003;Tayloretal.,2014),whilealsobeingcapableof significantwithdrawalofheattoinsulatethecore.Thebones,inthehandsandfeet,actasheat sinks,whileminimalinternalmusclethatisalsorelativelyinactivemakesforminimallocalheat production.Largesurfacearea-to-volumecoefficientsinthehandsandfeetalsomaximiseheat losscapacity;i.e.,fingershavecoefficientsof2.2,whereasproximalskinsiteshavecoefficientsof ~1.0(Aschoffetal.,1958).Comparedtoproximalsegmentsofsimilarsize,thehandhasa surfacetomassratio4.1–5.2timesgreater(female–male),whilethefootis2.9-3.2times greater(Tayloretal.,2014).Suchmorphologicalandphysiological(e.g.,highAVAandsweat glanddensities)characteristicsmakethehandsandfeetthebestcapablesitesforheat dissipation,yettheyrepresent4.4–4.6%and7.1–7.4%,respectively,oftotalbodysurfacearea (Kingmaetal.,2012;Tayloretal.,2014). Thehandsandfeetarewellsuppliedbyarteries.Thehandreceivesflowdirectlyfromthe ulnarandradialarteries,whichprogressintothesuperficialanddeeppalmararches(Standring, 2008).Thepalmararchesjoinatthedigitalbranches,tosupplythefinger(Standring,2008).The footissuppliedbythemedialplantarandlateralplantararteries,whichprogressbehindtheir respectivemalleolarprominences,andbythedorsalispedis,progressingalongthedorsalaspect ofthefoot(Standring,2008).Alongthedorsalaspect,thedorsalispedisformsthemedialand 24 lateraltarsalarteries,andthearcuatearteryandfirstdorsalmetatarsalartery(Standring, 2008).Branchingfromthesearethearteriessupplyingthetoes.Oftheplantararteries,the medialplantararterysuppliesthefootmusclesandmedialskin,whilethelateralplantarartery suppliestheheelandlateralsole,beforeprogressingdeepandformingtheplantararchwiththe dorsalispedis(Standring,2008).Theplantardigitalarteriessupplythetoes(Standring,2008). Bloodflowtothefeetisconsistentlylowerthanflowtothehands(Caldwelletal.,2014). Deepandsuperficialveins,aswellasamoresuperficialvenousplexus,drainthehandsand feet.Suchredundancyallowsforthewithdrawalofbloodflowfromsuperficialtodeepareas, “thickening”theshellagainstheatloss.Theveins,beingcapacitancevessels,canstore70-80% oftotalbloodvolumeinthedistalregionsinTNZs(Tayloretal.,2014).Itisprimarilyby constrictionofthesedrainagevessels,inthecold,thatreducestheheatoffloadfromthedistal extremities(Tayloretal.,2008b).Inaddition,withinthelimbstheproximityofthearteriesto theveins(arguably)allowsforacountercurrentheatexchangetooccur,whichfurtherhelpsto limitheatloss(Tayloretal.,2014). Ambientcoldgeneratesvasoconstrictionbeginningintheextremitiesandprogressing proximallyasrequiredtominimiseheatexchangewiththeenvironment.Ambientheatproduces amuchmoregeneralisedvasodilation.AtrestinTNZs,skinbloodflowis~0.250L/min(~0.35L inmales;Tayloretal.,2014),andcanrangefromcloseto0L/minto6-8L/minunderextreme thermalstress(Charkoudian,2003;Hardyetal.,1938;Rowell,1970).Theminimumbloodflow requiredtosupportcutaneoustissuehasbeenestimatedtobe~0.8mL/100mL/min (Abramson,1965).Basalbloodflowatthehandsis~6.7mL/100mL/min,whileatthefeetitis ~2.8mL/100mL/min(inmales(Caldwelletal.,2014)).Thisvolumeissufficienttoallowforthe appropriaterateofsensibleheatloss(~1.5W/kg)inarestingstate(Charkoudian,2003). Thechangesinvasomotortonealtertheinteractionsofheatlossbetweenthecoreandskin, andtheskinandenvironment.Theskinservesasashelllayertoprotectthecore,toits detrimentifnecessary.Theskintemperaturetypicallyresideslowerthanthecore,effectively 25 providingagradientforheattoflowfromthecoretoskinandfinallyenvironment.Distalproximaltemperaturegradients(DPGs)areimpededbyreducedcutaneousbloodflow,despite largergradients,whereasdilationfacilitatesDPGbyincreasingtheskin-environmentgradient, makingheatremovalmorepermissible.Inwiderangesofambienttemperaturestheshell typicallycomprises10-20%ofthehumanbody,however,whencoldstressed,theshelllayer increasesasmuchas30-40%(Gaggeetal.,1996).Thethickeningoftheshellisduetothe gradualwithdrawalofcutaneousflow(Raymannetal.,2007b;Romeijnetal.,2012a; Waterhouseetal.,2005). 2.2.4 Arteriovenousanastomoses Thearteriovenousanastomoses(AVAs)aredenselylocatedinregionsmostcapableofheat offload(asalludedtoabove)andarecontrolledsolelybycentralsympatheticadrenergicinput (Charkoudian,2003).ThemajorityofglabrousskincontainsAVAs,howeverAVAsaremost denselypackedinacralskin.Examplesofacralskinincludethenose,ears,palmsandsolesofthe feet(Gaggeetal.,1996;Tayloretal.,2008b).Insuchregions,anastomoseslierelativelydeepto thepapillarycapillaries,andserveasshuntstothepoorlyinsulatedvenousplexus(Hales, 1985).Thecomparativelylargediametersallowforthevastlygreaterflow(AVAshave~25-125 µm,comparedtothetypicalcutaneouscapillariesof~10µm);thisequatestoroughly10000 timesgreaterbloodflow(PoisseuillesLaw;(Tayloretal.,2014)). Atthermalneutrality,anastomosesdisplaysomevasomotortone;constrictingapproximately threetimesperminute(Kingmaetal.,2012).Inthecold,AVAsarecontinuouslymaximally constricted;however,whenheatingisappliedAVAsdilatepassivelyat~34OC(Figure2.2) (Fagrelletal.,1977;Gaggeetal.,1996).TheAVAsareprimarilyresponsibleforthealterationsin theDPGandassociatedalterationsinTCheatloss.Thisisespeciallyapparentinresponsetothe non-thermalcircadianrhythm(discussedin2.3.5Circadiantemperaturerhythm)(VanSomeren, 2006). 26 Asstatedabove,thehandsandfeetarespecialisedforheatoffload,andinconjunctionwith anatomical/morphologicaladaptations,alsohavearichcutaneousvascularitythatreflectsthis– between40-70vessels/mm2(Tayloretal.,2014).Themostcomplexandlongestanastomoses residewithinthesolesandpalms,with 2014).Atrest,basalhandbloodflow,when normalisedforsegmentalsurfaceareasis morethanthreetimesgreaterinthehands (550mL/m2/min)thanintherestofthebody (Tayloretal.,2014).Increasesinbloodflowin SkinBloodflowvelocity(mm/sec) between30and200AVAs/cm2(Tayloretal., thehandsandfeet(amongotheracralskin sites)arefacilitatedbyAVAs.Byshuntingsuch largevolumesofbloodtothevenousplexus, thehandsandfeetareabletoeffectively radiateoffvastquantitiesofheatintothe Figure2.2:Correlationbetweenskin temperatureandrestingbloodflowvelocity (CBV)inonenailfoldcapillaryofahealthy37year-oldman.Figureandlegendextracted from(Fagrelletal.,1977),whoinvestigated theeffectofskinwarmingonskinbloodflow environment(Gaggeetal.,1996;Halesetal., 1978). 2.2.5 Summary Thermoregulationisalargeandcomplexsystem,ofwhichonlytherelevantaspectsare discussedhere.Thermoregulationattemptstomaintainhomeostasisofcoretemperaturein responsetoperturbationsfromthermalandnon-thermalfactors(i.e.,theperturbationsonTC areultimatelythermal,butmodulatinginfluencesonthermoregulationcanbenon-thermal). One’sthermoregulatorystateistransducedbycoreandskinthermoreceptors,whichprovide differingautonomicandperceptualdrivebasedonlocation(e.g.,theTCisapowerfulautonomic driver,whereashandsandfeetprovidehighperceptualdriveforlocalisedthermalsensations butperhapsnotforbehaviouralthermoregulation,andthefaceprovidesstrongdriveforallof 27 these).Autonomic,andtoalesserdegree,perceptualdrivers,inducethermoeffectorresponses inoppositiontothedirectionofchange. Alteredvasomotortoneistheprimaryphysiologicalthermoeffectorresponse.Vasomotionis capableofproducingfluctuationsincutaneousbloodflowfrom6-8L/min(Rowell,1970)to~0 L/min(minimalvolumespecificflowinhandsandfeetisapproximately0.8mL/100mL/min; (Abramson,1965)),allowingmoreheattobemostlyconvectedandradiatedfromthe extremitieswhenbloodflowishigh,whilebeingcapableofminimalheatloss(butalsopotential damagetotheextremities)atlowflow.Thermoregulationisstillincompletelyunderstood, particularlywithregardtothetransferofheatfromthecoretothelimbsegments,especiallythe feet.Thetemperatureprofilesoftheextremitiesareofparticularinterestwithinthesleepfield. Discomfortthresholdsoftheextremitiesarewidelyrecognisedinregardtosleeponset (Haskelletal.,1981;Kräuchietal.,2008;Palcaetal.,1986;Raymannetal.,2005,2008;Sewitch etal.,1986).Theextremitiesarehighlysusceptibletocoolingduetotheirstrong vasoconstriction,locationandlackofheatgeneratingcapacity.Thethermoregulatory contributionoftheextremitiesinuniformandtransientenvironmentshasbeenelucidatedby Arensetal(2006a,2006b)andZhangetal(2010a,2010b,2010c),andinparticularbythe recentreviewbyTayloretal(2014).However,researchontheextremitieshaspreviously focussedonthehands(Candasetal.,2007;Clineetal.,2004;Tayloretal.,2014),withfew studiesonthefeet.Studiesexploringtemperatureprofilesoftheextremitieshavefound differentialresponsestointerventions(e.g.,tosleepdeprivation(Romeijnetal.,2012b)),such thatupperlimbresponsescannotbeassumedtoapplytothelowerlimbs.Thermaldiscomfort hasprovidedinsightintotheroleoftheextremitiesinsleeponsetand,clinically,insleep difficultiesinvolvingvasospasticsyndrome(Flammeretal.,2001),thermaldiscomfortofcold extremities(Kräuchietal.,2008),agingandinsomnia(Raymannetal.,2007a;Raymannetal., 2007b),andnarcolepsy(Fronczeketal.,2008). 28 Thermalcontrolofdistalextremitieshasbeenfurtherimplicatedwithsleep.Anelegantstudy byKräuchietal(1999)identifiedacausalrelationoffoottemperatureonsleeponsetlatency. Broadlystated:‘vasodilationofdistalextremitieswasthebestpredictorofthebody’sreadiness forsleep’(Kräuchietal.,1999,p.37).FurthermoreRomeijnetal(2012b)sleepdeprivation studyrevealedsustainedcircadianrhythmicityinfoottemperaturecyclesacrossdayandnight, whilethehandslostrhythmicity.Thelossofwhole-bodycircadiantemperaturerhythmicity reciprocateddramaticsleepdeprivation-inducedchangesinarousallevelstosustained attentiontasks(Romeijnetal.,2012b).Suchfindingswarrantmoreattentioninregardtotheir contributiontothermoregulatoryknowledgeperse,andwithregardtosleepknowledge.An increasingnumberofsleepresearchstudiesareaddressingthermoregulatoryaspects,and throughtherelationbetweentemperatureandarousal,havefocussedonfacilitatingsleep. Unfortunately,therehasbeenalmostnoresearchintothepossiblevalueoflowextremity temperaturesinpreventingsleepandmaintainingarousal.Fronczeketal(2008)haveutilised corewarmingandperipheralcoolingtoinducereciprocalincreasesinvigilanceandsleeponset latencyinnarcoleptics(furtherdiscussedin2.3.6Narcolepsy).Fronczeketal’s(2008)findings havenotbeenappliedtoahealthypopulation.Thepresentthesisisthatlower-limbextremity coolingwouldalsobeapplicableforinterruptingthethermoregulatoryprofileassociatedwith sleeponset,andhencehelpinmaintainingvigilanceinhealthyindividuals. Subtletemperaturemanipulationisoftenoverlookedformoreaggressivetemperature manipulationstrategies.Subtle,orinnocuous,temperaturemanipulationaffectslocalvasomotor tone,withoutimpingingsubstantiallyonthermalsensation.Thermalsensationofthe extremitiesalsodoesnot(necessarily)implementautonomicchange(Arensetal.,2006;Cotter etal.,2005;Simmonsetal.,2008),thereforeinsubtleranges,localvasomotortoneisthe primarymeansofinnocuouscolddefence.Inhealthypopulations,thermoafferentinputwould beexpectedtooverridenon-thermalinputsindrivingthermoregulatoryresponse,evenassleep pressureaccumulates.However,non-thermalinputappearstomodulatethethermoregulatory effectorthresholds,suchthattheTNZoscillatesaccordingtothecircadianrhythmofTC(See 29 (Helleretal.,2011;Wengeretal.,1976;Yamanakaetal.,2006)).Inturn,thermalfactorsappear toimpaircircadianprocesses(Kräuchi,2007),orexacerbateunderlyingcircadianor thermovascularissues(e.g.,narcolepsy,insomnia,vasospasticsyndrome).Non-thermalfactors relyonthehealthyfunctionofAVA’stoallowcircadianoscillationofTC,yetlocaltemperatures lessthan30OCinducevasoconstrictionofAVAs. 2.3 CircadianRhythms Themostovertandhighlystudiedcircadianrhythmisthesleep-wakecycle,including vigilanceanddrowsiness(Okenetal.,2006).In1916encephalitislethargica,studiedbyVon Economo,sparkedinterestinhypothalamicpathologydirectlyrelatedtothedisruptionofsleepwakeregulation(Moore,2007;VonEconomo,1931).Thetwo-processmodelofsleepregulation wasintroducedbyBorbelyin1982(Borbely,1982),andpervadesthroughallmodels addressingregulationoffatigueandperformance(Achermann,2004).Thetwo-processmodel describestheinteractionofthe timingofalternationbetweenthe sleepandwakecycles(Beersma, 1998).Thetwoprocessesthat comprisethemodelarethe homeostaticandcircadianaspects ofsleepandwaking,termedprocess S,andprocessC,respectively Figure2.3:TimecourseofProcessesSandCafterregular andextendedwakingperiods.From(Borbely,1982). ShadedarearepresentssleepandrecoveryofProcessS. (Borbely,1982).Thehomeostatic hourglass,processSinteractswiththecircadianclock,ProcessC,toregulatethepressureto sleep(Figure2.3)(Porkka-Heiskanenetal.,2002;Romeijnetal.,2011;Tononietal.,2006). Thesetwoaspects,asdescribedoriginallybyVonEconomolieprimarilywithinthe 30 hypothalamus.Specifically,theventrolateralpreoptichypothalamus(VLPO)istheprimarysite forthehomeostatichourglassandthesuprachiasmaticnucleus(SCN)isthesiteofthecentral circadianclock(Moore,2007;Saperetal.,2005).VonEconomooriginallydescribedtheanterior hypothalamusandtheposteriorhypothalamusaptlyasthesleepcentreandthewakecentre (Moore,2007;Saperetal.,2005). Thetwo-processmodelrefersnotonlytotheprocessesindividuallyinstitutedbythe homeostaticandcircadianprocesses,butmoreimportantly,theirinteractionandintegration (Achermann,2004);forexample,theflip-flopswitchinhibitingtheVLPOandfacilitatingthe ascendingarousalsystem(AAS),whichswitchesrapidlytoaidsleepbyallowingtheVLPOto inhibittheAAS(Gausetal.,2002).Originallyproposedinrats,thetwo-processmodel ‘postulatesthat…processSrisesduringwakinganddeclinesduringsleep,andinteractswith processC’(SeeFigure2.3)((Borbetal.,1999),p.560).ProcessCisindependentofwakingand sleepingbutregulatesthedurationofeachaccordingtomodulationviathelight-darkcycle.A furtherprocessrepresentingsleepinertia,andtheinteractionbetweenProcessesSandC,was institutedtotheoriginalmodeltoeffectivelycreateathree-processmodelthatappearstobe morereflectiveofhumandiurnalcycles(Achermann,2004).Thisthirdcomponentwasusedto furtherdescribetheultradiandynamics,ofwhichsleepinertiaisonecomponent(Borbely, 1982).Theultradiandynamicshelptoencompassthetwosleepcycles,RandNREM,butalsothe timecourseofdaytimevigilancebroughtaboutthroughtheinteractionbetweenthe homeostaticandcircadianprocesses(Borbely,1982). Boththehomeostatichourglassandthecentralcircadianclockarethetwoprimarysitesof oscillationthatinfluencesleep-wakeregulation.Saperetal(2001;2005)putforwardamodel proposingthatthehypothalamusactsasthe“sleepswitch”allowingsharptransitionsbetween thesleepandwakingstates.Theswitch,knownasthe“flip-flop”switch,alternatesbetweenthe wake-promotingascendingarousalsystemthatactivates“wake-active”neuronsduringawake periods,andthe“sleep-active”neuronsinthePOAH,morespecificallytheVLPOarea.This 31 switchisstabilisedbyorexin/hypocretinneuronsinthelateralhypothalamus,thelossofwhich resultsinnarcolepsy(See2.3.6Narcolepsy).Thephysiologicalalterationsbetweenwakingand sleepingstatesoccuralongsidefacilitativebehaviouralcues.Suchbehaviouralfactorsarecalled sleep-permissiveorwake-promotingfactors,andincludelightintensity(Burgessetal.,2001; Karaseketal.,2006),posture(Raymannetal.,2007a;Romeijnetal.,2012a),temperature change(Fronczeketal.,2008;Raymannetal.,2007a;Romeijnetal.,2011)anddietaryintake (Fronczeketal.,2008;Reyneretal.,2012). 2.3.1 Sleeppermissive/wakepromotingfactors Behaviouralactionsmodulatecircadianandhomeostaticprocessestopermitorprevent changesinvigilanceandsleep.Suchactionscanmoderatethetonicchangesinthesleep-wake cycle,broughtaboutbyProcessesSandC.Thesefactorsarecrucialtoallowingorwithholding thechangingofstate.Somesuchconditionsfoundtoalterthedegreeoftonicchangeinclude cold(Haskelletal.,1981;Palcaetal.,1986;Sewitchetal.,1986),heat(Haskelletal.,1981; Kräuchietal.,1999;Liao,2002;Raymannetal.,2005),immediatedanger(Yerkesetal.,1908), andposture(Caldwelletal.,2003;Cole,1989). Asawake-promotingfactor,lightintensityisinstrumentalingeneratingsleeponsetillnesses, duetosuppressionofmelatoninwithincreasedlightintensity.Theeffectoflightingisfurther compoundedasworkinghoursareincreasedintothenight,wherebypeoplespendmoretimein upright,seatedposturesasafunctionoflighting,furtherdisruptingsleeponsetbehaviour.Light intensitymodulatesthecircadianprocessC,throughdirectsynapsestransmittedviathe retinohypothalamictracttotheSCN(Arendtetal.,2005;Brzezinski,1997;Carpentierietal., 2012);essentiallyinstigatingorinhibitingnight-timemelatoninsecretion(furtherdiscussedin 2.3.4InteractionofProcessSandProcessC).Byremovingartificiallighting(e.g.,2weeksof camping)thecircadiansleepwakesystemandlight-darkcyclecanresynchronise(Wrightetal., 2013).Byresynchronisingthesesystems,Wrightetal(2013)wereabletoimprovebothsleep 32 onsetandmorningvigilance;essentiallyrestoringthetimingofwakepromotingandsleep permissivelighting. Aslightcanmodulatesleeponsetandmaintenancesignificantly,itisapparentthat temperaturemayalsomodulatesleeponsetandmaintenance(Kräuchietal.,1999;Raymannet al.,2005;VanSomeren,2004).Asalludedtoabove(in2.2.1Homeostasis),eithersideofanideal (e.g.,~29OC;(Haskelletal.,1981)),ambienttemperaturebecomesaninadvertentwake promotingfactor.Thishasbeenevidencedacrossarangeoftemperaturesinbothmenand women,byHaskelletal(1981)andSewitchetal(1986),butalsoindicatedbyKräuchiina questionnaireofaSwisspopulation(Kräuchietal.,2008).Typicalbed-timebehaviour minimisestemperaturevariationbyusingbeddingtogenerateamicroclimate,ensuringsleeppermissivetemperatures(Goldsmithetal.,1968). Similarly,skintemperaturehaslongbeenconsideredanindicatorofsleeppreparednessand assuch,asleeppermissivefactor(Fronczeketal.,2006b).Theassociationbetweencorebody anddistaltemperatureflux,initiatingsleeponset,hasnowbeenlargelyelucidated,andcausal implicationsoftemperatureonsleephavebeenbothdebunkedexperimentally(Fronczeketal., 2008;Kräuchietal.,1999;Kräuchietal.,1994;McDonnelletal.,2014;Raymannetal.,2005, 2008)andreviewedthoroughly(Aschoff,1983;Kräuchi,2007;Kräuchietal.,2010;Refinettiet al.,1992;Romeijnetal.,2012a;VanSomerenetal.,2002;Waterhouseetal.,2005)(discussedin 2.3.5Circadiantemperaturerhythm).AsarguedbyLiao(2002)andRomeijnetal(2012a),body temperature,coreandskin,aresleeppermissiveand/orawakepromotingfactors.The behaviouraladjustmentsintheeveningservetofacilitatetheoscillationincorebodyandskin temperatures,andtherebyenhancetheirsleeppermissiverole.Moreimportantly,itisargued thatcircadiancyclescanbeentrainedbyskintemperaturefluctuations(Romeijnetal.,2012a). Thecrucialroleofsleeppermissiveorwakepromotingconditionsincodingfortonic neuronalchangeisoftenoverlookedbutveryimportanttoalteringormaintainingthearousal state(Romeijnetal.,2012a).Thereisamyriadoffactorsthatareabletosignificantlyalterthe 33 arousalstate;amongtheseareposturalchanges,lightintensity,andthermalstatus. Pharmacologicalmethodsarealsocapableofalteringarousalstate;however,theseaspectsare beyondthescopeofthecurrentstudy.Thermalfactorsarethemostimportanttothecurrent study,withskintemperaturebeingmanipulated.Phasiccuessuchaslightingortemperature servetoaltertheunderlyingrhythmsofprocessSandCthroughtheirtightneurologicalinput withthecriticalareasofsleep-wakeregulation. 2.3.2 HomeostaticHourglass–ProcessS Thereasonforsleepisstillunknown;howeveritsrestorativeeffectsareobvious(Saperetal., 2005).ProcessS,wasderivedfromobservationsofslowwavesleep(SWS),inwhichSWS, representedbyelectroencephalographicdeltapower(0.5-4Hz),roseduringinitialNREM phasesofsleepinresponsetolongerpriorwakingperiods(Borbetal.,1999;Borbely,1982). SWSpowerthenreducedacrossthedurationofsleep.ProcessSreducesasafunctionofbothR andNREMsleep,makingitsdeclineslowanddisjointed(Achermann,2004;Borbely,1982). StudiesdebunkingNREMandRsleepcomponentsofProcessSfoundthatthereisaspecific reboundofanyofthesleepstatestoselectivedeprivation(Borbely,1982).Forinstance, following40hofsleepdeprivation,SWSwasobservedtorebound,butRsleepwasn’t (Nakazawaetal.,1978).Rsleepdoes,however,produceareboundtospecificRsleep deprivation(Dement,1960).Although,reboundhasalsobeendemonstratedtospecific deprivationtostage4(Agnewetal.,1964;Agnewetal.,1967).Theassociationbetweenwaking hoursandreboundSWSappearstobepredominantlyassociatedwithNREMsleep(Borbely, 1982),howeveritappearsalllevelsofsleepareimportant.TheriseinpotencyofProcessS acrossthedaydemonstratesanexponentiallysaturatingsleepinesstoberemediatedbySWS (Figure4)(Beersma,1998). Substancesknowntoraisethissleeppressurearedefinedassleepfactors.Asleepfactorisa substancethataccumulatesinthebrainacrosswakinguntilitreachesathreshold,whereby sleepisinduced(Porkka-Heiskanenetal.,2002).Manysleepfactorshavebeenprofferedthat 34 mayadditionallyserveassleepfactors,suchassynaptichomeostasis(Tononietal.,2006). Howeveronlyrelativelyrecentlyhasacausativesubstratebeenlargelyaccepted;namely, adenosine(Porkka-Heiskanenetal.,2011).Therearelikelymanysleepfactorsthatare unknownandlikelytobeverycomplicated(Moore,2007;Porkka-Heiskanenetal.,2002). Adenosineaccumulatesduringwakefulnessanddecreasesduringsleepandisthusconsidered themostlikelysleepfactor/substance(Moore,2007;Porkka-Heiskanenetal.,2011). Importantly,theareasinthebrainwithwhichadenosineismostimplicatedarethebasal forebrainandthethalamus;bothkeyneuronalgroupsinvolvedintheascendingarousalsystem. Forexample,theinhibitoryeffectofadenosineonthebasalforebrainmayplayalarge contributoryroleintheflip-flopswitch(Saperetal.,2005).Localadenosineadministrationto thePOAHareainratshasalsobeenshowntoinducesleep,whileacrosssleepdurationincats, adenosinelevelsinthebasalforebrainandthalamusdecreaseby75-80%(Porkka-Heiskanenet al.,2002).Asasleepfactor,theriseandfallinadenosinelevelsinthebasalforebrainarespecific tothisneuronalpopulation(Porkka-Heiskanenetal.,2011).Adenosinehasthereforebeen proposedasthemechanismdrivingthisswitchtoinhibitionofarousalthroughitsactionon boththebasalforebrainandtheVLPO(Limetal.,2008).Theinteractionofadenosinewiththe VLPOisfurthernotedinSection2.3.4InteractionofProcessSandProcessC. ProcessStrackstheinternalneedsofthebody,drivinggreatersleeppropensitywith progressingwakefulness.Italsomodulatestherest-activitycyclethroughitscorticalinhibition (Porkka-Heiskanenetal.,2002).Thisobviouslyhasalargeassociativeeffectonvigilanceinthe evening,asthepressuretorestandsleepincrementallybuildsacrosstheday.Individuals involvedinmentallystressfultasks,especiallyacrossthebiologicalnightdisplayamuchgreater rateofdecline,andlossofattention.Thislossofattentionisinpartduetobuildupofsleep pressureacrossdays,asthesleeprestrictionlimitsthetimeforsleepfactorstoreturnto baseline.Moore(2007)identified‘sleephomeostasis’bywhichsleeppropensityismodulatedby 35 precedingsleepamountstoprovideanaverage“referencelevel”ofsleep.Ifsleepisdeferredthe sleepdriveaugmentspropensity,whereasexcessivesleepsupressessleeppropensity. Overaday,thedrivetosleepalsoundergoesfluctuationsasitsassociationwithprocessC servestominimiseormodulateitspotency(Figure3).Reyneretal(2012)observedonesuch component,knownasthebi-circadianor‘postlunch’dip.Thisdip,whilenotoverlysignificant, wasapparentindriverswhohadconsumedaheavymeal,afteronly30minofdriving.ThebicircadiandipisafunctionofdecreasedprocessCarousaldriveratherthananyincreasein ProcessS.AnotherdipinvigilancecomeswiththeeveningchangeinProcessCfromarousalto sleep,allowingprocessStodrivesleeponset.Thischangeleadstosignificantdeclinesin vigilance,asprocessSisnolongerchallenged. 2.3.3 CentralCircadianClock–ProcessC WhileprocessSregulatestheinternalsleep-wakeenvironment,processCregulates accordingtotheexternalenvironment.ProcessCfluctuatesinaroughly25-hourfrequency,but isentrainedtothe24-hourcyclethroughdiurnalfluctuationsinlightintensity(Jinetal.,1999; Johnsonetal.,1988;Reppertetal.,2002).Inthisway,ProcessCregulatessleepandwakingby constrainingProcessSsleeppropensity.TheSCNservesprimarilyaspacemakerandintegrator, byprocessingthevariousdiurnalsignals(e.g.,light)andsignallingthesleepandwakingchanges (Moore,2007;Saperetal.,2005).Whileotherpacemakershavebeenfoundtoexist,forinstance oneintheeye,andanotherrelatedtotimingofdietaryintake,aswellasindividualclock neurons(Bassetal.,2010;Raymannetal.,2007a;Raymannetal.,2007b;Romeijnetal.,2012a), thesearehierarchicallygovernedbytheSCNanddonotappearto,inandofthemselves,relate toregulationofsleeptiming(Beersma,1998;Burgessetal.,2001;Romeijnetal.,2012a). ProcessCregulatesthetimingofonsetandcessationofsleepandhormonalfunctions–in particularpinealmelatoninandorexin/hypocretin(Hurwitzetal.,2004;Limetal.,2008;PandiPerumaletal.,2008)-thoughitdoesnotdeterminethefunctionoftheseprocesses(Achermann, 36 2004).ProcessCalsoregulatesthesleep-wakecycle,ofwhichvigilanceanddrowsinessare components.Thechangeinthesleep-wakecycleisinstigatedbyneuronal(ascendingarousal drive;seebelow)andhormonal(pinealmelatonin)changes(Cagnaccietal.,1992;Cassoneetal., 1986;Jinetal.,1999).Thesleep-wakecycleisalsomodulatedby,andmodulates,theTCcycle. Thestateofvigilance/drowsinessistightlyrelatedtocorebodyheatfluctuation.Thecircadian rhythmofTCisveryrobust.Inmodifieddailycycles(~26-hours,ornolight),circadianrhythm desynchronisationoccurswithinaminorrange,butretainsitsinternalsynchronisationof physiologicalfunctions(Aschoff,1983).Inthisway,thetwo-processmodelhasbeenappliedto theunderstandingofthetemporalprofileofneurobehaviouralfunctioningacrossdaysofsleep deprivation(VanDongenetal.,2003).Duringthebiological“day”TCisatitspeak,while biologicalnightoccurswithTCdecliningintoitsnadir(VanSomeren,2006;Waterhouseetal., 2005).TheoscillationinTCisahighlyreliabletoolbywhichtoassessthetimingofthecentral circadianclock,especiallywithregardtothetransitionperiodbetweensleepingandwaking states. 2.3.4 InteractionofProcessSandProcessC Thebalancebetweenwakingandsleepingstatesreliesontheinteractionsofthemain hormonesandneurotransmittersofProcessesSandC.Thepredominantdriversforcircadian changearetwohormonesorexinandmelatonin,whereastheproffereddriverofhomeostatic changeisadenosine.Figure2.3bestillustratestheinteractionbetweenProcessSandProcessC, astheyoffseteachotheracrossthedayandfacilitateoverthenight,withthe“flip-flop”switch allowingthetransitionbetweenthewakingandsleepingstates. Orexin/hypocretinsecretingneurons,withinthelateralhypothalamus(LH),stabilisethe wakingstatethroughaxonalprojectionsspreadingdiffuselythroughoutthecortex(Hassaniet al.,2009;Sakuraietal.,2010).Theyprojectintoaventralpathway-progressinganteriorlyinto theprefrontalcortexandspreadingposteriorly-whichaidscorticalactivationandfacilitates thalamicinputs(Saperetal.,2005).Thethalamicpathwaystemsfromreticularactivating 37 neurons(Saperetal.,2005).TogetherthesetwopathwaysproducetheAAS,whichexcitesmany neuronalpopulationsandallowssmoothfunctioningofthecortex(Moore,2007;Saperetal., 2005).Orexinneuronsaremostexcitedduringactivewakingandprogressivelydownregulate asstimulidecrease(Sakuraietal.,2010).DuringNREMsleep,orexinneuronsareinactive,with burstfiringoccurringasanindividualprogressesthroughRphasesofsleep(Leeetal.,2005). OrexinstabilisestheASS,andoffsetstheriseinadenosine(Sakuraietal.,2010).The“wakeactive”neuronsoftheLHinteractwiththehomeostaticVLPObymutuallyinhibitoryprojections, thepotencyofwhichdeterminesthedirectionoftheaforementioned“flip-flop”switchtoeither wakingorsleepingstate(Saperetal.,2001).TheVLPOovercomesthisinhibitionintheevening, “triggering”theflip-flopswitch(Limetal.,2008;Saperetal.,2005).Adenosine,asmentioned above,isthoughttobethemaincontributortoVLPOdisinhibitionbydirectlyreducing GABAergicinputfromcholinergicaxonalcellsfromthemidbrainneuronalpopulations(the lateralcoeruleus)(Porkka-Heiskanenetal.,2011;Saperetal.,2001).OncetheVLPOinhibitionis overcome,itsGABAergicprojectionsup-regulate.TheVLPOprojectionssendinhibitorysignals tomanyareasofthehypothalamus,andbrainstemareasattheoriginoftheascendingreticular activatingsystem,namelythemonoaminergicnuclei,therapheandthelateralcoeruleus (Moore,2007;Sakuraietal.,2010). ConcurrentwithdestabilisationoftheAAS,releaseofpinealmelatoninisstimulated indirectlybyProcessC(Arendtetal.,2005;Karaseketal.,2006).Melatoninstimulates vasodilationandTCdrop,eitherthroughitsroleoncardiacautonomicactivity,orthroughdirect activationinthevasculature(Cardinalietal.,1998).Pinealmelatonincouldbeconsideredan antagonisttoorexin,beingsecretedatnight,andfacilitatingsleeponsetprocesses(Arendtetal., 2005;Burgessetal.,2001;Carpentierietal.,2012;Hassanietal.,2009).Whenmelatonin secretionisstimulated,orexinistypicallyinhibited;howevertheseareonlyassociativechanges (Hassanietal.,2009). 38 Sinceitsdiscovery,melatoninhasbeenfoundtohaveanumberofroleswithinthebody includinginteractionwithfreeradicals,theimmunesystemandthegastrointestinaltract (Carpentierietal.,2012).Itisalsosecretedforthesedifferentrolesbymanyorgans,however thepinealsynthesisandsecretionofmelatoninappearstobethemostpervasivethroughoutthe bodyduringnightlysecretion(Karaseketal.,2006;Pandi-Perumaletal.,2008).Eightypercent ofitssecretionisatnight(Karaseketal.,2006).Duringtheday,brightlight(>600Lux)inhibits melatoninsynthesis;howeverevenwithincontinuousdarkness,melatoninsynthesisexhibitsa near-24-hourcycle(Brzezinski,1997).Conversely,substantialevidencealsosupportsanacute suppressionofeveningmelatoninsynthesisinresponsetobrightlight(>5000lux)exposure (Cajochenetal.,2000;2005;Wrightetal.,2000).AsbrightlightentrainstheSCN,itfollowsthat SCN-inducedmelatoninreleaseisalsoentrainedbylightasafunctionofthis.Thelossoflightentrainmentofthecircadianclockisexhibitedindisorders/disabilitiescausing“freerunning” sleepwakecyclessuchasincompleteblindness,wheremelatoninsecretion,amongvarious otherprocesses,isnotentrainedtotheregular24-hourcycle(Brzezinski,1997;Karaseketal., 2006). Nightlyonsetofmelatoninsynthesisandreleasebeginsafterdark,peakingbetween2-4am (or12pm-3am(Carpentierietal.,2012;Karaseketal.,2006)),duringthemidpointofsleep (Brzezinski,1997;Hurwitzetal.,2004;Pandi-Perumaletal.,2008).Onsetandoffsetof melatoninappearstotypicallyoccurbetween9-10pmand7-9am,respectively(Cagnaccietal., 1992;Hurwitzetal.,2004;Karaseketal.,2006);howeverthedurationofmelatoninreleaseis alsoalteredaccordingtodurationofnightandcodingforlength-of-day(Arendtetal.,2005; Pandi-Perumaletal.,2008). Lightinhibitsmelatoninthroughneuralactivationofparaventricularnucleiandsympathetic activationviaSCNpathways(Carpentierietal.,2012).Thethresholdforinhibitionis200-400 luxwithmaximalinhibitionoccurringat600lux(Brzezinski,1997).Maximalwakinglight exposureinaconstructedenvironmentis~900lux(Wrightetal.,2013),wellabovethemaximal 39 inhibitionofmelatonin.TheretinallightinfluxcausessynchronisationoftheSCNtothelightdarkcycle(Pandi-Perumaletal.,2008).Thelight-darkcycleco-varieswithTCandmelatonin change,howevertheTCcycleappearstohaveastrongercorrelationtomelatoninsecretionthan thatofthelight-darkcycle(seeFigure2.4)(Burgessetal.,2001;Cagnaccietal.,1992;Karaseket al.,2006).Itisbelievedthatmelatonincouldinfactserveasaninternalsynchroniserableto stabilizeorreinforcerhythms(Karaseketal.,2006).AsstatedbyKaraseketal(2006) “biologicalday”correspondstoalackofmelatoninsecretionaccompaniedbyanincreaseinTC andadecreaseinwakingthetaactivity,whereasthe“biologicalnight”melatoninsecretionis associatedwithdecreasedTCandincreasedwakingthetaactivity(Figure2.4). TherelationshipbetweenmelatoninandTCappearstobecausative,with(Burgessetal., 2001)observingariseinfoottemperature30minafteradministrationofanoralmelatonin load,followedanhourlaterbyadropinTC(Figure2.4).Thiseffectisalsoobservablewith daytimeadministrationofmelatonin(Hurwitzetal.,2004).Similarly,night-timeadministration ofatenolol,suppressingmelatoninsynthesis,alsoreducesthedeclineinTC;infusionof melatonin,offsettingtheatenololrestoresnormalreductions(VanDenHeuveletal.,1997). Nocturnalmelatoninsecretionaccountsfor~40%ofthedropinTC(Cagnaccietal.,1992). Thereappearstobealotofsupportfordirectmodulationofthecardiacautonomicactivity, howeverBurgessetal(2001)argueswithhisfindingsusingsyntheticmelatoninadministration thatmelatonindoesnotdirectlyinteractwiththeautonomicsystembutratheractsonreceptors intheheartandperiphery.Melatoninreceptorshavebeenidentifiedwithincoronaryarteries, ventriclesandsystemicarteries(Pandi-Perumaletal.,2008).Assuch,pinealmelatonin synthesisisdeterminativeoncutaneousvasodilationandsubsequentDPGdevelopmentor abolition(Kräuchietal.,1997;Pandi-Perumaletal.,2008).Theeffectofmelatoninonthe systemiccirculationislinkedtothermoregulationandappearstolowerbloodpressurethrough vasodilation(Pandi-Perumaletal.,2008).Collectivelytheseinterventionsandobservations supportthenotionthatmelatoninislargelyresponsibleforfacilitatingsleeponset. 40 Figure2.4:Circadianrhythm,withassociatedmelatoninandsleeppropensitycycles.FromLack etal.,2008 2.3.5 Circadiantemperaturerhythm Temperaturefluctuation,whilenotdirectlycontrolledbythecentralcircadianclock,is modulatedbydirectneuronalconnectionsbetweentheSCNandPOAH,viaarostralprojection oftheSCN(Mooreetal.,2002).ThesynapsingofthePOAHwiththeSCNallowsforthecircadian fluctuationinTC(Figure2.4).Tonicup-regulationofSCNfiringstimulatesWSNfiring,whichhas beendemonstratedtospontaneouslyincreaseatsleeponset(Raymannetal.,2007a).Circadian oscillationofTCoccursthroughmodificationsinheatloss,whichisstimulatedbyWSNexcitation (Kräuchietal.,1994).TCvariationonlyoccurswithinnormothermicrangesasafunctionofSCN input,withsleeponsetoccurringaroundthemaximumrateofTCdecline(Kräuchietal.,1999; Murphyetal.,1997).Neuralstimulationofeveningheatlossoccurswithhormonalfluctuations suchasmelatonin,which,alongwithincreasesinskintemperaturecontributetotheassociated rhythmofTCandsleep(Arendtetal.,2005;Cagnaccietal.,1992).Acausalrelationshipbetween skintemperatureandsleeponsethasgainedevidentialsupport(Raymannetal.,2005;Van Somerenetal.,2002;VanSomeren,2004).Skintemperaturerisesasafunctionofvasodilation, allowingtheTCtodecline.Indilatingthedistalbloodvessels,skintemperatureformsaninverse relationshipwithTC.Itiscurrentlydebatedwhetheritisthelevelofdistalskintemperaturethat 41 isessential(Fronczeketal.,2006b;Raymannetal.,2005)orthegradientthatisinduced(Fagrell, 1985;Kräuchietal.,1999). WhilethecyclesofsleepandwakingareintimatelyrelatedwiththerhythmofTC(Van Someren,2006),theyarenotdirectlycausative(Aschoff,1983).Thenatureoftherelationship hasbeenchallengedbyconstantroutineprotocolspreventingsleep,wherebyTCcontinuesto oscillate,butatareducedrate(~50%)(Waterhouseetal.,2005).Gillbergetal(1982),further demonstratedTCindependencefromrest-activitycycles,bypromptingsleepatdifferenttimes ofday,andtherebydifferentphasesoftheTCrhythm.Sleepduringthebiologicalday,causesa dropinTCacrossthefirsthourofsleep,whereuponitrealignswiththenormalrhythmacross sleepduration(Gillbergetal.,1982).ThetypicalrhythmofTCpeaksbetween2-8pmand troughsat5am(Figure2.4). TheroleofmaximalrateofdeclineinTConsleeponsetwasfirstdeterminedby(Murphyet al.,1997),inyoungandoldindividualsbyusingadisentrainmentstudydesign.Acrossthree daysoftime-cueisolation,participantstypicallywenttosleep~60minfollowingthemaximum rateofTCdecline(Murphyetal.,1997).Thisrelationshipcouldbeoverriddengivenenough motivation.Kräuchietal(1999;1994)expandedonthetemperatureandsleeprelationshipby demonstratingthatthedegreeofdilationofbloodvesselsinthehandsandfeet,andsubsequent DPGdevelopmentarethebestphysiologicalpredictorsofrapidsleeponset.Raymannand colleaguesfurtherdemonstratedtheroleofraisingskintemperatureoninducingsleep,ina seriesofstudies(Raymannetal.,2005,2007a,2008;Raymannetal.,2007b).Withuseofa water-perfusedthermosuit,Raymannetal(2005),demonstrated26%fastersleeponset latencieswithsubtlemanipulation(0.8±003OC)ofproximalskinsitesthroughouttheday.This hasbeenfurtherappliedinanecologicallyvalidsetting,usingbedsockstopromotedistal warmingandabeneficialDPGforsleeponset(Raymannetal.,2007a).Evenmorerecently, (McDonnelletal.,2014)hasaddedtothegrowingliteratureinabedreststudyinvolvingeffects ofhypoxicversesnormoxicconditions.Theyobservedpersistenceofthenon-thermal 42 mechanismmediatingeveningvasodilation,regardlessofinducedvasoconstriction(McDonnell etal.,2014). AnumberoffactorsarecapableofimpingingonTCandimpairingsleeponset.Coolingmay perhapsbeonesuchfactor,assleep-relatedprocessesappeartobedifficulttoinitiatein susceptibleindividuals.InaquestionnaireofaSwisspopulationthermaldiscomfortofcold extremitieswascorrelatedwithdifficultyinitiatingsleep(Kräuchietal.,2008);thishas previouslybeenobserved(asmentionedabove2.2.1Homeostasis)acrossarangeofambient temperatures,withbothcold(21OC)andhot(34OC)ambienttemperaturesdisturbingsleep onset(Haskelletal.,1981). Furthermore,susceptibilitytoambienttemperaturemaybesexspecific,withwomen typicallyhavingalowerdistaltemperature(~3OC)(Candasetal.,2007),andthereforesuffering greatercomplaintsofthermaldiscomfortanddifficultyinitiatingsleep(Kräuchietal.,2008). Additionally,theeffectsofagingappeartogeneratesimilardifficultiesinitiatingsleep,whichare improvedbydistalwarming(Raymannetal.,2007a).Decliningsynthesisofmelatonin(from ~65years)furtherexacerbatestheeffectsofagingonthecircadianrhythmofTC(Brzezinski, 1997;Pandi-Perumaletal.,2008;Raymannetal.,2007a;VanSomerenetal.,2002). Insummary,therhythmofTCishighlycorrelatedtothecircadiansleepwakerhythm.Indeed, therhythmofTCappearstobecausativeinhealthysleeppatterns,moresothroughthe fluctuationsinskintemperatureanditsroleonTC.Bothhormonalandneuronalnon-thermal factorsmaintainandentraintheTCcycle,whichinturninfluencetherateofsleeponsetandthe depthofsleep.Conversely,minimisedfluctuationsinTCorthermalfactorsgenerating vasoconstrictionappeartoreducesleeppropensity.Thisdisruptionmayhavearolein influencingmaintenanceofvigilance,asevidencedbythealteredthermoregulationandsleepwakephysiologyobservedinnarcoleptics(Fronczeketal.,2008). 43 2.3.6 Narcolepsy ‘Narcolepsyisclinicallycharacterisedbyexcessivedaytimesleepinessandcataplexy’ (Fronczek,2006,p.1444).Narcolepsyreflectsadysfunctionoftheorexin/hypocretinsystem, with~95%ofnarcolepticpatientshavingverylowlevelsofhypocretin-1incerebrospinalfluid (Overeemetal.,2012).Thelossof“normal”levelsoforexinleadstothedestabilisationofthe wakingstate,astheflip-flopswitchbecomesdestabilised(Saperetal.,2001).Withouttheinput providedbyorexin,theflip-flopswitchtriggersrapidchangesinsleep-wakestatesacrossthe day,typifiedinnarcolepsy. Therelationbetweentemperatureandsleephasbeenestablished,bothwithevidential causationofdistalskintemperatureandsleeponset(Fronczeketal.,2006;Kräuchietal.,1999; Raymannetal.,2005),andwithsynapticinputbetweentheSCNandPOAH(Wrightetal.,2002). Asorexinisanactivecomponentofthecircadianclock,lowlevelsmayultimatelycontributeto decreaseddistalsympatheticconstrictortone,whichisindicatedbyalteredDPGs(Fronczeket al.,2006).Therelationbetweenorexindeficiencyanddecreasedsympathetictonehasbeen demonstratedinorexinknockoutmice(Kayabaetal.,2003).Fronczekandcolleaguesexplored therelationshipbetweendistaltemperaturesandsleepinessinnarcolepticsinaseriesofstudies (Fronczeketal.,2006a;Fronczeketal.,2006b;Fronczeketal.,2008).Incomparingdaytime sleeppropensitybetweennarcolepticsandhealthyindividuals,Fronczeketal(2006b)observed arelationshipbetweenhighdistalskintemperatureandrapidsleeponsetduringaMultiple SleepLatencyTest.WhenfocussingonvigilanceFronczeketal(2006a)experimentally manipulatedbothTCandTSktorestorenormaldaytimetemperatures;thiswasachieved throughingestionofhotdrinksanduseofawaterperfusedsuit.Byingestingahotdrink,the participantswerebetterabletoraisevigilance(~24%),andbycoolingtheskinsleeppropensity wasreduced.Fronczeketal’s(2006;2008)studiesservetofurtherdemonstratetheroleof temperatureonsleepandindicatethepermissivenessofcoolingasatechniqueformaintaining wakefulness. 44 2.4 Vigilance Vigilancecontrastssleep,butformsamorecomplexrelationshipwithTC.Thevigilancestate reflectscorticalexcitationandmaintenanceofattention(Klimesch,1999;Laletal.,2002).Some factorsinvolvedinalteringneuronalexcitabilityarethedurationofwakingstate(ProcessS) (Klimesch,1999;Porkka-Heiskanenetal.,2002;Romeijnetal.,2012a;Tononietal.,2006),time ontask(Fronczeketal.,2008;Laletal.,2002),andsatiety(Reyneretal.,2012).Vigilanceis greatestduringthecircadianphaseofincreasedTC,anddeclineswithcoretemperature.Asthe relationshipbetweenTCandthecircadianclockareentwined,thecoreandskintemperature phaserelationshipcanthereforebeusedtoinfertheseunderlyingvigilanceprocesses (Raymannetal.,2007b;Romeijnetal.,2012a).Indeedthishasbeenobservedwithnarcoleptics asaforementioned(Fronczeketal.,2006b).Thedailyrhythmintemperaturefluctuationresults inareciprocalfluctuationinvigilance(Fronczeketal.,2008;Romeijnetal.,2012a). Vigilanceappearstobedirectlyrelatedtothermalandnon-thermaltemperaturechanges withintheTNZ.AcausalrelationshiphasbeenobservedbetweenthecircadianTCpeakand cognitivetaskproficiency(Wrightetal.,2002);additionally,the‘postlunch’bi-circadiandipin TCappearstoresultinreductionsinvigilance(Reyneretal.,2012).Furtherfacilitatingthe circadiandeclineofTCintheevening(distalskintemperature~34OC,comparedto~31OC) appearstogenerategreaterdeclinesinvigilance(Raymannetal.,2007b).BeyondTNZsofTCrhythm,bothcoolingandheatingappearstoexhibitaninverted-Urelationship(Cheungetal., 2007;Raymannetal.,2007b).Inacoldpressortest(2-3OCwater),Patiletal(1995)observed raisedalertnessbutdecreasedshorttermmemory.Similarly,Cheungetal(2007)foundthat mildwhole-bodycooling(Twater≈18-25OC,∆Tre=0,-0.5,-1.0OC),viawaterimmersion,ledto performanceimpairmentduetodistraction,butgreatercolddidnotrelatetoworse performance.Thisledtothesuggestionthatcoolingperse,ratherthantemperature,is distracting. 45 Themostdramaticchangesinvigilanceareseenintheevening,assleepisphysiologically facilitated.Ifsleepisdeprived,thegreaterProcessS-associatedsleeppropensityproduces greatervigilancedecline(Basneretal.,2011).Anumberofstudiesusesleepdeprivationasa meanstogenerategreatersensitivityinvigilancemeasures(VanDongenetal.,2003). 2.4.1 Psychomotorvigilance Psychomotorvigilanceisastateofarousalandattentivenesstotasks(Laletal.,2001;Warm etal.,2008),orsimplysustainedattention(Okenetal.,2006).Maintainingattentiontoataskis energydemandingandrequiresconsiderablecognitiveprocessingdedicatedtomaintaining vigilance(Lorist,2008;Warmetal.,2008).Theabilitytomaintainattentionisspecifically affectedbymentalfatigue–fatiguefromprolongedcognitiveprocessing(Boksemetal.,2005; Dinges,1995;Laletal.,2001).Thepsychomotorvigilancetask(PVT)isthebestmeasureof assessingmentalfatigueassociatedwithincreasingtime-on-task(Wrightetal.,2002). Psychomotorvigilancedecayhasbeenobservedwithtemperaturemanipulation(Fronczeket al.,2008;Raymannetal.,2007b),withchangestobodyposture(Caldwelletal.,2003),and brightlightexposure(Cajochenetal.,2005;Kaidaetal.,2006),followingsleepdeprivation(Van Dongenetal.,2003),andwithmorecomplextaskssuchasdrivingorflying(Dinges,1995; Gillbergetal.,1996;Horneetal.,1995;Schier,2000). Attentionallowsusto,firstly,biasincominginformationsoastoprivilegerelevant informationforachievinggoals,andsecondly,activelyignoreirrelevantinformationcapableof interferingwithgoalperformance/completion(Boksemetal.,2005).Attentionsharesmany commoncharacteristicswitharousal,howeverwherearousalreferstonon-specificactivationof thecortex,attentionincludescognitiveprocessing(Okenetal.,2006).Inarestingsituation, neurologically,anindividualcanstillbevigilantandalertwithoutthestressorsrequiring attention.Whentaskdemandsareapplied,individualsareforcedtodirectattentionand considerablecognitiveprocessingtomaintainvigilantattentioninreadinesstorespond;thisis fatiguingandstressful(Warmetal.,2008).Thetopdownprocessesinvolvedincoordinating 46 accuratetimingofactivitiesaremostaffectedbyfatigue,whichresultinalossofperformance efficiency(Lorist,2008). Themajorityofresearchdefinesvigilancebyitsdeclination(Okenetal.,2006).Thereare manytermsusedtodefinethedeteriorationofvigilance,asoutlinedinChapter1,andwhile sleepinessismoreprecise,fatigueismoreinclusiveofthespectrumofprocessessurrounding decreasedalertnessandperformance(Dinges,1995;Horneetal.,1995;Jonesetal.,2010). Fatigue,inthecontextofthecurrentstudy,canbedescribedasthetransitoryperiodbetween awakeandsleep(Laletal.,2001),markedbyreducedefficiencyandgeneralunwillingnessto continue(Grandjean,1979,1988).Unwillingnesstocontinueataskcanbedescribedasan effort/rewardimbalance,resultinginlossofmotivationandfeelingsoffatigue(Topsetal., 2004). Monotonoustasksarepronetogeneratingfatigue.Duringamonotonousdrivingtask,Brown (1994)observedagradualwithdrawalofattentionastaskdurationincreased.Duringdrivingof amonotonousloopedtrack,Schier(2000)observedwithdrawalofattentionandfatigueas participantsbecamefamiliartothetrack.Thiswithdrawalofattentionfromthetask,dueto familiarityorlossofmotivation,generateserrorsinperformancewiththelossofefficiency. WithinPVTtests,familiarisationtothetaskisminimised,allowingfatiguetobeobserved separatelyfromfamiliarity;theseareobservedaslapsesorincreasedreactiontimesasthetask progresses(Fronczeketal.,2008;Raymannetal.,2007b;VanDongenetal.,2003). Asalludedtoabove,tonicfactorssuchassleepdeprivation,circadianrhythmphase, environmentalfactorsandtheindividual’scharacteristics,alsoimpingeonthevigilancestate andfatigability(Boksemetal.,2005;Eohetal.,2005;Laletal.,2001;Transport,2011a).The inputoftonicfactorsisminimisedbyconstantroutineprotocols,whichmaintainconstant conditions.TheconstantroutineprotocolwasdesignedbyMillsetal(1978)andwasmodified byCzeisleretal(1986).Theconstantroutineprotocol,minimisesextraneousfactorsnotdirectly requiredfortheobservancesofthestudy;e.g.,Kräuchietal(1994)maintainedconstant 47 ambienttemperatureandhumidity,lightlevels,motoractivity,vigilancestateandfoodintaketo unmasktheendogenouscircadiantemperaturerhythms. Ontopofconstantroutineprotocolssleepdeprivationisoftenusedtosensitisetests.Okenet al(2006)warnedthatmanystudiesmightbenegativelyaffectingmotivation,byinducingsleep deprivation.Sleepdeprivationartificiallyraisesfatigueandaltersmotivation,andmaytherefore becreatinganunrealisticconflict.VanDongenetal(2003)andOkenetal(2006)arguethat sleepdeprivationisacommonoccurrenceintoday’ssociety;assuch,inducingfurthersleep deprivationmayreducethevalidityofvigilancestudies.However,thehighprevalenceofsleep deprivationindrivingaccidentsmaybebetterunderstoodwithfurthersleepdeprivation. Insummary,thedefinitionsencompassingvigilanceandfatiguevary,howeverthecausative factorsremainconsistent.Fatigueappearstocompriseanumberofagreedcharacteristics, including:Lossofefficiencyandalertness;difficultymaintainingattentionandfiltering irrelevantinformation;aswellasalossofmotivation.Eachcharacteristicoffatiguedescribes thedeteriorationofvigilance.Vigilanceistheabilitytomaintainsustainedattention,without noticeabledeclineinefficiency.Maintainingvigilanceiscostly,anddrowsinessimpactsthetopdownprocessesmost. 2.4.2 Validityofthepsychomotorvigilancetask ThePVTisthemostwidelyusedmeasureofbehaviouralalertness(Basneretal.,2011).It providesanexcellentmarkerofattentionaldeficitinmoststates(i.e.sleepdeprivation, followingstimulants,circadianmeasures)(Limetal.,2008).ThePVTisaportabledevicethat containsabrief,ecologicallyvalidandreliabletaskthatisalmostdevoidoflearningeffects (Basneretal.,2011;Limetal.,2008;Lohetal.,2004).InessencethePVTprovidesaseriesof simplereactiontimetasks,suppliedatarandominter-stimulusinterval(ISI),whichrequires sustainedattention.Duetoitshighsignal-loadratio,10minallowscollectionofalargeamount ofinformationwithoutitbeingtooonerous(Limetal.,2008).Whenshortenedorlengthened, 48 nofurtherinformationisgleaned,andmoreoftensensitivityislostduetolossofmotivation,or lackofdata(Limetal.,2008;Lohetal.,2004). ThePVTismadespecifictovigilance,throughtherandomalternationbetween2and10s,in theISI.Areactiontimethatislongerthanstandardoccurswhenanindividualisunpreparedfor thestimulus.Asmoretrialsareperformedanindividual’scapacityforcontinuous,concentrated attentionisrevealed(Wilkinsonetal.,1982).Asstatedabove,thecognitiveloadappliedto maintainvigilanceisonerousandincreaseswithfatigue.TheISIisthestressorwithregardto maintenanceofvigilance,asitsinconsistencyrequirestheindividualundergoingtestingto maintainastateofreadinesstorespond.ThisallowsthePVTtobesensitivetosmallchangesin attentionalfunction(Limetal.,2008). Themetricsutilisedtounderstandtheeffectofexperimentalconditionsortime-on-taskon vigilantattention,aretypicallyassessedasreactiontime,orlapses.Lapsesaredenotedby reactiontimesof>500ms.Theseareconsiderederrorsofomission,wheretheindividualhas failedtomaintainvigilance,resultingfromdistractionormicro-sleeps(Basneretal.,2011;Lim etal.,2008).Lapsesaremostcommonlyobservedinsleepdeprivationstudies,inwhichthePVT hasdemonstrateditsabilityasthe‘archetypeneurocognitiveassayofattentionaftersleeploss’ (Limetal.,2008),p.306).VanDongenetal(2003)foundthatacross14-daysofsleeprestriction, lapsesdifferedsignificantlybetweenthoserestrictedto4,6and8hourspernight.Moreover, Limetal(2008)demonstratedthatsleepdeprivationandassociatedsleeppressure incrementallyaddstolapses,withthegreatestnumberoflapsescorrespondingtothe summationofcircadiandropinTCandarousal,andhomeostaticpressuretosleep.The combinationofcircadiancycleandpressuretosleepcompoundtheeffectoffatigueand significantlyalterthenumberoflapsesbroughtonbyattentionloss. Reactiontime(oftenexpressedasreciprocalreactiontime[RRT=1000/RT](Fronczeketal., 2008)),theothermetricobtainedfromthePVT,alsoservestoelucidateattentionalchange. Reactiontimeincreaseswithtime-on-task.TheRRTservestoemphasiseresponsespeedinthe 49 normaltofastresponsedomain,therebyavoidinginfluenceoflonglapses(Basneretal.,2011). AworseningRRTdecreasestowardzero.AssuchRRTprovidesaperformanceindicatorofthe levelofalertnessprecedingstimulus.Fronczeketal(2008)observedsignificantdeclinesinRRT asafunctionoftime-on-task.Inconjunctionwithasteadyincreaseinthenumberoflapses,and reductioninresponsespeed,fatiguealsoproducesmorefrequenterrorsof commission/omission,andmorevariabilityinRRTwithincreasingtime-on-taskandsleepiness (Basneretal.,2011;Limetal.,2008).Thesefatigue-relatedperformancedeclinesareoften exaggeratedfurtherbyusingsleepdeprivationtodemonstratelargereffects,viatheadditional sleeppressure. 2.5 Sleeponset Inthetransitionfromfullyalerttosleeponset,aseriesofclearlyobservableandreliable processesoccur(Chokrovertyetal.,2005).ThesechangesarepredominantlyfoundedinEEG, withmarkedincreasesofslowwavethetaactivity,andalphaanteriorisation,signallingsleep onset(Caldwelletal.,2003;Klimesch,1999;Okenetal.,2006).Asanindividualprogresses furtherintosleep,sleepspindlesoccur,denotingsleepN2(Chokrovertyetal.,2005).Stages1 and2arenowtermedN1andN2respectively(Iberetal.,2007).AlthoughN1sleepprecedes N2,itisdifficulttodetectduetorelapseintoandoutofthewakingstate.Assuch,somestudies definesleepfrommorethanoneconsecutiveoccurrenceof30sofN1sleep,orN2sleepwiththe firstoccurrenceofasleepspindletoensurecertaintyofsleeponset(Fronczeketal.,2008). Althoughsleeponsetisdefineddifferentlybetweenstudies,epochsinN1orentryintoN2sleep arealwaysamongcriteria(Fronczeketal.,2008;Kräuchietal.,1999).Stage3and4sleepare characterisedbyincreasingfrequencyanddepthofdelta(slow)waves.Howeverstages3and4 arenolongerrecognisedasdistinctstates,butaremergedasslowwavesleep,ortermedN3 sleep,accordingtochangesintheAmericanAcademyofSleepMedicineguidelines(Iberetal., 50 2007).Typically,asubjectentersstageRsleep;afterslowwavesleep.Rsleepischaracterised bymixedfrequencylowvoltageEEG,lossofmuscletoneandburstsofrapideyemovement. Awarenessofdrowsinessoccursafterphysiologicallyobservable(e.g.,EEG)changes (Santamariaetal.,1987).ApatientlapsingintoN1oftenhasnorecollectionofsleeponset,and whenqueriedareoftenadamantthatnosleeponsetoccurred(Horneetal.,1995).In conjunctionwiththis,subjectswithincreasingdrowsinessbecomeincreasinglylessresponsive toexternalstimuli(Okenetal.,2006).Thisreflectsaworryingstateofawareness,asadeclinein reactiontimeandlapsesarecommonoccurrencesindrowsiness(Dinges,1995).Filtnessetal (2012)observedgoodinsightintodrivers’increasingsleepiness.Howeverthisinsightappears tobelimited,asVanDongenetal(2003)observednodifferenceinperceptualawarenessin sleepinessbetweenindividualsrestrictedto4and6hoursofsleep,despiteamarkeddifferences invigilancemeasures.Assuch,electrophysiologicalchangesprovideamoredirectmeasureof sleepinessprogression,asopposedtorelianceinperception. Thewakingstateischaracterisedbysmallamplitude,fastfrequencybrainwaveactivity predominantlyinvolvingbetaandgammaactivitywithinterspersedalphafrequency.Asan individual’sstateofalertnessdecreasesthefrequenciesareincreasinglyinfiltratedbyalpha,and thetaactivity(Chokrovertyetal.,2005).Thewakingstateincludes~50%observablealpha activity,mixedwithbetaactivity(Chokrovertyetal.,2005).Assleeponsetoccurs,alphapower reduces,andthetaanddeltapowerincreases(Klimesch,1999).Incasesofsleepdeprivation participantsmayforgotraditionalentryintosleepthroughN1andN2,andprogressstraight intoRifthepressuretosleepishigh(Chokrovertyetal.,2005).WhenN1doesoccur,EEG recordingstypicallyshowverylowamplitude,fastfrequencywithatleast15%thetafrequency andtheappearanceofdeltasubsumingalphafrequency(Chokrovertyetal.,2005).N2sleepis easilydefinable,asitbecomespredominantlythetaactivityanddelta,interspersedwithsleep spindles(Chokrovertyetal.,2005). 51 Recognitionofsleepinessoccurringfromwakingstatetosleeponsetshowsanumberof reliableeventsthatallowthesleepspecialisttobesureofsleepinessandfinally,sleeponset. Thisisdemonstratedbytheslowincreaseofalphafrequencyinthewakingstatedueto reducingarousal,followedbyinfiltrationofthetafrequency,reductionsinalpha,andfinallythe disappearanceofalphafrequencyandintroductionofdelta.Theseparticular,reliableeventsare discernibleonlywithEEG,andcontributetotheunderstandingofdifferencesinclassifications betweensleepinessandfatigue. 2.6 Electroencephalography(EEG)andtheelectro-oculogram(EOG) EEGisperhapsthemostdirectmethodofdeterminingthebiologicaldecayinvigilancein humans(Horneetal.,1995;Laletal.,2002),andremainsthestandardmethodologyfor assessingbehaviouralstate(Moore,2007).Thedominantpolysomnographictechniquesused fordeterminingvigilanceanddrowsinessareEEG,EOGandECG,astheyarehighlyresponsive tochangesinwakingvigilancestate,andprovideinsightintounderlyingneuronalexcitability (Chuaetal.,2012;Eohetal.,2005;Laletal.,2002;Schier,2000).EEGpowerisaffectedbyboth phasicandtonicchanges,suchasopeningandclosingtheeyes,orcircadianrhythms(Klimesch, 1999).Phasicelectro-ocularandcardiographicchangeswithfatigueanddrowsinessare consistentandreliable,withanobservablechangeinblinktype/ratesandeyemovements,and largereductionsinheartratewithfatigueprogression.EEGrecordsthegeneralneuronal excitabilityacrossthescalpthroughtheuseofelectrodesplacedoveranatomicallandmarks denotingspecificareasofthebrainassetbytheinternational10/20EEGsettings(Chokroverty etal.,2005;Himanenetal.,2000;Niedermeyer,1999).Thevarioussynchronisationsand desynchronisationsofneuronalactivitycanbemeasuredasarangeofvariousfrequencies, whichcanchangedependingonelectrodepositioning(Ruehlandetal.,2011).Assuch,electrode positioningdirectlyoversitesofinterest(i.e.O1/O2forvisualtasks)maximisethesignal-noise 52 ratioandprovidesmorespecificinformationofchangeinneuronalactivity.Byaltering electrodepositioningtotheconstraintsofthetask,EEGisbetterabletoregisterchangesin vigilance-relatedEEG. EEGisaminutesignal,easilymaskedbynoiseduetoscalpmuscleactivityorthe environment(Niedermeyer,1999).StudiesoftenuseEMGplacementonthechinand/orEOGto clarifyphasesintheEEGsignal(Hakkinenetal.,1993;Santamariaetal.,1987).Electrodes placedmorelaterallyorinferior/posterior(i.e.,T7,T8,O1,Oz,O2),arealsoexposedtomore muscularnoisethanaremidlineelectrodes(McEvoyetal.,2000).EEGalsopresentshighinterindividualvariability,withvariationssuchasskullthicknessandcerebrospinalfluidflow affectingthesignalreceived(Klimesch,1999;Niedermeyer,1999).However,test-to-retest reliabilityhasbeenvalidatedinrelationtovigilance(PVT)andworkingmemorytasks(McEvoy etal.,2000).Inconjunctionwiththeanatomicalchanges,variabilitycanpresentwithinthe specificfrequencies(Klimesch,1999).Theobserveddiscrepanciesinsynchronisingand desynchronisingpowersarereflectiveofhighinter-individualvariabilityinherentinEEG (McEvoyetal.,2000;Niedermeyer,1999;Santamariaetal.,1987).Indeed,Chokrovertyetal (2005)notedthatasmallpercentageofpatientspresentnoalphaactivity,withtheirdominant frequencypresentingwithinthebetafrequencyrange. Electroencephalographyisusedinbothclinicalandresearchsettings.ResearchutilisesEEG todeterminevigilancestate(Filtnessetal.,2012;Laletal.,2002;Reyneretal.,2012;Schier, 2000),memorycapacity(Klimesch,1999;Rayetal.,1985a,1985b),orcognitiveperformance andintelligence(Boksemetal.,2006;Klimesch,1999),alongwithaforementionedinsightsinto onsetofsleep.EEGisoftenusedtodocumentthetransitionfromwakingstatetosleep (Chokrovertyetal.,2005),orfromrelaxedtoattentivestates(Filtnessetal.,2012;Klimesch, 1999;Laletal.,2002).Changesincognitivestateareofteninterpretedthroughbrainwave frequencyandamplitude.Themostcommonlyobservedfrequenciesaredelta(0.5-4Hz),theta (5-7Hz),alpha(8-13Hz),andbeta(15-35Hz).Traditionally,deltafrequencywasignoreddueto 53 thesusceptibilityofthelowfrequencytobeinfluencedbyartefactsandnoise(Laletal.,2002). Theta,alphaandbetafrequenciesareusedpredominantlytoassessdrowsiness,vigilance, pressuretosleep,andattentionalfocusthroughobservationofpowerchangesineachband (Burgessetal.,2001;Filtnessetal.,2012;Klimesch,1999;Schier,2000). 2.6.1 AlphaandThetarhythms Alpharhythmisthedominantfrequencyonthehumanscalp(Klimesch,1999),andis generatedfromtheposteriorportionofthebrain(Klimesch,1999;Niedermeyer,1999).In healthyadults,alphatypicallyhasanamplitudebetween10and45µV(Pizzagalli,2007).Alpha amplitudeisbestobservedoverparietalandoccipitalregionsinquietwaking,witheyesclosed, andtendstoprogressanteriorlyinfatigue(Chokrovertyetal.,2005;Klimesch,1999;Pizzagalli, 2007;Teplan,2002).Alphaactivityisparticularlysensitivetochangesinstate(i.e.,opening closingeyes,changeinattention,waketosleepstate)(Klimesch,1999;Schier,2000)andis abolishedbyalertingstimuliandtasks(Teplan,2002). Thephysiologicalroleofalpharemainslargelyunknown(Pizzagalli,2007),despitemany attemptstodefineit.Widespeculationuponthephysiologicalbasisofalphaincludes,among otherexplanations,reflectionofbrainmaturity,andcognitiveandmemoryperformance(Eohet al.,2005;Klimesch,1999).Alphasynchronisationhasbeensuggestedtoreflectcortical inactivity(Pizzagalli,2007).Indeed,alphaattenuationoccurswhenalertnessdecreasesinto drowsiness(Pizzagalli,2007),howeverthisisalsosomewhatduetoslowingoffrequencies (Klimesch,1999;Pizzagalli,2007).Duringactualtaskperformance,alphapoweristypically depressedordesynchronisedrelativetorestingstates(Klimesch,1999);thisisreferredtoas “alphablocking”(Chokrovertyetal.,2005;Niedermeyer,1999;Pizzagalli,2007).The suppressionofalpharhythmsduetoattentionaldemands(Filtnessetal.,2012;Pizzagalli,2007; Schier,2000),orevenbylightinflux(Klimesch,1999),andcanlastfromsecondstocessationof thestimulus(Niedermeyer,1999).Inprolongedrepetitivetasksalphasynchronisationoccurs whenattentionaldemandsreduce.Schier(2000)observedareturnofalphasynchronisation 54 towardtheendofmonotonous,repetitivesimulateddriving(lap5of6)asparticipantslost attentivenesstothetask. Furthermore,understandingofthephysiologicalbasisofalphahasbeencomplicatedby emergingevidenceofalphasub-bands,heavilyadvocatedby(Klimesch,1999).Klimesch(1999) andothers(Cooperetal.,2003)havearguedthatalphapowerisalsohighlycorrelatedtospeed ofcognitiveprocessingintheformofreactiontime.Thepowerofaspecificfrequencyis generallydeterminedthroughthepeakfrequencywithinarange(i.e.,thepeakfrequencyinthe alphabandisgenerally10.89Hz).Ithasbeenpostulatedthatanindividualwithafasteralpha frequencywillconsistentlyrespondfasterthananage-matchedindividualofsloweralpha frequency(e.g.,apeakfrequencyof9.49Hzcomparedto10.89Hz)(Klimesch,1999).Although, task-relatedshiftsinalphapowerobservedinthemajorityofresearchappearnottoberelated tointelligenceorspeedofprocessing(Klimesch,1999). Thetapowerisoftenstudiedinconjunctionwithalpha.Similartoalphapower,thetacanbe separatedintosubcategories,whichcloudsitsdefinition.Duringwakefulness,twotypesoftheta havebeendescribed(Schacter,1977).Thefirst,frontalmidlinethetaappearstobeassociated withfocussedattention,whereasthesecondhaswidespreadscalpdistributionandislinkedto drowsinessandimpairedinformationprocessing(Pizzagalli,2007).Klimesch(1999)notesthe formerthetasynchronisesupontaskonset,reflectingagreaterattentivestate.However,ina studyobservingtheeffectoforthostaticchangeonvigilance,Caldwelletal(2003),ascribingto thelatterthetacategoryfoundthegeneralriseinpowerastaskdurationcontinued,tobe reflectiveofincreasinginhibitionofCNSexcitation,indicativeoflowarousal.Caldwelletal’s (2003)notionissupportedbyLimetal(2008),whosuggestthatthetaactivityisrelatedtothe homeostaticdrivetosleep. Physiologically,thetaactivityhasbeenimplicatedwiththesepto-hippocampalsystem (Pizzagalli,2007).Thetapowercanberecordeddifferentiallyinnumerousotherlimbicregions (e.g.,anteriorcingulatecortex,medialseptum)(Pizzagalli,2007).Thedifferentsourcesoftheta 55 powermayexplainthesometimesconflictingresponsetotaskdemandsbetweenrecording sites.Thetapowerhasbeenspeculatedtosubserveagatingfunctionontheinformation processingflowwithinthelimbicsystems(Vinogradova,1995). Thetaandalphabandsinparticularreflectcognitiveandmemoryperformance(Eohetal., 2005;Klimesch,1999),whilebetabandindicatesincreasedprocessingdemands(Eohetal., 2005;Pizzagalli,2007;Prinzeletal.,2003).Alphaandbetarhythmsappeartohaveaninverse relationshipsuchthatwhenbetapowerincreasesalphadecreases(Schier,2000).Alphapower desynchroniseswithtaskonset,asalphabandsynchronicityrepresentsgeneralisedneuronal activityunrelatedtoattention(Klimesch,1999).Thishasledresearcherstoarguethatalpha powerreflectsexternalevents,whereasbetareflectsintrinsicevents(Rayetal.,1985b).Inlight ofconflictingsynchronisations/desynchronisationsoccurringwithinfrequencybands,authors mustbecarefultodefinethefrequencypatterntowhichtheyareascribingtheirspecific correlations. 2.6.2 Agerelatedalphafrequencychanges Thealphafrequencydoesnotappeartopresideasthedominantpoweroverthescalpuntil 12yearsofageatearliest,andgainsdominanceat~16yrsold,whereuponitdevelops predominanceovertheposteriorcranium(Klimesch,1999).Priorto12yearsofage,studies conductedonalphapowerhavenotedthatathetapeakat~4.5Hz,appearsequaltoanalpha peakat~9Hz(Klimesch,1999).Asadolescent’sage,thethetapeakdecreasesalongwitha residingwakingdeltafrequency,andalphacontinuestorise(Klimesch,1999).Afterrisingto dominancesby~16yrs,alphafrequencythenbeginstoslowwithaging,progressivelyreducing fromperhapsasearlyas30yearsofageanddefinitivelyfrom50yearsofage(Klimesch,1999) (suchthatthefrequencyslowsfrom~10.89Hz,to~8Hz(Kopruneretal.,1984)).Kopruneretal (1984)foundalinearrelationshipbetweenmaturealphafrequencyandaging. 56 Theprogressiveslowingofalphafrequencymaynotberelatedtoalossofcognitivepower, butratherduetootherneurologicalissues(Klimesch,1999).Theslowingalphafrequency meansthatthetraditionalalpharangeresidingbetween8-13Hzmissesadominantportionof theloweralphabandinelderlyindividuals.Thisslowingdownisalsointerpersonallyvariable suchthatdeterminingnewalphabandsmustbeeitherwidenedtoencompassvariability,or determinedindividually(Klimesch,1999).Inconjunctionwithtemporalchanges,spatial changesalsotakeplaceinagingindividuals,withashiftfromparietalandoccipitaldominance towardatemporallobeshift.Asaconsequence,EEGstudiesfocussingonagingpopulations outsidethe20-30yearoldrangemustfocuselectrodeplacementfromparietalandmidline,to temporaltoencompassthisshiftinspatialalphaactivity(Chokrovertyetal.,2005). Theagerelatedchangesinalphaactivity–bothfrequencyandpower–altertheEEGactivity awayfromthetraditionalalpharangeof8-13Hz.This‘traditional’rangecanonlybetrulysaid toholdtrueforarelativelylimitedagerangeacrossthespanofmostindividual’slifetime.As such,therangebetweenfullmaturationofthealpharhythmat~16yrs,anditsdegradationat ~30yrs,providesresearchersarelativelyclear–albeitlimited–cross-sectiontoobserve healthypopulations. 2.6.3 BetaRhythm Thebetafrequencyinadultsispredominantlyfocussedinthefrontalandcentralregionsof thecraniumandinterspersedwithalphafrequenciesintheposterior(Chokrovertyetal.,2005). Betapowertypicallyincreasesattaskonsetasattentionaldemandsarefocussedandprocessing demandsincrease,whileitdecreaseswhenfewercognitiveresourcesarerequiredtomaintain adequateperformance(Eohetal.,2005;Schier,2000).Insituationsoflong,sustainedattention orsleepdeprivation,fatigueinertiaisalsoassociatedwithbetapowerreduction(Laletal., 2002).FatigueinertiaistheprocessofincreasingpressuretosleepasaresultofProcessS mechanisms(Klimesch,1999;Marzanoetal.,2011).Betaindicatesthechangeofvigilance,and brainactivityintheprefrontallobe(Limetal.,2008). 57 BetaactivityisarguablythemostusefulEEGdiscriminatorofworseningvigilance.Belyavin etal(1987)foundbetapowertobethegreatestindicatorofattentionandarousal,andthishas sincebeensupportedbySchier(2000)andOkenetal(2006).Whenattentionaldemandsare presentbetapowersynchronises,respondingtothetaskdemandsonsensorycorticalareas; betaisespeciallyprevalentwhenparticipantsengageworkingmemorytasks.PriortoBelyavin andWright(1987),studiessuchasTownsendetal(1979)foundthedecreaseinbetafrequency priortostimuluspresentationtobeabettermarkerthanthetafrequency,despitemore consistencyfoundinthealphaandthetafrequencies(Okenetal.,2006).HoweverEEGshows greatinter-individualvariabilityasdescribedbyNiedermeyer(1999).Thisvariationseen betweenfrequencysensitivitymaybeduetodifferingtaskconstraintsasopposedtovariable EEG.Forexample,tasksrequiringsustainedattentionwithworkingmemorywillproduce greaterbetaactivitythanatasksimplyrequiringvisualcues(Limetal.,2008;Okenetal.,2006). However,despitechangesintaskdemands,McEvoyetal(2000)foundEEGtobehighlystable andreliableduringperformanceofalloftheirtasks(PVT,andeasyversushardworking memorytasks). Betarhythmisusedtodeterminealertnessandarousal;thetwomaincomponentsof vigilance(Eohetal.,2005;Limetal.,2008).Assuch,betarhythmisnottypicallypresentduring restwitheyesclosed,butappearsoverfrontalsitesandspreadsposteriorlywhentasksare performed.Astaskdurationincreases,betaactivitytendstoreduceduetodecreasedattention andlowerarousal(Prinzeletal.,2003).Betaactivityismoststronglyassociatedwithchangein vigilance(Limetal.,2008).Schier(2000),notedthatastaskdurationincreasedparticipants requiredlessworkingmemorytomaintaintaskperformance,whichwasreflectedasadecrease inbetaandariseinalphafrequency.Asthepressuretosleepincreases,betapowerdropsout, untilsleeponset.Ifsleepisprevented,however,betaactivityappearstoreflectthebrainactivity focussedonmaintainingthewakingstate(Marzanoetal.,2011).Upononsetofanoveltask,beta activitysynchronisesinresponsetoattentionaldemands.Followinginitialsynchronisation,beta powerdeclinesastaskproficiencyincreases,requiringlessattention.Alatepeakinbetaactivity, 58 seeninstatesofsleepinessisoftenattributedtothegreaterfocusonmaintainingthewaking state(Niedermeyer,1999;Schier,2000). 2.6.4 10-20EEGelectrodepositioning The10-20systemforelectrodepositioningwasoriginallydesignedbyJasper(1958).The majorityofstudiesobservingchangeinthewakingstateuseatleastfourelectrodes encompassingvarioussitesoverthescalp(e.g.,C3-M2,C4-M1,O1-M1,O2-M2)(Chokrovertyet al.,2005).Otherstudieswilluse8-10electrodestoencompassareaspertainingtoabnormalities inEEGfrequencies(Chokrovertyetal.,2005).Electrodepositioningisinreferencetoanatomical landmarksdenotingthelobebeneath,andisrecognisedasthestandardisedsystemfor observingEEG(Chokrovertyetal.,2005).Electrodepositionscorrespondtoanatomicalfeatures ofthebrain,suchaslobes(e.g.,O1,O2),withoddandevennumbersrepresentingtheleftand righthemispheres,respectively. Thechoiceofelectrodepositioningisimportantasitallowslocalisationofspecificrhythms fromcorticalsitesinvolvedinanygiventask(e.g.,betarhythmlocatedoverfronto-central regions,alphapredominanceoveroccipitalregions)(Madridetal.,2010).EEGpositions commonlyusedincludeO1/O2duetothenatureofmosttasksinvolvingvisualstimuli.For example,Belyavinetal(1987)recordedfromposteriorpositions(P3-O1,P4-O2)measuring theta,alphaandbetachange,duringavisualvigilancetask.Whenmemorytasksareincluded withinsuchtestsfrontalelectrodesareusedtomeasureexcitabilityfromtheprefrontallobe encompassingtheworkingmemory(Klimesch,1999).Schier(2000)foundF4tobethemost sensitivesiteforassessingworkingmemory,ascommonlyaccepted(Klimesch,1999). Rayetal(1985b)foundnohemisphericbiasinanintakeverserejectiontask,butobserved differentialrepresentationsofattentional,cognitiveandemotionalfactors,intermsofEEG frequencyandsite.However,righthemispheredominancehasbeendemonstratedthrough observationofcerebralbloodflow(Deutschetal.,1987).Despitethisfinding,similaractivation 59 occursbilaterallyacrossthescalp,withtheelicitedlefthemisphereonlyslightlylessactive comparedtotheright(Mesulam,1986;Schier,2000).Vigilancetasksengageavarietyof systemsincludingworkingmemory,visual,andmotorresponses,andleadstudiestorecord frommultiplesites.Thesesitestypicallycoverarangefromfrontalsitestooccipital (Chokrovertyetal.,2005). Electroencephalographicactivityisvariableaccordingtothecorticalsitebeingassessed (Gillbergetal.,1996).EEGisalsodependentonthetaskdemandsanddegreeofpressureto sleep(Caldwelletal.,2003).Assuchelectrodeplacementandstimulationmustbeverycarefully performedtoensurethatinterpretationofthewaveformscanbeassessedaccuratelyand validly.Forexample,inanexperimentbyCaldwelletal(2003),thetasynchronisationwas arguedtobeassociatedwithcognitivedecline,asdeltaandthetaactivityhadpreviouslybeen associatedwithprolongedwakefulness,andreductionofarousal(Gillbergetal.,1996;Laletal., 2002).Conversely,otherstudieshavenotedthatthetasynchronisationisassociatedwith increasingtaskdemands(Eohetal.,2005;Klimesch,1999).Assuch,theparadigmorapproach totheinterpretationbecomesimportant.However,beforetheseapproachescanbemade,the electrodepositioningisthemostimportantconsideration. 2.6.5 Electro-oculogram(EOG) Theelectro-oculogramiscommonlyusedasareferencewhenfocussingonfrontalEEGsites, andprovidesinsightfulmeasuresinitsownright.Itistypicallyrecordedfromtheoutercanthus, 1cminferior,and1cmlateraltothecorneaonthelefteye,and1cmsuperior,and1cmlateralto thecorneaontherighteye(Hakkinenetal.,1993).Therearethreemaincategoriesofblinks: wakingeyemovements(WEM),sloweyemovements(SEM),andREMs(Chokrovertyetal., 2005).WEMsareassociatedwithblinksandsaccadiceyemovements,whereasSEMsare recordedconsistentlyinthehorizontalaxisatonsetofN1sleep.Thechangeinblinksappearsto displayaconsistentchangewithfatigue,providingmeaningfulinferenceofdecliningsustained attention(Stern,1994).TheefficacyofEOGisfurthersupportedbyLaletal(2002),who 60 displayedachangefrominitialfastblinksandWEMtowardincreasingslowblinksandnoeye movementastheirmonotonousdrivingtaskprogressed,indicatingalossofattentionand fatigueadvancement.Santamariaetal(1987)alsoarguethatEOGprovidessignificant observationalchangesasfatigueprogresses.EOGprovidesclearindicesoffatigueduring continuoustasks,suchasdriving(Schier,2000;Stern,1994).EOGwhencoupledwithEEGcan strengthenthefindingsbydirectlycorrelatingeyemovementandblinkdurationataparticular timewithEEGbandsseen(Santamariaetal.,1987).Thisallowsgreaterinsightintothecauseof theapparentbandsobserved. 2.7 Conclusion Peripheralvasculartoneishighlycontrolled,withthetwomaincontrollingfactorsbeing thermoregulationandcircadianneuronalrhythmicity.Whenmaintainedinanormothermic environment,thecorebodyandskintemperatureswillundergoreciprocalinversefluctuations asaresultofthecircadianrhythm.HormonalandneuralmediationbytheSCNaccountsforthe non-thermalmodulationoftheTCcyclicrhythmicity.Eveningcorenadirisachievedthrough vasodilationofspecialisedskinbloodvessels(AVA’s)asaresultofmelatoninsynthesis, parasympatheticandPOAHinnervation,seeminglytofacilitateaDPGcapableofgenerating maximalrateofheatloss-andthroughthis-sleeponset(Kräuchietal.,1999).Theriseofdistal skintemperaturealsoappearstoindependentlyfacilitatesleeponset.Phasicexternal perturbationsthatopposethiscircumstance,suchasfootcoolingintheevening,willresultin vascularresponsesinversetothatfacilitatingsleeponset(Fronczeketal.,2008;Kräuchietal., 2008;Raymannetal.,2005).Despitetheroleofcircadianrhythms,homeostaticpressureto sleepamplifiesanysleepfacilitativeprocessfollowingextendedwakinghours,regardlessof phaseinbiologicaldayornight.Sinceextended(lateevening)wakingappearstoresultin continuingdeclineincoretemperaturewithcontinuingrobustcircadianfluctuation,theeffectof 61 relativelypassivewake-promotingtemperaturemodulationmaybeoutweighedbythe aggressivesleeppermissivemetabolicandneuronalfactorssuchasadenosine,and/orsynaptic density(Hurwitzetal.,2004;Porkka-Heiskanenetal.,2002;Tononietal.,2006) Sinceskintemperatureishighlyinfluencedbytheenvironmentaltemperature,andasnoted byHaskelletal(1981),thermoregulationisincompatiblewithsleep,itisthereforeintegralto furtherexploretheimpactresultingfromthermalmodulationwithinthephysiologicalrangesof thermoregulatoryresponses.Aspreviouslyobservedinsleepresearch,manipulatingskin temperaturecanreducesleeponsetlatency(Kräuchietal.,1999;Raymannetal.,2005,2007a; Romeijnetal.,2012a),orvigilancecanbemaintained(Fronczeketal.,2008;Raymannetal., 2007b).Theonlystudythatappearstohavedirectlyattemptedtomaintainvigilancethrough subtletemperaturemanipulation,wasperformedonnarcoleptics,withFronczeketal(2008) greatlyalteringdaytimesleepinessandvigilancewithtemperaturemanipulationwithinthe normothermicrange.Asnarcolepticcyclesresemblethesleeponsetpatternsofnormal individuals,itcouldbepostulatedthattemperaturemanipulationmayoverridecircadianand homeostatichourglassprocesses.Maintenanceofvigilancehasbeenofcriticalimportance withindrivingorientedresearch,however,asofyet,peripheralcoolingappearsnottohavebeen investigatedasamethodformaintainingvigilanceinthenormalhealthypopulation.More importantly,theinvestigationofsubtlesystematicdistalcoolinghasnotyetbeenperformedina controlledsetting. Thus,whilewarminghasbeenexploredforvariousmeasures,cooling,asawake-promoting factorappearstohavereceivedalmostnoconsiderationdespiteitswidespreadrelevance.The currentstudyaimstoexaminesucheffects. 62 3.0 METHOD Thepurposeofthecurrentstudywastoexaminetheeffectofdistallowerlimb(foot)cooling ontheeveningvigilancedecline.Theaimwastopreventeveningdistaltemperaturerise.The associatedeffectonTCdeclinemayhaveanimportantroleinsleeppropensity,howevergiven themultifacetednatureofsleepphysiologyoutlinedpreviously(Chapter2),manipulatingskin temperaturewasdeemedsufficient.Apartiallyblinded,crossoverdesignwasutilised,inwhich healthyparticipantsundertookapsychomotorvigilancetaskduringthreeeveningsessionswith differentextentsoftemperaturemanipulationoftheirfeet,inatemperate,controlledthermal environment(~25OC,Humidity:33%).Theprotocoloverviewisdetailedschematicallyin Figure3.1.Asacomponentoftheexperimentaldesign,participantswereexpectedtomaintaina sleepdiaryandwearanaccelerometerforthepurposeofmonitoringprior(totestnight)sleep wakecircadianrhythm. 7-daysleepdiary Testnight Circadian rhythm Night/daycycle Equipmentsetup(i.e.,accelerometry)/laboratorysetup Durationoftestnightprotocol Figure3.1:Protocoloverview TheexperimentaldesignisdetailedschematicallyinFigure3.2.Environmentaltemperature andhumidityweremaintainedusinganenvironmentalchamber(SchoolofPhysicalEducation SportandExerciseSciences,UniversityofOtago,NZ).Thethreetestnightswereseparatedby7 daysofnormalsleep,withtheexceptionofonemalewhowasdelayedafortnightinhisthird trialduetosickness.Femalesparticipatedinthefollicularphase(days4to12)oftheir 63 menstrualcycleallowingonemonthbetweensessions.Onefemaleexperiencedalapseinher cycleduetoexcesstraining,andthereforeparticipatedinthezonebaseduponherprevioustwo cycles.ThisstudywasapprovedbytheOtagoHumanEthicsCommittee(Protocol13/087). Figure3.2:Studyoverview Participant Test1(++/+/≈) Test2(++/+/≈) Test3(++/+/≈) Prep Base VigilanceTesting Post Block1 2 3 4 5 23:00 00:00 01:00 02:00 21:00 22:30 PVT rest KDT rest 23:00 00:10 00:25 00:33 00:18 00:00 Stim Feedback Inter-stiminterval EyesOpen EyesClosed 1s 1s 2-10s 5min 2min ++ Moderatecondition + Mildcondition ≈ Controlcondition 64 3.1 Experimentalprotocol Familiarisation:Afamiliarisationsessionwasconductedtointroducetheparticipantstothe equipmentandprocedureofthetestnight.Allfamiliarisationsessionstookplaceduring daytime.ParticipantsunderwentafullsetupofEEGelectrodesandperformedone2-min practicePVTfollowedbyafull10-minPVTtrial.Participantswereurgedtorespondasquickly aspossibletothetask.Nothermistorswerefittedinthefamiliarisation.Participantswerealso screenedforage,heightandmass;thesecharacteristicsofthecohortareshowninTable3.1. Sleep/wakecyclesweremonitoredbothobjectively,usingaccelerometry(Actical accelerometer, Mini-Mitter Co., Inc., Bend, OR), andsubjectivelyusingasleepdiaryforsix dayspriortotesting.Actigraphicdatawereassessedandanalysedusingacustom-madeMatlab programme. Testingsessions:Ontheeveningoftesting,participantsarrivedat21:00toundergoastatus assessment(Brunelquestionnaire,hydrationstatus[USG],subjectivesleepiness[KSS]).Mood statewasassessedpriortogoingtothebathroomtoinserttherectalthermistorandproviding urineforhydration.Onceseated(~21:15),participantswereserved250mLofa749kJ chocolatemilkdrink(Calci-Strongchocolatemilk,MeadowFresh,NZ),whileEEG(includingECG andEOG)electrodesandthermistorswerefitted.Duringsetup,participantswereplayeda podcast(TEDRadioHour,andTheJoeRoganExperience). Followingsetup,participantswereafforded~15minquietreadingofchosenmaterials (noveloracademicliterature)priortothe22:30starttime.Thetestingproceduretookplacein adimroomlitfrombehindthroughawindowbylightingoftheadjoinedroom(SeeAppendixC forphotosofsetup).Participants,forbiddenfromfacingthelightsource,received0.25nW/m2in theirfieldofview.Participantsworeearplugsthroughoutthetesttominimiseextraneousnoise. BaselinedataconsistedofaPVT(at22:30),followedbyaquestion,“howsleepydoyoufeel?” ParticipantsthenperformedtheKDT,beforebeingaskedfourquestions:“Howdoesthe 65 temperatureofspecificallyyourfeetfeel?”“Areyoucomfortablewiththis?”“Howdoesthe temperatureoftherestofyourbodyfeel?”“Areyoucomfortablewiththis?” Participantsthencommencedoneofthethreethermalconditions:moderatecoolingofthe feet(25OC),mildcoolingofthefeet(30OC)or,un-manipulated/control(~35OC).Thermal manipulationswereviacustom-madewater-perfusedbooties,asdescribedinApparatusand Measuresbelow.Manipulationbeganwithstatement“ten-minutesofmanipulation;youmay read”.Followinginitialreductionoftemperaturesparticipantsbeganvigilancetesting(~23:00); depictedinFigures3.2and3.3.Feetwerekeptattheirassignedtemperatureforthedurationof testing. Participantswereassessedforvigilance,sleepiness,andcognitivearousalusing electroencephalography,andthermalperceptionsusingthevalidatedtestsandscalesdescribed inApparatusandMeasures,attimingsshowninFigure3.2.Inbrief,alternatingvigilanceand drowsinesstaskswereseparatedby8minrestperiods,duringwhichparticipantsreadquietly (Figure3.3).ThesubjectivequestionnaireswereaskedbetweenthePVTandtheKDT.ThePVT, KDTandassociatedrestandsubjectivequestionnairescomprisedasingleblock.PVTwas repeatedfivetimes,whileKDTwasrepeatedsix,withtheextraKDTperformedimmediately afterthe10-minmanipulationperiod. Participantsweremonitoredconstantly(visuallyandusingelectrophysiolographicvariables) forsignsofsleeponset.Atanystageintheeveningwheresleeponsetappearedimminent participantswererousedafter~5swiththe statement“eyesopen,please”.DuringthePVTthis 8-minRest perceptualQs Vigilance (PVT) 10-min Drowsiness (KDT) 7-min 8-minRest perceptualQs intervalwastypicallyshorter(~2-4s).Participants mostcommonlysufferedfromsleeponsetduringthe eyesclosedKDT,atwhich,theywereallowedtodrift forthedurationoftheperiod(2min). Figure3.3:Manipulatedtesting cycle 66 3.2 Participants Ninehealthyparticipants(6males,3females),withnosleepcomplaintsandnormalised sleeprhythms,completedthestudy(ofatotal13recruitedandscreened).Contraindicationsto participationinthestudyincludedtheusesofvaso-activedrugsorsleepmedications,or participantsdisplayingtendenciestowardlatenightbehaviour(i.e.,frequentlyuplaterthan 12am).Participantscomplainingofbrokenupsleepandexcessivedaytimesleepinesswerealso excluded.ParticipantswerenotscreenedforabnormalEEGrhythmspriortotesting. Expectationsofsleep/wakecycleandalcohol/caffeineintakewerediscussedwithparticipants. Expectationsrestrictedonlyparticipants’alcoholconsumptionandsleeppatterns48hours beforethetestnight.Adherencetotheserestrictionswascheckedbyquestioningbefore beginningthenightsession. Table3.1:Participantdetails Number Age Height(cm) Mass(kg) BMI(kg/m2) Male 6 19.2±0.8 180.03±5.96 80.40±9.11 24.75±1.81 Female 3 21.3±2.1 161.80±5.90 59.77±5.93 22.82±1.64 67 3.4 ApparatusandMeasures 3.4.1 PsychomotorVigilanceTask VigilancewasmeasuredusingthePsychomotorVigilanceTask(PVT-192, AmbulatoryMonitoringInc.,NewYork,USA),originallydesignedbyWilkinsonetal (1982)andvalidatedforvigilanceassessmentbyDingesetal(1985)andforsleep deprivationbyBasneretal(2011).ThePVTassessessustainedattentionacrossa relativelybriefperiod(10min).Itwasperformedwhileseated,withthedeviceresting inparticipants’handsandagainstthetableatanapproximatedistanceof40cmfrom theface.Thetaskconsistsofasimple4-digitcounterthatappearsandincrementsin milliseconds,towhichparticipantsrespondbytappingthebuttonwiththeirright thumb.Thestimuliappearatrandomintervalsof2-10s(seeAppendixD).Participants wereremindedtorespondasquicklyaspossiblepriortobeginningthebaselinetest. Thenumberoflapses(RTs>500msoramissedresponse)per10mintaskwascounted asameasureofperformancedecrement,indicativeofbehaviouralawareness(Van Dongenetal.,2003).ReactiontimeswererepresentedastheReciprocalofResponse Time(RRT=1000/RT),toprovideanormativedistribution,andminimisebiaswithin validresponses(Caldwelletal.,2003;Fronczeketal.,2008).Thus,consistentlylarger numberswithfewlapsesindicatebettervigilance.Averageswerecalculatedperminute toquantifythetypicalperformancedeclineacrossthecourseofthetime-on-task (Fronczeketal.,2008). 3.4.2 Electrophysiologicalmeasures(EEG,EOG,ECG) Cognitivearousalwasmeasuredusingelectroencephalographyatsevenscalp locations:F3,F4,C3,C4,Pz,O1,andO2,andreferencedtoM1,M2(A1andA2onFigure 3.3),andFpzaccordingtotheinternational10/20system.BipolarEOGwasfittedtothe outercanthioftheeyes2cmaboveandlateraltotherighteyeand2cmbelowand 68 lateraltothelefteye,accordingtotheprotocolofHakkinenetal(1993).Athree-lead ECGwasalsoappliedandreferencedintotheEEG/EOGsystem.Allscalpsiteswere inkedbeforecleaningsitesandfixingtheelectrodes.Electrodeswerenotfixedinplace butinsteadheldfirmbyaheadwrap.Preppingsitesinvolvedabrasionoftheskinsite (NuPrep,Weaver&Co,Colorado,USA),followedbycleaningwithanalcoholswab (AlcoholPreps,TycoHealthcare,Mansfield,USA).Salinepaste(10/20Paste,Weaver& Co,Colorado,USA)filledthegoldcupelectrodesforconductivity.Acceptableimpedance levelswere<5kΩ.Electroencephalographywasrecordedcontinuously,withmarkers indicatingonsetofcognitivetests.Thetest-retestreliabilityofEEGhasbeenvalidated (McEvoyetal.,2000). CognitivearousalwasassessedusingtheKDT(Akerstedtetal.,1990).TheKDT involves5mineyesopenfollowedby2mineyesclosed.Duringtheeyesopensection participantsfixateduponanon-movingpoint(e.g.,drawingpin)approximately1min frontofthem.FrequenciescommonlyassociatedwiththeKDTaretheta(4-7Hz)and alpha(8-12Hz).Allelectrophysiologicalsignallingwascompiledinthe polysomnography(PSG)system(CompumedicsE-series,CompumedicsLtd,Victoria, Australia).Withinthesoftwareused,sampleratesforEEG,EOG,andECGwere256Hz. High(0.3Hz)andlow(70Hz)bandpassandnotch(50Hz)filterswerealsoapplied. LateranalysesusedFastFourierTransformandpowerspectralanalysistoderivethe frequenciesofinterest. ElectrocardiographicrecordingsoftheR-Rintervalwereobservedto obtainahighlyreliableandvalidmeasureofthesleeponset associatedheartratedecline.Thiswasperformedusingtwo leadECGaddedtothePSGsoftware.ECGwasanalysedas changeoverboththetestsessionaseachPVTwithinsessions. Figure3.4:International10/20 system.Scalplocationsusedare circled. 69 3.4.3 Sleeponset/staging SleepscoringwasbasedupontheReichtshaffen-Kalescriteria(Rechtschaffenetal., 1968)foranalysingsleepstagesusingEEGandmodifiedfordrowsinessusing (Santamariaetal.,1987)definitionsfordrowsinesszones(SeeAppendixDforoutlines). Stagewake(W)wasdefinedascontaininglowvoltage,mixedfrequencies,including predominantlyalphaband.ThedrowsinessperiodsbetweenwakefulnessandNIsleep arenotwelldefined,butthecurrentstudyusedtheguidelinesprovidedby(Santamaria etal.,1987).Specifically,infollowingfromwakingintodrowsinessalphaslows,as fatigueprogressesbetafrequencydisappears,alphacontinuestoslowlosingamplitude, thenbecomesmorediffuse,progressinganteriorly.Finally,alphaamplitudeminimises ordisappearsintoN1sleep.Witheyesclosed,alphadominates~50%,withlowvoltage, highfrequenciespresent.N1presentslowvoltage,mixedfrequencywiththeta frequencyrisinginpowerandappearanceofoccasionalvertexsharpwaves.N2was recognisedasincludingatleastoneKcomplexbutlessthan20%deltafrequency. ParticipantswerenotexpectedtoprogressintosleepstagesbeyondN1,however clarificationwasbeneficialduringeyesclosedKDTperiod. 3.4.4 Temperature Coretemperaturewasmeasuredusingaflexible,sterilethermistor(Mallinckrodt 400generalpurpose,MallinckrodtMedicalInc.StLouis,USA)placedintherectumprior toequipmentsetupeachnight.Participantswereinstructedontheinsertionoftheir ownthermistor(10cmpasttheanus).Eachparticipantreusedhisorherownrectal thermistorforeachofthetestnights,followingitsdisinfection.Factorycalibrationwas assumedforthermistors.Asthermistorswerereusedwithinparticipants,absolute accuracywaslessimportant. 70 Skintemperaturewasrecordedatnineskinsites:dorsalandventralaspectsofthe firstdistalphalanxofthefoot,mid-plantaraspectofthefoot,1sttarsometatarsaljoint, midlateralcalf,midanteriorthigh,chest(atxiphisternum),midanteriorforearm, palmarsurfaceofthehand,firstdistalphalanx,andtheforehead.Temperaturewas recordedfrominsulatedskinthermistors(EUthermistors,GrantInstrumentsLtd, Cambridge,UK),tapedtotheskin. Alltemperaturedatawerecollectedusingaportabledatalogger(2020Squirrel, GrantInstruments,Cambridge,UK)in1minintervals.Ambientdrybulbandwater temperatureswerealsomeasuredthroughout.Distal-proximalgradientwasderived fromskintemperatures.Distalsiteswereseparatedintoupperlimb(forearm,palm,and hand),andlowerlimb(toepad,toetop,footarch,foot1stMT,andcalf).Proximalskin sitesforthegradientincluded:thigh,chestandforehead. Temperaturemanipulationswerebaseduponpilotdata(AppendixF).Manipulation wasachievedthroughuseofcustom-builtwater-perfusedbooties(SeeappendixG). Thesebootieswerecustomfitting,andlaceupwithelasticliningtheoutsideofthearch toensurecontactofwater-perfusiontubesthroughthemidfoot.Thesewereperfused withcooledwaterinthemanipulatedsessions,suchthatthetemperaturemodulations achievedreachedapproximately-5OCand-10OClessthantheeveningdistal temperatureof35OC.DPGsassociatedwithdistaltemperatureswereseparated betweenupperandlowerlimbs.Anurnservedtoprovideareservoirforthecirculating water,andthemeansbywhichwatertemperaturewasaltered.Thewatertemperature requiredtomaintainconstantskintemperatureswerevariableandhadtobeconstantly reassessed.Temperatureofthewaterwasmonitoredbeforeitenteredthebooties. 71 3.4.5 Actigraphyandsleepdiary Eachparticipant’ssleep-wakecyclewasmeasuredusingbothaccelerometryand sleepdiaries(SleepdiaryandactivitymonitoringprovidedinAppendixB).The specialisedaccelerometersusedwerewornagainsttheskinaroundthewaistusing belts(Actical,PhilipsRespironics,USA).Theaccelerometersweredesignedtobeworn atalltimes(e.g.,includingshower).Ifremovedforlongerthan5-10min,participants wereexpectedtorecordtimeoffandtimebackonaswellasreasonforremoval/activity whilenotworn.Accelerometrywasrecordedfortheweekpriortotesting,in conjunctionwiththe7-daysleepdiary.Accelerometrywasusedtoensurevalidityof sleepwakecycleandtoaccompanythe7-daysleepdiary.Thedatawereanalysedfor standardsleep-wakevariablesusingthecount-scaledalgorithmincorporatedwithin Matlabscript(Gallandetal.,2012).The7-daysleepdiaryincluded:startdate,bedtime, andwakeuptime.48hourspriortotestingparticipantswereexpectedtoadhereto normalsleeptimes. 3.4.6 Subjectivequestionnaires SubjectivemeasureswereassessedeithersideofeachPVT,withsleepinessrecorded immediatelypreandpost.Sleepinesswasrecordedusingthe9-pointKarolinska SleepinessScale(KSS):1=extremelyalert,2=veryalert,3=alert,4=ratheralert,5= neitheralertnorsleepy,6=somesignsofsleepiness,7=sleepy,noefforttostayawake, 8=sleepy,someefforttostayawake,9=verysleepy,greatefforttokeepawake,fighting sleep(AppendixH).TheKSShasbeenvalidatedagainstobjectivephysiological measures,specificallythatoftheKDT(Akerstedtetal.,1990;Kaidaetal.,2006;Putilov etal.,2013). Perceivedtemperaturewasrecordedusingamodified13-pointThermalSensation Scale:1=unbearablycold,2=extremelycold,3=verycold,4=cold,5=cool,6=slightly 72 cool,7=neutral,8=slightlywarm,9=warm,10=hot,11=veryhot,12=extremelyhot, 13=unbearablyhot(Cotteretal.,2005).Thermalsensationwasaugmentedbythe thermaldiscomfortscale:1=comfortable,2=slightlyuncomfortable,3=uncomfortable, 4=veryuncomfortable,5=extremelyuncomfortable(AppendixI).Thequestionswere askedatthebeginningofeachrestperiod,“howdoesthetemperatureofyourbody feel?”Atbaseline,adjustedbaseline,andpost,participantswerealsoaskedtoseparate thesensationoftheirfeetfromtherestofthebody;“howdoesthetemperatureof specificallyyourfeetfeel?”“Howdoestherestofyourbodyfeel?”Extendedfromthe scalesdesignedandvalidatedbyGaggeetal(1996).Thermalsensationanddiscomfort questionnairesarehighlyvalidatedtoreflectunderlyingthermoregulatorychanges (Candasetal.,2007;Clineetal.,2004;Kräuchietal.,2008),butcanbepronetoskew (e.g.,focusofperceptiononotherbodyregions)andareoftentemporallydelayed(Cline etal.,2004;Cotteretal.,2005). MoodstatewasassessedbytheBrunelMoodStatequestionnaire(BRUMS;Appendix J)(Terryetal.,1999).TheBRUMSassesseschangesinparticipants’currentstate(Lalet al.,2002).Thereare24adjectivescomprisingsixelementsofmood(anger,confusion, depression,fatigue,tension,andvigour).Forthesakeofbrevityandspecificityonlythe constituentsofvigourandfatiguewereanalysed.TheBRUMS(AppendixJ)wasasked uponentryintothelab,andpost-test,toassessemotionalstatusoftheparticipantsfor potentialconfoundingfactors.Participantswereaskedtoratehowtheyfeelrightnow onafive-pointLikertscale.Scaleswereanchoredtoverbalcuesof:“notatall”,“alittle”, “moderately”,“quitealot”and“extremely”. 3.4.7 HydrationStatus Hydrationstatuswasmeasuredpre-andpost-testasurinespecificgravity,usinga portablerefractometer(Atago,Astra,ZenecaPtyLtd,Japan).AUSGbelow1.020(range: 73 1.001-1.025)denoteseuhydration.Above1.030indicatesthebeginningofdehydration. Noparticipantneededtoemptytheirbladderduringanyofthetests. 3.5 Dataanalysis Apriorideterminationofsamplesizewasnotperformedinthecurrentstudy.A samplesizeof14wasinitiallyselectedbasedupon(a)themuchhigherstatisticalpower achievedwitharepeatedmeasuresdesign,and(b)priorresearchaddressingasimilar questionobtainingstatisticallysignificantfindingswith~8participants(rangingfrom n=7-16)(Caldwelletal.,2003;Fronczeketal.,2008;Krauchietal.,1994;Raymannetal., 2005).Duetotimeandparticipantconstraintsthiswasloweredtonine,following prolongeddifficultywithrecruitmentandretentionofprospectiveparticipants(e.g., recruitmentwasundertakenforadurationof12months). 3.5.1 DataReduction Missingdatawereinterpolatedwhenrequired(thiswaslessthan10%ofthedata). Specifically,coefficientofvariationwaschecked,andifsufficientlysmall(i.e.,<10%) participantdatawereinterpolatedbyaveragingthedifferenceofadjacentdatapoints. DatasetswereanalysedprimarilyinSPSS(SPSS,IBM,NewYork,USA),andPrism (Prism,GraphPadSoftware,California,USA). Priortoanalysis,PVTreactiontimeswereconvertedintoReciprocalreactiontime (RRT=1000/RT).DuetotherandomISItherewasvariousnumbersofresponses.As such,responseswerecondensedinto1minblocks.Lapses(responses>500ms)were removedfromRRTanalysis. 74 Electroencephalographyrequiredsignificantdataprocessingpriortostatistical analyses.DerivationsofsignificantcomponentsofEEGweremadeusingMatlab. AnalysedchannelswereminimisedtoC4-A1,O2-A1.Fromthecontinuousrecording, datawereminimisedintosevenblocksofKDTforeachchannel.KDT’swerevisually scannedforartefactsand,whereproblematic,wereremovedfromanalysis.Blinkswere automaticallyremovedinMatlabusinganalgorithmalongwithartefacts.KDTdata werefurtherminimisedinto15sepochs(20foreyesopenand8foreyesclosed)using theHanningcosinewindow.AFastFourierTransformwasthenperformedtoderive powerfrequenciesfromeachblock.OftheseblocksAbsolutepowerdensity(uV2)was calculatedforthetaandalphaandbetafrequencybandsoverderivations:C3,C4,O1, andO2.Datawasfurtherreducedbyaveragingthe15sepochsintowholetrialperiods (KDT1eyesopen,KDT1eyesclosed,etc.);wherebytherepeated-measuresANOVA couldbeapplied. 3.5.2 StatisticalAnalyses Wheresphericitywasviolated,asdeterminedbyMauchly’stest,degreesoffreedom werecorrectedusingGreenhouse-Geisserestimatessoastodeterminesignificance (P<0.05).Theanalysesthatrequiredcorrectionwere:Footlocations,Thermal discomfort,KSS,RRT,andrelationofTCandRRT. Two-wayandthree-wayrepeatedmeasureANOVAwasusedformostanalyses.TwowayANOVAwasusedtoassessordereffectinsleeppatternsofthe6-dayspreceding eachsession.Contrastsweremadetoobservedifferencesbetweensixnightsandtwo nightsbeforesession,toassessdifferencesbetweennormalsleeppatternsand adherencetosleeprecommendations.PairwisecomparisonswithBonferronicorrection werecarriedout.Temperaturedatawerealsoanalysedusingatwo-wayANOVA,to assesstheeffectsofconditionsonvarioustemperatures(individualfootmeasures,core, upperlimb,DPG,PCG).OthermeasuressuchasECG,andsubjectivescaleswere 75 analysedusingatwo-wayANOVA.Athree-wayANOVA(3x6x10)wasusedtoassess theeffectofthermalconditionsonPVToutcomeparameters(RRT,lapses).Subjective questionnaireswerealsoanalysedastwo-wayANOVA,butwithordinalvariables.EEG wasanalysedusingtwo-wayANOVA. 76 4.0 RESULTS Resultsarepresentedinasequenceprogressingfromstandardisationvariables(e.g., complianceandsleepdiary)tofoottemperature(i.e.,theindependentvariable)and associatedbodytemperature,thenvigilance,andelectroencephalography.Relations betweenphysiologicalandperceptualmeasuresarereportedlast.Dataaremean±S.D. unlessstatedotherwise,with95%confidenceintervalsforcomparisonsofinterest. Variabilitybars(e.g.,SD)areomittedfromsomefiguresforclarity,andbecausethey wouldtypicallyillustratebetween-participantvariabilitywhereasthevariabilityof majorinterestisthewithin-subjectvariability(ofthemeandifferencebetween conditions). 4.1 Participantcharacteristicsandcompliance 4.1.1 Screening Oftheparticipantsscreened,twocompletedasinglenightoftesting.Boththese participantswerefemalesandsufferedboutsofextremesleepinessduringthetest,such thattheywereunabletocompleteasinglePVTwithoutprompts.Bothparticipants subsequentlyexpressedanunwillingnesstoperformanothertest,andweretherefore removed.Onefurtherscreenedparticipantprofessedtobeepilepticandwastaking vasoactivedrugs,whileanotherwasobeseandsufferedfromsleepapnoea,soboth wereexcluded,leavingn=9whocompletedalltesting. 4.1.2 Adherence Adherencetocaffeineandalcoholrestrictionswascheckedverballyatthebeginning ofeachtestingsession.Ofthosenotcomplyingfully:P1consumedcaffeineatmiddayof herControltestday;P5consumedcaffeineat9amofhisModeratetestday;andP6, 77 beforenoon.P6alsoconsumedonebeerthenightbeforeeachtest.Visualcheckingof theirdataproducednoobviousoutlierdata. 4.1.3 Sleepdiaries–sleeponset Sleepdiariesandaccelerometerswereprovidedtoensure“normal”healthysleepwakecyclesoccurredbeforetestnights.Participantswerenotexpectedtocomply completelytoregimentedsleeptimes,particularlywellaheadoftheirtestnight. Participantsthatsufferedaweekofpoorsleep(e.g.,assignmentdue,orsickness)were deferreduntilasuitabledate.Compliancetoregularsleeponsetscheduleswasvariable betweenaswellaswithinparticipants.Sleepdatacompriseaccelerometryandsleep diaries.Completesetsofaccelerometryanddiarieswereobtainedfromthreeandsix participants,respectively.Sevenparticipantsprovidedacompleterecordforatleastone ofthesemethodsofdailysleepmonitoring.Resultingsleepdataarecomprisedofan averageofbothaccelerometryandsleepdiariesduetothepooradherenceofsubjectsto fillingouttheirdiariesandwearingtheaccelerometer.Table4.1(p.79)summarises normalsleepbehaviourinallgroupsandthevariabilityisdescribedinmoredetail below. Bedtime:Atrendtowardearlierbedtimesoccurredacrossthesixtestingdays (F(5,30)=2.363,P=0.064),butnotdifferentiallybetweenconditions(F(2,12)=1.77, P=0.211).Astherewasnointeractioneffect,itisevidentthattherewasnosignificant displacementofbedtimebetweenregulatedandunregulatednights(i.e.,day1verseday 5or6).Onthetwonightsbeforetesting(days5,and6)participantsgottosleepon averageat23:22(hh:mm)(±41min)and22:45(±43min),whereassixnightsoutfrom testing(day1)participantswenttosleeponaverageat23:43(±49min). 78 Waking:Therewasnointeractioneffectonwakeuptime(F(10,60)=0.97,P=0.482).The meanwakeuptimeonthedayoftestingwas08:21(±42min).Thelargebetweensubjectvariabilityreflectsearliertypicalwakeuptimeoftherowersinthegroup. Duration:Sleepdurationaveraged8.7±0.2hourspernight,withnodifference betweenconditions(F(2,12)=0.11,P=0.894).Sleepdurationrangedfromaminimumof5 hononeoccasionand~6hforseveralparticipants,toamaximumof12hfortwo participantsononeoccasion.Controlwasthemostconsistentconditionforsleephours, whereasMildandModeratebothtendedtoshowincreasedsleephoursbetweendays5 (8.10±1.29h,8.3±1.6h,respectively)and6(9.6±1.66h,9.8±1.2h,respectively); thisdidnotshowanordereffect. Timing:Sixparticipantsadheredtotherecommendationofgoingtosleepbefore midnightthroughoutthesixdaysprecedingatestnight,buttheotherthreeparticipants stillaccruedanequivalent(unpairedt-test:P=0.21)totaldurationofsleepinthis period.Withinthetwodaysbeforetestnight,wheretherecommendationwasexpected tobeadheredto,twoparticipantsdidnotconformtosleeponsettimes,buthadsimilar totalsleeptimes(group:8.8h;n=2:8.7h). Ordereffects:Noordereffectswereevidentacrossthethreepre-trialperiodsfor sleeponsettime(F(2,12)=0.49,P=0.368),wakeuptime(F(2,12)=0.11,P=0.896),ortotal sleeptime(F(2,12)=0.44,P=0.652). 4.1.4 Moodstatecharacteristicsandhydration Moodstateandhydrationweretestedbeforeandfollowingeachtest.Theelements ofmoodanalysedfromtheBRUMSwerevigourandfatiguebecauseoftheirrelevancein thisstudy.Vigourdeclined(F(1,8)=44.70,P<0.0001);notdifferentiallysobetween conditions(F(2,16)=2.31,P=0.131),buttherewasamaineffectofcondition(F(2,16)=5.01, P=0.021).Specifically,vigourwashigherinControlthaninMild(AppendixK:Figure1). 79 Fatigueincreasedsignificantlyacrossthetest(F(1,8)=40.13,P<0.0001),butnot differentially(interaction:F(2,16)=1.99,P=0.168),andwasnotdifferentbetween conditions(F(2,16)=0.56,P=0.584;illustratedinAppendixK:Figure2). Participantsenteredthetesthydratedandendedthetestmildlyhypohydrated accordingtoUSGvalues(Table4.2) Table4.1:Bedtime,wakingtimeandtotalsleeptime(TST)determinedfromthe7-day sleepdiaryandaccelerometry. Condition Bedtime(±min) Wakingtime(±min) TST(hours(±min) Control 23:05±125 08:21±139 8.70±0.40 Mild 23:44±132 08:11±146 8.66±0.59 Moderate 23:08±141 08:09±132 8.64±0.76 Note:Dataarecompiledfrombothmeasures,asrecordedfrom7ofthe9participantsdueto pooradherencetoreportinginthediaryandwearingtheaccelerometer.Wherebothmeasures wereobtainedconcurrently,thedataappearedtobecomparable(nottestedformally). Table4.2:Subjectivesleepinessandhydrationintestingsessions Pre Manipulated Post Control 6.8±1.1 7.2±1.1 8.3±0.7 Mild 6.4±2.1 6.2±1.5 8.6±0.7 Moderate 7.3±1.2 6.6±1.7 8.3±0.8 1.019±0.002 1.026±0.004 SubjectiveSleepiness USG Note:“Manipulated”referstothefirstmeasuresfollowinginitial10minmanipulationperiod. SleepinessdataarefromtheKarolinskasleepinessscale(KSS),whichhasarangefrom1– “extremelyalert”to9–“Verysleepy,greatefforttostayawake,fightingsleep”.USGisurine specificgravity.DataarethemeansandSDforn=9. 80 IntheControlcondition,P1sufferedavasovagalepisodefollowingthefinalPVT.The participant’sdataforthisconditionareretainedbecausetheyotherwiseshowedno atypicalresponsesinanydependentvariableuptothispoint(i.e.,forTC,heartrate, perceptions,PVTorEEG). 4.2 InducedTemperatures Theambienttemperatureintheenvironmentalchamberwasequivalentbetween conditions;averaging24.4±1.1OC.RelativeHumiditywassetat33%(Setpointratio 8.1).Bothambientandwatertemperatureforeachofthethreeconditionsare representedinTable4.3.Temperaturedidnotdeviatesignificantlyacrosstheevening. Foottemperaturesatbaselinewere35.1±0.3OC.Participant8displayedaTCrhythm (showninAppendixL)contrarytoallotherparticipantsandtheexpectedpatternfor thistimeofday(seeFigure2.4Circadiantemperaturerhythm).ThisunusualTCrhythm wasthoughttonotbecausedbyerrorsinexperimentaldesign(i.e.,timingofmenstrual cycle)ortechnicalproblems(e.g.,moistureaccumulatingintheelectricaljunction).Her temperaturedatahavebeenomittedfromthemean,butherotherresultsretained becauseherresponsedataforalldependentmeasureswerecheckedagainstthoseof theremainingparticipantsandwerenotoutliers. 81 Table4.3:Ambientandwatertemperaturesofassociatedconditions. Condition Tamb(OC) Twater(OC) Baseline Manip(i) Manip(f) Control 24.46±0.24 19.92±0.21 18.87±0.07 22.70±0.01 Mild 24.57±0.17 20.46±0.28 13.52±0.28 22.00±0.15 Moderate 24.16±0.30 20.29±0.24 3.21±0.31 16.37±0.32 Note:Manip(i)referstotheperiodimmediatelyfollowing10minreductionoffoottemperature toassignedcondition,whileManip(f)referstotheendofthemanipulationandtestperiod. 4.2.1 Temperaturemanipulation Foottemperature(Figure4.1)wasmanipulatedbycontrollingurntemperatures (Table4.3),withwaterflowthroughthebootiesturnedonfollowingbaseline recordings.Coolingprotocol(watertemperature)variedbetweenparticipants dependingontheirfoottemperaturesusceptibilitytothemanipulation. 4.2.2 FootTemperatures(Figures4.1a,4.2and4.3) Foottemperaturedeclinedtoadifferentextentbetweenconditions(interaction effect:F(40,280)=39.58,P<0.0001)(Figure4.1).Contrastsrevealedthatdifferencesfrom baselineweresignificantbythe~30thminuteforthemildcondition(F(1,7)=32.90, P=0.001),andbythe20thminutefortheModeratecondition.Therateofskincooling acrossminute20throughtominute40wasapproximatelydoubledbetweenMildand Moderatecooling(Figure4.1a:slope=-0.14OC/minverses,-0.26OC/min).Foot temperaturewasthereaftermaintainedat30.8±0.2OC,and26.4±0.1OC,forMildand Moderatecoolingconditions,andat34.5±0.5OCintheun-manipulatedControl condition(Figure4.1a).LargervariabilityevidentinControlisduetolowerfoot temperaturesinsomeparticipants(P6:32.19±1.00OC;P8:29.27±1.26OC). 82 Foottemperaturedifferedsignificantlybetweenthermistorlocationandcondition (Interaction:F(6,42)=13.79,P<0.0001)(Figure4.2).Temperaturesonthefootbecameas muchas5.4±0.6OC(Moderate)belowthoseofthetoe(Figure4.3).Temperaturesdid notdiffersignificantlybetweendifferenttoes(difference:0.05OC,P=1.00),orbetween differentlocationsonthefootitself(difference:0.17OC,P=1.00). 4.2.3 Upperlimb Upperlimbtemperaturesremainedintherange34-35OCforallconditions.Although ANOVAshowedacleardifferenceinresponsebetweenconditions(Interaction: F(40,280)=2.064,P<0.0001;Figures4.1b,and4.5a),contrastsdidnotrevealthesourceof thesedifferences. 4.2.4 Coretemperature BaselineTC’swere36.94OC(±0.22),36.91OC(±0.32),and36.91OC(±0.30)for Control,MildandModerate,respectively.TCdeclinedacrosstheevening,displayingno differentialtrends(Figure4.1c).TherateofTCdeclinewasonaverage-0.002±0.00015 OC/minacrossallconditions,suchthatfinalTCwasapproximately36.5±0.1OC.There wasnointeractioneffectonTC(F(40,280)=0.768,P=0.843).TCdidnotdiffersignificantly betweenconditions(F(2,14)=0.188,P=0.831),howeveritdecreasedacrossthetest(F(20, 140)=27.77,P<0.0001). 83 40 a Ŧ Foot temperature (OC) 35 ^ 30 *** 25 Control Mild Arm temperature (OC) 36 **** Moderate 20 0 50 100 150 200 b 35 Ŧ 34 33 32 0 50 100 150 200 Core temperature (OC) 37.2 c 37.0 36.8 36.6 36.4 **** 36.2 0 50 100 150 Time (min) 200 Figure4.1:Averagefoot(a),averageupperlimb(b)andcore(c)temperaturesacross thethreeconditions;Control(n),Mildcooling(Δ)andModeratecooling(¢).Timeis measuredinblocksof10minutes.DataaremeanandSDforeightparticipants. *=P<0.05,***=P<0.001****=P<0.0001,Ŧ=SignificantinteractionforbothLLandUL. ^-Increasedvariabilityobservedatthe150thminuteinMildisduetoP4foottemperatures risingacross20-minutestothephysiologically“normal”eveningtemperature.Thisexperimental errorwasquicklyremediatedfollowingthe150thminute. 84 Temperature (OC) 35 30 * 25 **** Foot Arch Toe Top Toe Pad Ŧ Foot 1MT 20 Control Mild Moderate Thermode location Figure4.2:Localisedfoottemperatureparameterscomprisingaveragefoottemperature acrossconditions:Control;Mildcooling;andModeratecooling.DataaremeanandSD foreightparticipants. Note:Thermistorlocationsare:TP=toepad,TT=toetop,FA=footarch,FM=1sttarsometatarsal joint. *=P<0.05,***=P<0.001****=P<0.0001,Ŧ=Significantinteraction Ŧ Temperature (OC) 35 30 toe pad toe top foot arch foot 1MT 25 20 10 100 Control **** * 200 10 100 Mild Time (min) 200 10 100 Moderate 200 Figure4.3:Temperatureacrosstimeandconditionsoffourindividualfootthermistors comprisingaveragefoottemperature.DataaremeanandSDforeightparticipants. *=P<0.05,****=P<0.0001,Ŧ=Significantinteraction 85 4.2.5 TemperatureGradients Thedistal-proximalgradient(DPG)forthelower-limbwasmeasuredbetweenthe manipulateddistalsite(fourthermistorscomprisingaveragefoot,aswellascalf),minus proximalsites(thigh,chest,andforehead;Figure4.4a).TheupperlimbDPGwas calculatedasfinger,handandforearmminusaforementionedproximalsites.Baseline DPGwasslightlypositive,0.71±0.44and0.32±0.07forthelowerandupperlimbs respectively.Thelowerlimbgradientalteredinaccordancewithfootcooling,whereas theupperlimbgradientremainedunchangedthroughoutthetrial(Figure4.4a). Specifically,theupperlimbDPGshowednosignificanttimeeffect(F(20,80)=1.65, P=0.062),oraninteractioneffect(F(40,160)=0.95,P=0.566),butasignificantcondition effect(F(2,8)=7.30,P=0.016).ThelowerlimbDPGshowedaninteractionbetween conditionandtime(F(40,280)=46.53,P<0.0001),reflectingtheMildgradientbecoming significantlylargerthaninControlbythe30thminute(F(1,7)=104.61,P<0.0001),after whichitstabilisedat4.05OClarger(C.I.:2.65,5.45),andlargerinModeratethanControl bythe20thminute,afterwhichitstabilisedat8.6OC(CI=7.32,9.81). Theproximalskin-to-coregradient(PCG)differedsignificantlyasafunctionof conditionandtime(F(40,280)=1.67,P=0.010)(Figure,4.4b).Despiteapparentdifferences invariabilityillustratedinFigure4.4b,sphericitywasnotviolated(χ2(2)=0.284, P=0.883).ContrastsrevealedthattherewasnosignificanteffectwithinMildcondition, butthatModeratedifferedsignificantlyfromControlbythe30thminute(F(1,7)=7.67, P=0.028).ThePCGwasalwaysnegative(Control:-2.90±0.07,Mild:-2.6.10±0.11, Moderate:-2.49±0.12),butModerateconditionwasslightlylessso.Thedifferencefrom Controlwas-0.20(C.I.:-0.53,0.13,P=0.287)forModerate,whereasMildwas-0.08(C.I.: -0.46,0.30,P=1.000). 86 a 5 DPG (OC) 0 -5 *** Upper Limb Lower Limb -10 -2.0 10 Control 21010 Time (min) Mild 21010 **** Moderate b 210 PCG (OC) -2.5 -3.0 Ŧ -3.5 Figure4.4:(a)Upper(¢)andLowerlimb(n)distalproximalgradients(DPG)acrossthe threeconditions:Control;Mildcooling;andModeratecooling.(b)Proximaltocore gradients(PCG)acrossthethreeconditions.DataaremeanandSDforeightparticipants. Note:Eachdatapointrepresentsaten-minuteaverage. ***=P<0.001****=P<0.0001,Ŧ=SignificantinteractionforPCG Difference (OC) 1 0 Control-Mild -1 Control-Moderate Figure4.5:DifferenceinMildandModerateupperlimbgradientsfromControl. Note:ApositivedifferencereflectsamorenegativeDPG.Eachdatapointrepresentsa ten-minuteaverageasmeanandSDforeightparticipants. 87 4.2.6 TemperaturePerception Participants’thermalsensationshowedasignificantinteractionbetweencondition andtime(F(22,154)=2.52,P=0.001).Participantsbeganthetestwithathermalsensationof “warm”(9.1±0.0),withanassociatedthermaldiscomfortof“slightlyuncomfortable” (1.9±0.2)(Figure4.6).Followingmanipulation,thermalsensationunderwentaninitial decreaseinallconditions.ItdecreasedbelowControlforbothMildandModerate (F(1,7)=25.74,P=0.01;F(1,7)=21.13,P=0.002)withsensationsof“slightlycool”(6.5±0.9) and“cool”(5.5±1.3),respectively,bymin30andremainedlowerthaninControl thereafter(P<0.05).TheinitialsensationofcoolinginMildandModeratebecame sensationsofneutrality(7.6±0.4;7.1±0.4),representingadifferenceof1.2scores(C.I.: -0.3,2.8,P=0.107),and1.7scores(C.I.:0.1,3.3,P=0.039),respectively(Pairwise comparison). Thermaldiscomfortwasnotdifferentiallyalteredbythefootcoolinginterventions (Interactioneffect:F(22,154)=1.04,P=0.425;Figure4.6).Therewasalsonomaineffectof condition(F(2,14)=1.63,P=0.242)ortime(F(11,77)=1.55,P=0.133)onthermaldiscomfort. ParticipantsrankedControlasmostuncomfortablywarm. 88 Thermal Sensation 10 8 Ŧ 6 Thermal discomfort 4 4 Control Mild Moderate 3 2 200 150 50 0 100 1 Time (min) Figure4.6:Whole-bodythermalsensationandthermaldiscomfortacrossthetest durationforeachcondition:Control,MildandModerate.DataaremeanandSDfornine participants. Note:Thegreyareaindicatesthemanipulationperiod.Thermalsensationrangesfrom1- “unbearablycold”to13-“unbearablyhot”.Thermaldiscomfortrangesfrom1-“comfortable”to 5-“extremelyuncomfortable”. Ŧ=Significantinteractionforthermalsensation 89 4.3 Subjectivesleepiness Subjectivesleepinessrosesteadilyduringtestingirrespectiveofcondition(Figure 4.7).Thesubjectivesleepinessscore(KSS)waspronetoaceilingeffect,withanumber ofparticipantsreachingmaximumearlyinthetest(Figure4.8).Forexample,one participant(P9,mildcondition)reachedmaximumsleepinessbybaselinemeasures, progressingfromKSSscoresof5onentryto9.Adjustingforthosethatreachedceiling earlyproducednochangetotheprogressionofsleepiness. Progressionofsubjectivesleepinesswassignificantlyaffectedbydurationoftesting (F(13,104)=28.91,P<0.0001),anddespiteatrendforthistointeractwithcondition,itwas notstatisticallysignificant(F(26,208)=1.45,P=0.080).Thetrendforaninteractionis presumablyduetoapparentearlyreductioninKSSscoreswithinthetwointervention conditions(Figure4.7).Participantsenteredthelabat21:00feeling“ratheralert”(4.7± 0.4);KSSthenrose2(±0.6)scoresbybaseline. 90 9 8 7 KSS **** 6 control mild 5 0200 2100 4 2230 moderate Duration (hh mm) Figure4.7:Progressionofsubjectivesleepinessacrosstestingforeachcondition: Control,Mild,andModerate. Note:Theslashedlineindicatesequipmentsetup.Thegreyareaindicatesonsetofmanipulation. 2100isentrytolab,while2230isbaselinemeasures.0200iscessationofthetest.KSSranges from1to9.DataaremeanandSDfornineparticipants. ****=P<0.0001effectoftime Control Mild Moderate 6 4 2 0 30 2 29 2 28 9 25 9 24 6 22 6 21 3 19 3 18 0 14 0 13 0 12 90 0 0 Number of participants 8 Time (min) Figure4.8:Numberofparticipantsreachingmaximalsubjectivesleepinessrating(9– “verysleepy,greaterefforttokeepawake,fightingsleep”)duringtesting,ineach condition:Control,Mild,andModerate.Thenumbersdonotnecessarilyreflectthesame participantsremainingatmaximalratingacrosstime.Dataaremeanforeight participants. 91 9 7 control 6 mild PVT1 PVT3 PVT2 PVT4 Post Pre Post Pre Post Pre Post Pre 5 Post moderate Pre KSS 8 PVT5 PVT number Figure4.9:ChangeinsubjectivesleepinessscorepreandpostPVTacrossthenightfor eachcondition.DataaremeanandSDforeightparticipants. Note:TheKSSrangesfrom1–“extremelyalert”to9–“Verysleepy,greatefforttostayawake, fightingsleep”. 4.4 Vigilance Eight(ofthenine)participantswereincludedinthePVTanalysis;P7was,omitted duetomissingbaselinerecordings,whileamissingbaselineinControlforP1andP5 wereestimatedastheaverageoftheirothertwobaselinerecordings.Therewasno ordereffectonPVT(F(2,14)=1.97,P=0.177). 4.4.1 Reciprocalreactiontime Reactiontimeswereconvertedtoreciprocalreactiontime(RRT).TheRRTdidnot responddifferentlybetweenconditionsacrossthesession(F(90,630)=0.98,P=0.448) (Figure4.10);nordiditshowmain-effectdifferencesbetweenconditioneffects (Interaction:conditionandtest;F(10,70)=0.75,P=0.550;Interaction:conditionandtime; 92 F(18,126)=1.07,P=0.391).WhileRRTdeterioratedduringeachtest(maineffect)this deteriorationbecamemorepronouncedwithprogressionacrosstheevening (interactionoftestandtime:F(45,315)=1.88,P<0.0001).Groupingofthedifferent conditionsremainedtightwithminimaldifference(grandmean:3.54±0.12). ReciprocalreactiontimesignificantlydecreasedacrossthesuccessionofPVTs (F(9,63)=11.95,P<0.0001).Theslopeofdecreaseacrossthedurationofatestwas greatestinthebaselinewithmeandeclineof-0.60±0.005RRT/min.Followingwithin testslopeswerenolessthan-0.036RRT/min.Mildconditiontypicallyhadthegreatest rateofdeclineoncemanipulationhadbegun,withControlconditionhavingthesmallest slope. 4.4.2 Variability AllconditionsproducedhighvariabilityinRRT(Figure4.10a/b).Variabilitywas greatestinControl(Figure4.10b);however,despitethisapparentdifference,therewas nointeractioneffect(F(10,70)=0.72,P=0.703)orcondition(F(2,14)=1.16,P=0.342)on variability.VariabilityofRRTfluctuatedgreatlyminute-to-minuteaswell;again,this fluctuationwasmostapparentintheControlcondition. 4.4.3 Lapses Lapseswereclassedasreactiontimes>500ms.Figure4.11indicatesthecollated numberoflapsesthatoccurredinconsecutivetestsundergoingeachconditionof manipulation.Themeannumberoflapseswas8(±2)pertest.Therewasnointeraction effect(F(10,80)=1.30,P=0.299),noranyconditioneffect(F(2,16)=0.812,P=0.462),ortest effects(F(5,40)=0.93,P=0.388). Anumberoflapsesmyhavebeenduetoactualsleeponset.Thisisindicatedby consecutivelapsesproducinglargespikesinnumbersoflapses.Forexample,P6 93 producing46lapsesintheirControlbaseline(KSSrating:8–“sleepy,someefforttostay awake”).ThesespikesinlapsestypicallyoccurredlateinthePVT(i.e.,8-9thmin)and hadaskewingeffectonthemean. a 5.0 Control Mild Moderate RRT (1000/RT) 4.5 4.0 3.5 3.0 2.5 Ŧ 0.8 b 0.4 PVT5 PVT4 PVT3 PVT1 0.0 PVT2 0.2 Baseline Variance 0.6 PVT Figure4.10:PVTreciprocalreactiontimes(a)andvariance(SD)(b)acrosssixPVTs betweenconditions:Control(n),Mild(Δ),andModerate(¢).DataaremeanandSDfor eightparticipants. Note:EachPVTcontainsten1minaveragesofthereciprocalreactiontimes Ŧ=SignificantinteractionbetweentestandtimeforRRT 94 4.4.4 CoretemperatureandVigilance ThecorrelationbetweencoretemperatureandRRTisdisplayedinFigure4.12.RRTs weresimilaratbaselinewithamaximumdifferencelessthanone(unit:1000/RT). Similarly,therewasminimaldifferencebetweencoretemperatures(TCdifference<0.1 OC). Therewasnointeractioneffect(F(10,70)=0.51,P=0.875),andnomaineffectsof condition(F(2,14)=0.02,P=0.978)orPVT(F(5,35)=2.87,P=0.92).Manipulationproducedan initial,insignificantriseinreactiontimeinMild.Moderateconditionhadthegreatest slopeinRRT(-0.19),withControlfollowing(-0.12),andMildhavingthesmallestslope (-0.1).ChangeinPVTcorrelatedwellwithchangeinTC,with-0.85,-0.81,-0.85,Control, MildandModerateconditions,respectively. 4.4.5 CoretemperatureandSleepiness TherelationbetweenTCandsubjectivesleepiness(KSS)isdisplayedinFigure4.13. Therewasasignificantinteractioneffectbetweenconditionandtime(F(24,192)=1.59, P=0.046).Thisinteractioneffectisapparentinthedynamicresponsetocooling conditions.Mildsubjectivesleepinessdecreasedby0.2(unit:KSSscores;range1-9) andshowedanimmediatesignificantdifferencefrombaseline,contrastedwithControl (F(1,8)=8.00,P=0.022).Moderatedecreasedinitiallyby0.8butbecamesignificantly differentfrombaseline,incontrasttoControl,at~20min(Figure4.13,point3: F(1,8)=7.10,P=0.029);ControlKSSrosecontinuallyacrossthetest.Theinitialdipin subjectivesleepinesswas0.2and0.8scoresinMildandModerate,respectively.Change insleepinesscorrelatedwellwithchangeinTCwith0.90,0.96,ad0.85,forControl,Mild, andModerateconditions,respectively. 95 60 15 40 10 20 5 0 Control Mild Moderate Mean PVT Lapses PVT Lapses 0 PVT Number Figure4.11:PVTlapses(RT>500ms)acrosscumulativewaking.DataaremeanandSD foreightparticipants. Note:P6Controlbaselineof41lapseswasomitted. Percent change in RRT (%RRT) 5 Temperature change (OC) 0 0.1 0.2 0.3 -5 control mild -10 moderate Figure4.12:Relationofchangeincorebodytemperatureandpercentagechangein ReciprocalReactionTime.EachRRTpointrepresentsa10-minPVT.Dataaremeanfor sevenparticipants.SDomittedduetolossofclarityoftrend. Note:greyindicatesmanipulatedperiod 96 Change in subjective sleepiness 3 2 1 0 0.0 -0.2 * -1 * * * Change in Tc Ŧ -2 -0.4 Control Mild Moderate Figure4.13:Thecorrelationbetweenchangeinandchangeinsubjectivesleepiness (KSS;range:1-9).Dataaremeanfornineparticipants,SDomittedfromfiguredueto misrepresentationofwithinparticipantvariability. Note:greyindicatesmanipulatedperiod *=P<0.05,Ŧ=Significantinteraction 4.5 Cognitivearousal Issuesinelectrodeconductancegeneratederrorsinoutputpowers;withthetapower themostvulnerabletonoise.SixparticipantswereincludedinC4-A1(referential electrodeplacement)derivationpowers,andeightparticipantswereincludedinO2-A1. Powerfrequencieswerewithintheirnormativeranges.Oftheremainder,Coefficientof Variationwastoohightointerpolatefigures.AnalysesforC4werebasedonfour participants,andO2wasbaseduponsevenparticipants. 4.5.1 KarolinskaDrowsinessTest SevenKDTs–includingbaseline-weretested,withepochsreducedtoasingleeyes openpowerandasingleeyesclosedpower.ThesewerefurtheranalysedforbothC4 andO2derivations,toobservestableprogressionofspecificfrequenciesacrossthe 97 evening(Figures4.14and4.15).Additionally,comparisonofthechangespectralpower fromeyes-opentoeyes-closedwasobservedforboththetaandalphafrequencies (Figure4.16). Thetaandalphapowersshowedthegreatestchangeintheeyesclosedcondition, whilebetashowedthegreatestchangeacrosseyesopentests.Acrosstheeyesclosed tests,thetapowerdecreased,andalphapowerincreasedinC4,whilethetapower increasedandalphapowerdecreasedinO2. 4.5.2 C4-A1 Figures4.14and4.16:a/brepresentthesumofinteractionsbetweentesteyesopen andeyesclosedattherightcentral(C4)electrodederivationforeachcondition.Theta powerdisplayedasignificanteffectofinteraction(F(12,36)=2.20,P=0.034)duringeyesopen.Contrastsandcomparisonscouldnotidentifythesourceofdifference.Eyes-closed thetapowershowednointeraction(F(12,36)=1.12,P=0.377),andnoeffectsofcondition (F(2,6)=0.02,P=0.980)ortest(F(6,18)=0.99,P=0.463). Alphapower,eyes-openshowednointeractionbetweenconditionandtest (F(12,36)=1.49,P=0.174),orofeithercondition(F(2,6)=1.11,P=0.389)ortest(F(6,18)=0.80, P=0.581).Similarly,alphaeyes-closedshowednoeffectsofinteraction(F(12,60)=1.09, P=0.386),orofcondition(F(2,10)=0.73,P=0.506),althoughahighlysignificantdecrease occurredacrosstesting(F(6,30)=5.652,P=0.001). Betapowerindicatednointeractioneffects,foreyesopenandeyesclosedstates (interaction:F(12,60)=0.65,P=0.794;F(12,60)=1.45,P=0.168),howeverdisplayeda significanteyesopentrendacrosstests(F(6,30)=4.31,P=0.003)andindicatedatrend duringeyes-closedacrosstests(F(6,30)=2.14,P=0.078). 98 Thechangeinthetapowerbetweeneyesopenandeyesclosedstatesdemonstrated nointeraction(F(10,70)=0.72,P=0.703),noraneffectofcondition(F(2,14)=1.16,P=0.342) ortest(F(5,35)=0.78,P=0.572).Therewasnointeractionoccurringinalpha(F(12,60)=0.76, P=0.687)orbetafrequencieseither(F(12,48)=0.786,P=0.662).Althoughalphafrequency indicatedaneffectacrosstests(F(6,30)=2.80,P=0.028). 4.5.3 O2-A1 Figure4.15and4.16:c/drepresentthesumofinteractionsbetweentesteyesopen andeyesclosedattherightoccipital(O2)electrodederivationforeachcondition.Theta powerdisplayedahighlysignificantdifferenceacrosstests(F(6,36)=10.84,P<0.0001),but nointeractionineyesopen(F(12,72)=1.12P=0.340),whileeyesclosedshowednoeffect (interaction:F(12,72)=0.407,P=0.957).Thedifferenceineyes-openthetapowerappears tobeduetoasignificantincreaseinpowerbetweenbaselineandtheseventhKDT (difference:-5.84,C.I.:-9.86,-1.82,P=0.003).Similarly,alphapowerdisplayedno interactioneffectforeithereyesopen(F(12,72)=0.77,P=0.679)oreyes-closed (F(12,72)=1.07,P=0.402).However,eyes-closedshowedasignificantreductioninalpha powerasaneffectacrosstests(F(6,36)=5.91,P=0.0002). Thechangeinthetapowerbetweeneyes-openandeyes-closedshowedsignificant differencesinbothtests(F(6,42)=3.06,P=0.014)andcondition(F(2,14)=3.90,P=0.045),but nointeractionbetweenthetwo(F(12,84)=1.05,P=0.416).Similarly,alphapowershoweda significanteffectoftestsacrossthenight(F(6,30)=3.75,P=0.0067),withinitiallarge increasesinalphapoweruponclosingeyes,mellowingbythethirdKDT.Noothertrend wasapparent(interaction:F(12,60)=0.63,P=0.807). 99 Theta power (uV) 35 30 25 20 Ŧ Alpha power (uV) 50 40 30 80 *** Eyes open Beta power (uV) Eyes close 70 60 50 40 * 1 2 3 4 5 6 7 Control 1 2 3 4 5 6 7 Mild 1 2 3 4 5 6 7 Moderate KDT Figure4.14:EEGspectralpowerchangesacrossKDTsandconditions,andbetweeneyesopen andeyesclosed.Dataaremeanforfourparticipants.Standarddeviationomittedduetohigh inter-individualvariabilityinherentinEEG. Interactioneffect(Ŧ)ofthetaonlypresentineyesclosed,nootherinteractionspresent. Timeeffect(***=P≤0.001,*=P<0.05)onlypresentineyesclosedalphaandbeta. 100 Theta power (uV) 16 14 12 **** 10 Eyes open Alpha power (uV) 8 50 Eyes close 40 *** 30 20 10 1 2 3 4 5 6 7 Control 1 2 3 4 5 6 7 Mild 1 2 3 4 5 6 7 Moderate KDT Figure4.15:EEGspectralpowerchangesacrossKDTsandconditions,andbetweeneyes openandeyesclosed.Dataaremeanforsixparticipants.Standarddeviationomitted duetohighinter-individualvariabilityinherentinEEG. Timeeffect(****=P<0.0001,***=P<0.001)presentinthetaeyesopenandalphaeyesclosed. 101 C4-A1 30 28 26 14 12 24 10 Control Mild Moderate 40 KDT6 KDT5 KDT4 KDT3 KDT2 KDT1 Baseline KDT6 20 30 KDT5 25 KDT4 35 30 KDT3 40 35 KDT2 Alpha Power (uV) 45 KDT1 50 Baseline 22 Alpha Power (uV) O2-A1 16 Theta Power (uV) Theta Power (uV) 32 Figure4.16:ChangeinEEGspectralpowerfromeyesopentoeyesclosedacrossconditions.Theta powerisrepresentedinthetopfiguresandalphainthelower.Originoffrequenciesstatedabove respectivefiguresaschannelsC4andO2.Dataaremeanforeightparticipants.Standarddeviation omittedduetohighinter-individualvariabilityinherentinEEG. 4.6 HeartRate HeartratemeasuresarederivedfromECG,recordedacrossthenightoftesting.Further analysesofindepthcardiographicchangeswerenotmadeduetotechnicaldifficultiesextracting thedata.Heartratedeclinedsignificantlyacrossthedurationofthenightinallconditions(F(26, 208)=7.412,P<0.0001)(Figure4.15).Therewasnodifferencebetweenconditions(F(52,416)=0.92, P=0.631).HeartratedeclinedinallbutControlPVT3andPVT5.Therewasnointeraction betweenconditionandheartrateassociatedwithPVT(F(10,80))0.57,P=0.830). 102 100 Control Mild Moderate Heart rate (beats/min) **** 90 80 70 60 50 50 100 Time (min) 150 200 Figure4.17:Heartratedecline(±SD)acrossthenightforeachcondition.DataaremeanandSD fornineparticipants. ****=P<0.0001maineffectoftime 80 70 PVT5 PVT4 PVT3 baseline 60 PVT2 Control Mild Moderate PVT1 HR (beats/min) 90 Figure4.18:HeartratechangepreandpostPVTperformanceforeachcondition.Dataaremean fornineparticipants. 103 5.0 DISCUSSION Severallinesofevidenceimplicatearolefordistaltemperatureineveningvigilancechanges; recentresearchtendstohaveexploredeffectsandbenefitsoffacilitatingariseindistalskin temperatureinpopulationsthatstrugglewithsleeponset(insomniacs(Raymannetal.,2007a), theelderly(Raymannetal.,2007a),andpoorsleepers(Refinettietal.)),beitfromthesource (Orexinsecretingcells,melatonindeficiencies)orfromeffectors(vasculature).Theeffectofboth spontaneousandinducedrisesinskintemperatureonimpairingvigilanceandpromotingsleep hasbeenthoroughlydemonstratedasbeneficial(Fronczeketal.,2008;Kräuchietal.,1999; Raymannetal.,2005;Romeijnetal.,2012b;VanSomeren,2006).Theinherentroleofcold extremitiesinacutelypreventingsleeponset–whileseeminglyobviousandintuitive–appearsto havebeenignoredinallbutthreestudies:oneexploringsubtletemperaturemanipulationsin narcoleptics(Fronczeketal.,2008);anotherobservingapparenttrendsofthermaldiscomfortdue tocoldextremitiesleadingtodifficultyinitiatingsleep(Kräuchietal.,2008);andathirdapplying coolairdirectedatthefaceasanin-carcountermeasuretofatigue(Reyneretal.,1998). Thepurposeofthecurrentstudywastosimilarlyfocusnotonbodytemperature manipulationsfacilitatingsleep,butthosethatacutelyinhibitsleep.Therefore,theeffectofdistal temperaturemanipulation(specificallycooling)onvigilancemarkerswasexamined,innine healthyvolunteers,acrossthedurationofnaturalsleeponsettime.ThehypothesiswasthatMild andModeratecoolingwouldincrementallyattenuatethedeclineincoretemperatureand improvevigilanceparameters,orthatvigilancewouldbeimprovedbytheskincoolinginitself. Themainfindingwasthat,inapparentlyhealthyindividuals,TCandvigilance–measuredas sustainedattention(PVT)andcognitivearousal(KDT)-declinedirrespectiveofsignificant reductionsindistalskintemperature.Therefore,incontrasttosignificanteffectsonvigilanceand sleeponsetlatenciesduetosubtledistaltemperaturemanipulationsobservedinclinical populations(insomniacsandnarcoleptics),thecurrenthealthyparticipantsbufferedeven Moderatedistalcooling(to~25OC)withrobustcircadiandrivesprogressingtowardsleep. 104 5.1 Temperatureandvigilance 5.1.1 Temperatureeffects Thefeetwerecooledsuccessfully,to30.8OCand26.5OCdegreesinMildandModerate, respectively,andmaintainedat34.5OCinControl(Figure4.1a).However,TCremainedunaffected bycondition,decliningfrom36.9OCto~36.5OC.ThisdeclineinTCwashighlycorrelatedwiththe declineinsustainedattention(Figure4.12;correlation>0.80acrossconditions)andsubjective sleepiness(KSSCorrelation>0.80acrossconditions),butnotcognitivearousal(EEGcorrelations <0.50).ThecircadiandeclineofTCthereforeappearstobecapableofbufferingmoderate localisedthermalcooling(oftheperipheryanyway).Increasedvasomotortoneinthelowerlimbs perhapsincreasedtocompletelyoffsetthelocalheatextraction,suchthattheTCprofilewas unaffected. Thefunctionalthermalinterdependencebetweenthecoreanddistalskiniswellknownand understood.TheTCismodulatedbythermalandnon-thermalinputfromtheSCNtothe thermoregulatorycentreofthePOAH(Mooreetal.,2002),suchthatnon-thermalfactorsalterthe interthresholdzonebywhichthermoefferentresponsesaremodulated(Mekjavicetal.,2006) (See2.2.1Homeostasis).Heatlossbecomesdominantintheevening,raisingdistalskin temperaturethroughcentrally-mediateddilationofAVAs,asshownbyKräuchietal(2000).The temperatureofdistalskinfollowsaninversepatterntothatofthecore,whileproximalskin oscillatesinunisonwiththecore.Inthecurrentstudy,consistentwithKräuchietal’s(2000) findings,theControlconditionfollowedthedescribedtrend,withnon-thermalcutaneousdilation alreadydrivingheatlossfromthecore(distaltemperatures:~34OC). TheDPGreflectstheunderlyingrelationbetweentheskinandcore,andbetweenheatlossand heatgainpathwaysinthermoregulation.Typically,heatgainpathwaysdominateacrosstheday, whileheatlosspathwaysdominateacrossthenight(Seesection2.3.5Circadiantemperature rhythm).TheeveningheatlossminimisestheDPGastheextremitiesoffloadheatradiantlyand 105 convectivelyaidedbydilationofAVAsinthevolarsurfacesofthehandsandfeet(Kräuchietal., 1999).However,asmallDPGismoredifficulttoattainincoolercircumstances(Werneretal., 1980),asindicatedinthecontextofsleepinesswithinthisstudy(Figure4.4:MildandModerate), andinferredbyKräuchietal(2008).Asthefeet(andhands)providehighlocalthermal perceptualsensationbutminimalautonomicdrive(Cotteretal.,2005;Simmonsetal.,2008), individualsaremadeawareofcoolingbutdonotinvokeautonomicresponses.WithinMildand especiallyinModerate,distalskintemperaturereductionproducedobservablevasoconstriction indicatedbyreductionsinDPGandincreasesinPCG,asimpliedbyothers(Fronczeketal.,2006b; Kräuchietal.,1999;Raymannetal.,2005;Romeijnetal.,2012b;VanSomeren,2006).The decreaseinfoottemperatureenlargedtheassociatedDPGsto-4OCand-9OC,inMildand Moderate(Figure4.4a),incontrasttoapositiveDPGof0.8OCintheControlcondition. Localskintemperaturemanipulationhasbeenpreviouslydemonstratedtoalterlocalblood flow(Fagrelletal.,1977).Localfactorssensitisethevesselstoefferentconstrictoractivity, increasingtheDPG.Caldwelletal(2014)demonstratedthatthefeetarereactivetocoolingonly whenthewhole-bodyisinaheatlossstate(hyperthermiaTC≈39OC).Thecontributionoflocal factorsisunclearinthecurrentstudybecauseparticipantswereclearlylessheatstressedthanin Caldwelletal’s(2014)study,butwereinaheat-lossphaseoftheircircadianrhythm.AstheTC declinecontinuedregardlessofcondition,thecoolingmayhavesimplyfacilitatedheatloss. Vasoconstrictionhasbeenassumedratherthanmeasuredinthecurrentproject,andisfurther assumedtobemediatedbylocaleffectsbecausenoincreaseinDPGwasevidentintheupperlimb (Figure4.4;Tsk~34OC,DPG:0.7±0.1).However,itcannotnecessarilybeassumedthatan autonomically-mediatedvasoconstrictioninthefeetwouldbeevidencedbyasimilarprofilein theupperlimb,becausepreviousstudieshaveshownthatthesegradientscandemonstrate opposingeffectsinsleepdeprivedsubjects(Romeijnetal.,2012b).Inastudyoftheeffectofsleep deprivationonthevascularprofile,Romeijnetal(2012b)identifieddisassociatedupperand lowerlimbtemperaturegradients.Theupper-limbheatlossprofilewasattenuatedfollowing 106 sleepdeprivationwhereasthelower-limbheatlossgradientwasenhanced.Thecurrentfindings contrastwiththoseofRomeijnetal(2012b).WhileRomeijnetal’s(2012b)reasoningmayapply tothecurrentstudy,itisequallylikelythatanyconstrictionwasreactivetocooling.Lowerlimb coolingcouldonlyreasonablyaffectupperlimbtemperaturesifother,moreautonomically-active areasinstigatedacentralthermoregulatoryresponse.Assuch,itisunsurprisingthatthefeetdid notinduceachangeespeciallyinMildbecausetheyhavebeenpreviouslybeenestablishedto havelowthermosensitivityforautonomic(sweating)responses(Cotteretal.,2005). Insummary,theinferredlocalvasoconstrictionofthefeetdidnotaltertheheatlossprofileof thecore.Energetically,heatextractionmayhavefurtherfacilitatedtheobserveddeclineinTC,ina reciprocalmannertogeneratedlocalconstriction(Figure4.1c).However,asTCdeclined regardlessofcondition,manipulationsappearedineffectiveininstitutingageneralised thermoregulatoryresponse. 5.1.2 Vigilanceandarousal AsTCremainedunaffectedbydistalcooling,itisunsurprisingthatvigilancealsotherefore remainedunaffected,atleastbasedontherationalediscussedinSection2.4.Thecurrentstudy maythereforeprovidesupportfortheassociationofvigilancewithTC(unlesslocalperceptual effectsareimportantbutweretoosmalltohaveshownupdespitecoolingto~25OC).The relationshipbetweenbodytemperatureandvigilance/arousalstateis,however,complexwiththe extremitiesundoubtedlyplayingalargerole.Theextremitiesmayprovideameansbywhichcore bodycanloseheat(viaDPG)(Kräuchietal.,1999),ormaybeimportantasanindependentfactor alteringvigilance/arousal(VanSomeren2006;Raymann2005,2007).Thecurrentstudydoesnot supportorrefuteeitherposition.Despitemoderatelocalisedcooling,vigilancedemonstratedno overalleffect.ThismaybepredicatedbytheaforementionedTCchange,ormayindicatethelack ofstimulusatthefeettodriveaperceptualdistractioneffect. 107 Evidenceofthecausalroleofdistalskintemperatureonsleepinessintheeveninghasbeen demonstrated(discussedin2.3.5Circadiantemperaturerhythm).Perhapsmostrelevanttothis study,coolingthehandsandfeetdelayedsleeponsetlatenciesby~24%innarcoleptics,although thiseffectwastestedwithinasinglePVTcomparisononly,duringthedaytime(Fronczeketal., 2008).Thealteredtemperatureregulationinnarcolepticsiscomparativetohealthyindividualsin theeveningandisconsideredtoincreasetheirsleeppropensity(Fronczeketal.,2006b).The currentstudydidnotgeneratesignificantreactiontime,orlatencychangesbetweenconditions; however,limitingmanipulationstothefeetonlymayhavebeenthecontributingfactor.Greater spatialmanipulationproducesgreaterassociatedthermoafferentdrive(Crawshawetal.,1975). Includingthehandsmayhavegeneratedsufficientcoolingtoimpairthecircadianheatloss characteristics.WheredistalTSkmanipulationshavebeenusedtoalterthearousalstate–beitfor vigilanceorsleepinduction–subtlemanipulationshaveproveneffectiveinsusceptible populations(e.g.,narcoleptics,insomniacs),however,moderatemanipulationshaveproved distracting.Thedistractioneffectmustnotbeoverlooked,ifitmaintainsarousal.Whilea potentialdetrimentincomplextasks,distractionispotentiallybeneficialtomaintainwakefulness ifinsimplevigilancetasks.Thedistractioneffectmayfurthermorebebeneficialinhealthy populations,asraisingvigilancethroughthermalmodulationofthecircadianrhythmappears difficult.InhibitingtheheatlossprofileofTCappearstoberelativelydifficult,andevenmoderate coolingdoesnotappeartoattenuateTC. Overall,distalcoolinginthepresentstudyresultedinonlytransientchangesinsleepiness (discussedin5.2Transienteffects).Whilereactiontimesupportedthedecayinsustained attention,thiswasnotreinforcedbyresponsevariabilityorlapses,whichbothremainedequally highacrossthenight.Sleepinessrosesteadilyacrosstheevening,asindicatedbysubjective sleepiness(Figure4.7)andEEGparameters.Subjectivesleepinesssaturatedinthemajorityof participants(Figure4.8).EEGdidnotsupportanyinitialmanipulationeffectasobservedin subjectivesleepiness,howevertheassociationbetweensubjectivesleepinessorperformanceis 108 lessapparentwhensleepinessvarieswithinnormallimits(from“alert”tosome“signsof sleepiness”)(Akerstedtetal.,1990).Asanytransienteffectoccurredwithinnormalrangesof subjectivesleepiness,itisunsurprisingthatsuchamodestresponsewasnotobservedwithin EEG. Cognitivearousal(indicatedbythetaandalphafrequencies)declinedacrossthetrial, irrespectiveofcondition,forallmarkersexceptC4andO2theta(whichshowedacondition*time interaction:P<0.05andP<0.0001,respectively).Thesemarkersshowedlargerincreasesintheta powerinModerate.Thetapoweriswidelyacknowledgedtoindicatedecreasingalertnessand impairedinformationprocessing(Pizzagalli,2007;Caldwelletal.,2003;LalandCraig,2001; Klimesch,1999),indicatingthatparticipantsbecamemorefatiguedbytheModeratecondition. ThismaybesupportedbyatrendforPVTtodeclinemorestronglyinModerate:7%worseby PVT4,albeitthiseffectwasunclear(P=0.92). Alphapowerdidnotindicateanytrendsofincreasingdrowsinesswithineyesopen;however, sleepinessprogressedwitheyesclosed(Figure4.15).Duringrelaxedwakefulnessalphapower synchronisesuponeyeclosure(Klimesch,1999);thisisalsotrueforearlyonsetdrowsiness (Figure4.16)(Santamaria&Chiappa,1987;Gilberg&Akerstedt,1982).Alphasynchronisation earlyinthesessionwasindicativeofearlydrowsiness,howeverthepowerofsubsequenteyesclosedalphapowersdeclinedrapidly.Typically,alphapowerfailstosynchroniseandeyes-closed alphapowerreducesasdrowsinessprogresses(Pizzagalli,2007;Santamariaetal.,1987).Alpha powerreductionsalsooccuralongwithfrequencyslowing(Pizzagalli,2007);thismayhave causedsomeofthelaterincreasesinthetapowerinthepresentstudy.Similartotheobservations ofAkerstedtetal(1990)andfurthersupportedbyLaletal(2002),itislikelythattheparticipants wererapidlyfallingasleepduringeyesclosedbymidtest,andnotpresentingthetypicalalpha increase;evidencedbyrapiddeclinesinalphapoweruponeyeclosurelaterinthesession(such asFigure4.16:KDT4).GilllbergandAkerstedt(1990)suggestedthatalphapowermighthave beensorapidlyreplacedbythetathattheir1minresolutionwouldhavefailedtodisplaythe 109 change;thismayhavealsobeenthecaseinthecurrentstudy.Participantsprogressedfrominitial relaxed(early)drowsiness,intomiddle,andmaybelatedrowsinesstosleeponset,bymidsession. Followingthisinitialdip,participantsmayhaveundergoneareboundindrowsiness,asindicated byC4alphapowers.Theassociatedincreaseddrowsinesssupportsthechangesinsubjective sleepinessandperformancemeasuresacrossthenight. Insummary,despitesignificantdistalcooling,TC,vigilanceandsleepinessremainedlargely unaffected.Contrarytopreviousindicationsofimprovedvigilanceandwakefulnesswith temperaturemodulationinnarcoleptics,thecurrentstudyachievednoprolongedeffectsfrom distalcooling.Certainconsiderationsneedtobehighlightedincomparingthesetwopopulations, andstudies.Firstly,narcolepticshavegreaterroomforimprovement,astheyshouldbeawake andalertduringtheday–whentheprotocolshavebeenimplemented–assuchmanipulations restorethemtonormativetemperaturelevels.Thecurrentstudyaimedtoimpairnormative temperaturelevels,atatimewhentonicpressureswereinstigatingsleep.Secondly,circadian rhythmsinnarcolepsyareweakenedandthereforelikelysusceptibletomanipulation,whereas thecurrentstudy’spopulationwasyoungandhealthywithnoticeablyrobustrhythms.Distraction effectsofcoolingperceptuallydominantskinregionssimilarlyprovedineffectiveingeneratinga prolongedriseinvigilanceorwakefulness.Finally,thenarcolepticpopulationwasonlytestedin responsetoacutemeasures(asinglePVT),whereasthecurrentstudyobservedtheprolonged responsetocoolingoverthreehours(fivePVTs).Thedifferenceinstudyoutcomescouldbe determinedbythedurationofobservation,wherebytheinitial,dynamicthermoreceptorfiring inducesgreaterperceptualawareness,andeventuallyadapts.Thecurrentstudyobserveda dynamiceffectthatmayhaveproducedimprovedvigilance,similartoFronczeketal’s(2008) study,whichinModeratemayhaveindicatedadistractioneffectfromcooling.EEGfurther reflectedworseningcognitivearousalandincreasingsleepiness. 110 5.2 Transienteffects Achangingambienttemperaturecausescutaneouscold-sensitivethermoreceptorstoproduce adynamicthermoafferentfiringthatisfive-toten-foldabovethatofstaticthermalstates(as discussedin2.2.2Sensation)(Hensel,1982).Theperceptualstimulusassociatedwiththedynamic thermoreceptorresponsefollowsasimilarprofile(Arensetal.,2006a,2006b;Zhangetal.,2010a, 2010b,2010c).Inthepresentstudy,subjectivesleepinesswassignificantlyreduced(Figure4.13), whileeffectsonvigilancewerepossiblebutunclearduringthedynamicphaseofMildand Moderatecooling(Figure4.12).Steadystatetemperaturewasattainedafter~10mininboth coolingconditions,withtheinitialrateofcoolingbeingtwiceasfastinModeratethaninMild. Associatedoverall/whole-bodyperceptualresponseswerealsomarkedinthisperiod,with sensationdecliningfrom‘warm’(~9)to‘cool’(~6.5),and‘cold’(~5.5.)forMildandModerate, respectively(Figure4.6).Asthemanipulatedtemperatureswerenotsevereandremainedstable followingtheinitialdecline,participantsthereaftermaintainedthermalcomfortnomorethan ‘slightlyuncomfortable’. TheobservedtrendinsleepinesswassimilartoReyneretal(1998)observedresponsestoincarcountermeasures,andinfactsimilartoFronczeketal’s(2008)acutefindings.Reyneretal (1998),usingcoldair(10OC)directedattheface,observedinsignificantdecreasesinsubjective sleepiness(KSS)ofslightlylargertothoseinthecurrentstudy’sModeratecoolingcondition(2 KSSscores(Reyner&Horne1998),comparedwith0.8)butofsimilarduration(~15minutes comparedwith~20minutes,respectively).Reyner&Horne’s(1998)2-pointdropinsubjective sleepinesswaspresumablyduetothedynamicthermoreceptorresponse,mademorepowerfulby theface’shighperceptualandautonomicthermosensitivity.Reyneretal’s(1998)studywas conductedduringtheafternoonandstillproducedsubjectivesleepinesslevelsof~7“sleepy,no efforttostayawake”(KSSrange:1-9). 111 5.3 Limitations 5.3.1 Ordereffect Withinthecurrentstudy,ordereffectwasalargeconcern,consideringthedegreeof motivation-relatedmeasures.AccordingtoTopsetal(2004),motivationisintrinsicallyrelatedto mentalfatigue,inwhichanimbalanceintheeffort-rewardrelationshipdecreasesmotivation, resultinginmentalfatigue.Theboredomassociatedwiththecurrentprotocolwasanticipatedto generatealargeordereffectduetolossofmotivationinsubsequenttrials.Tothisend,a crossoverdesignminimisedthesystematicimpactofanordereffect.Taskswerealsocarefully chosentominimiselearningormotivationeffects.ThePVThasbeenvalidatedinmentally fatiguing,andsleepdeprivedsituationstoserveasahighlysensitivemarkerofsleepinessand vigilancedeclinewithminimallearningeffects(Dinges,1995;Basner&Dinges,2011).ThePVT hasbeenutilisedasavigilancemeasureinavarietyofstudiestodemonstrateefficacyofstanding (Caldwelletal.,2003),temperaturemanipulation(Fronczeketal.,2008,Raymannetal.,2005; 2007a,2007b),andsleeprestriction(VanDongenetal.,2003).Similarly,EEGisoftenusedin parallelwithPVTasagoldstandardmeasureofsleepiness,andvigilancedecline(Caldwelletal., 2003;Dorrianetal.,2005;Fronczeketal.,2008;Raymannetal.,2007b;VanDongenetal.,2003). TheKDThasbeenrepeatedlyusedasastandardisedtechniquewithinEEG,ofteninconjunction withKSS(Cajochenetal.,2000;Gillbergetal.,1982;Grenecheetal.,2008;Kaidaetal.,2006). Amongthedifferentfields,bothEEGandPVThavebeenarguedtobethebestmeasureof drowsiness/fatigue/sleepiness(EEG,see(Horne&Reyner,1996);PVTsee(Limetal.,2008)). Fortunately,PVT,perhapsthemaindependentmeasure,didnotshowanordereffectofsession (P=0.177). Carefulstandardisationinlinewithconstantroutineprotocolstandardswasalsoattempted, forexample,inminimisingnoise,light,posturalchange,socialinteraction,andknowledgeoftime; allofwhichhavebeendemonstratedtoinfluenceperformanceandarousal(Millsetal.,1978; 112 Kräuchietal.,1999).Sleeppatternswerealsomonitoredforvariabilityandordereffects,and standardisedbyaskingparticipantstocontrolsleeppatterns48hoursbeforetesting.Participants wereinitiallyscreenedfornormalisedsleeppatterns,andonaverage,wenttosleepat23:40and slept~8h.Allparticipantsmaintainedanormalsleeppatternasassessedfromaccelerometry andsleepdiaries(albeitwithonlyamodestproportionofdataobtained).Noordereffectwas apparentinthesleepdataobtained. 5.3.2 Laboratory/Equipmentsetup Distractionandarousalbothmayhavebeenpresentintheoutcomesasaresultofinterference fromtheexaminer.Manystudiescurrentlyconductedonvigilancemaintainacomputerinterface, andseverelylimitexaminerinput.Thisistominimisealterationstointer-testprotocoltimelines, andexperimentalerrorbutimportantlytoreducetheverbalinputwhichmayotherwise confoundoutcomes.Thecurrentstudy,whileattemptingtominimisehumaninputusedan examinertoverballycueparticipantsintosubjectivequestionnaires.Theexamineralsoremained presenttopromptparticipantstowakeupthroughouttesting,whichisnotuncommon(e.g., (Fronczeketal.,2008)),butremainsabarrier. Anotherissuewasmaintenanceofcooling.Asonlyrudimentaltechnologywasusedinthe coolingprotocols,temperatureshadtobeconstantlyassessedandadjustedmanually.This resultedintheoccasionalerror(SeeFigure4.1a:Mildcondition,minute150).However,in conjunctionwithexperimentalerror,thelackofthermostatmeanticewasrequiredtocoolthe circulatingwater.Dumpingiceintotheurnproducedunnecessarynoise,which,despite participantswearingearplugs,wasaudible. 5.3.3 Statisticalpower Therewassomeindicationtowardaneffectofdistalcoolingonvigilance.TheeffectinRRT wasnotstatisticallysignificant(P=0.875;effectsize=0.27),whereastheKSSshowedareliable effectofcooling(P=0.046),albeitwithmodesteffectsize(0.17).Alackofpowerarisingfroma 113 smallsamplesizeisanobviouslimitation.Thenatureofsuchstudies–multipletestingnightsof longduration,andinvasiveprocedures–makesrecruitment,retentionandadherenceof participantsdifficult.Increasingsamplesizeisnotaneasytask;however,itmaybeessentialto determinethenatureoftherelationshipbetweenalertnessandbodytemperature,andtofurther delineatetheefficacyofcoolinginincreasingalertnessandreducingtheriskofaccidents.Future studiesapproachingsuchresearchwillhavebearinmindthebarrierstosuchdesigns.Asa similardynamiceffectofcoolingonhasbeenpreviouslyobservedwith16participants(Reyneret al.,1998)itisreasonabletosuggestthatsuchnumbersmayhavebeenrequiredtofurther delineatethedifferencesobservedbetweenthelevelsofthestatisticalanalyses–Control,Mild, andModerate.Despitethis,promisingtrendsindicateamorein-depthstudyintotheeffectof coolingonvigilancemaybeworthwhile. 5.3.4 Electroencephalography Characterisingfrequenciesasfarasspecificrecordingsites,andfiltering,transformingand analysingmethodsarehugelyvaried.Thesedifferencesareconvolutedandintimidatingforthose entertainingusingEEGasatechnique.Alotofmethodsarenowout-dated,howeveritwas cumbersomeanddifficulttoassesswhich.Thecurrentstudyutiliseddefinedboundariesfor traditionaltheta(4-7Hz),alpha(8-1Hz),andbeta(13-30Hz)frequencybands,howeverthereis mountingevidenceforHz-Hzpoweranalyses(Pizzagalli,2007),orindividuallydefinedfrequency bands(Klimesch,1999),whichmayrefuteorenhancethecurrentobservedEEGoutcomes. ClinicalEEGprovidesexcellent,currentbestpracticeguidesforobservingandsleepstagingEEG criteria,howeveranequivalentisdifficulttofindinquantitativeEEG;especiallyquantitativeEEG relatedtodrowsiness.ThecurrentstudyutilisedguidelinesfromSantamariaandChiappa(1987). Debunkingcorrectmethodologiesprovedtimeconsuminganddifficult.Thiswasmade considerablysowithoutcorrecttechnicalsoftwaretoperformdatareduction,spectralanalyses and,noise/artefactscanningandrejection.Timeconsumingtechniqueslimitedthescopeand versatilityoftheEEGanalysis,anotherwisehighlypowerfulmeasurethatisarguably 114 underappreciatedoutsideitsclinicalsetting.Matlabwasutilisedfordatareduction.Whilea highlyversatileandpowerfulprogram,Matlabrequiresconsiderabletimetoinputcodefor interpretationofdata,aswellasmuchgreaterinvolvementtounderstandandlearntouse. Additionally,itisdifficulttoensurevalidoutcomesfromMatlabcoding.AssuchutilisingaMatlab specialistallowedfortheinputandoutputofEEGdata,atthecostofversatilityinEEGspectral analyses Additionalunusedelectrodesbecameredundantastimeandsoftwareprovedinsufficientto accomplishadditionalanalyses.Additionally,asanalysesprovidedgeneratednoeffect,further analyseswouldhaveprovedcumbersomewithoutaddingtotheknowledge.Frontalderivations wereoriginallyproposedtoanalysecognitivearousalduringPVTtaskshoweverthecollected frontalPVTdatawasomittedfromanalysesfortheaforementionedreason. 5.3.5 Temperature Thedegreeofthermalclampingwasdifficultduetoequipmentlimitationsallowingatbest1OC ofdeviationfromintendedvalues.Coupledtothisproblematiccontrolwasaninteresting physiologicaluncouplingoffoottemperatureswhilecoolingwasoccurring.Werneretal(1980) observeduponcoolingthatalargedivergenceintemperaturerangeoccurred,with~17OCof differencebetweenskintemperatures(Tfoot–Tforehead)inacoldenvironment(TA=10OC),when comparedtoatotalcoretoskindifferenceof~2OCwhenunder~50OCambientload.However, theydidnotobservethevariationofchangewithinthefeetalone,nordidLove(1948)while observingbloodflowchangesinthefeetacrosshotandcoldconditions.Inthecurrentstudy, undermoderatecooling(T=25OC),therangeinfoottemperatureswasasgreatas~9OC,withthe footarchdecreasingtotemperatures~19OCandventraltoerestingat~29OC.Thisvariabilityof foottemperaturescreatedconsiderabledifficultywhenattemptingtogainareliableaveragefoot temperature. 115 5.3.6 Vigilance Vigilanceisknowntobestressfulandfatiguing(Warmetal.,2008).However,fatiguewas aimedtobeexacerbatedinsleeppermissivesettingsatnormalbedtime.Anumberof participantswereanticipatedtodropintoearlystagesofsleeponset(Stage1,andStage2), howeverforsomeparticipantsthisoccurredintheextremesuchastoleadtotheirremoval.The argumentforremovingparticipants(originalP2andP9[theseparticipantswerereplaced])was thelossofvalidityduetocontinuousinteractionwiththeexperimenter(i.e.,continuallyrousing theparticipantsfromslumber).OriginalP9inhersecondPVT(postintervention)inthe moderatetrialresultedinherasleepafter5-minduration,requiringcontinuousrousingupon eachstimulus.Whileshereflectsacertainpopulationoftheexperiment,thevalidityofhertest wasconsideredtobealtered. AswithP9whorapidlyreachedtheceilingeffectinhisMildcondition,participants’subjective sleepinessoscillatedthroughoutthenight.Although,Figure4.7showsageneralprogressionof sleepinessacrossthenight,Figure4.8showsthenumberofparticipantsskewingthistrendtobe muchgreaterinControlandMildconditionsthaninModerate,withoverhalfparticipantsin ControlandMildreachingceilingby300minutes,withMildconditionshowingasubsequent decline.Moderateconditionmaintainedtwoparticipantshavingreachedceilingby190minutes untilthefinalmeasurewhereupon3subjectsreachedKSSscoreof9(Figure4.8). 5.4 VariableTemperaturesacrossthermistorlocationsonthefeet Coolingwassomewhatheterogeneousacrossthefoot;thearchcooledmorethanthetoes, moresoinModerate(~5OCdifference)thaninMild(~2OCdifference).Thebloodsupplytothe toesarisesfromthedorsalispedis,whichdividesinto,amongothers,thefirstdorsalmetatarsal artery(Standring.2008).Thefirstdorsalmetatarsalarterysuppliesthefirstandsecondtoes.The coolingappliedtothefeetwasassumedtocausevasoconstrictionandtherebyrestrictcutaneous 116 bloodflow.Whilenervouscontrolofthefeetdiffersbetweenvolaranddorsalskinregions, coolingatbelowTNZsgeneratesgeneralisedadrenergicvasoconstrictionacrossthewholefoot. Theobserveddifferenceswerenotdivisiblebythevolaranddorsalskinregionswhichare expectedtoprovideregionaldifferencestolocalcoolingduetotheirdifferingneuralcontrol (Tayloretal.,2014).Whilevolaranddorsalregionsaredifferentiallycontrolled,bothsurfaces receivegeneralisedadrenergicinputuponintroductiontocooling. Theobserveddifferencesinthecurrentstudywereconsideredtobeveryunlikelytohave beenduetodesignofthewater-perfusedbooties(seeAppendixEforphotos).Thespacingof tubingwasconsistent,andcondensedasthefrontofthesockfoldedaroundthetoes.Thearch waselasticatedtoprovidebettercontactthroughthemidfoot.Thetubingflowedaroundthe anklesandoverthelateraldorsalfootbeforeprogressingintothesoleattheheelandprogressing forwardoverthetoesandbackoverthedorsalaspectofthefootbeforeflowingbacktotheheel, overthemedialfoot,andoutattheposterioraspectoftheankle.Ifheatexchangewiththewater wereresponsibleforthedifferencesintoetemperature,thenthearchthermistorwouldalsobe affected. Thedifferentialthermalchangesobservedinthefeetaredivergentfromtheexpected thermoregulatoryresponse.Theinputofnon-thermalheatlossfromtheSCNmayberesponsible forthediscrepancyinfoottemperatures,howeverdespitetheconfidenceinthewaterperfused booties,theycannotberuledoutasaninfluencingfactor.Iftheobserveddifferencesinfoot temperatureacrosslocationsisarealeffect,thenitwouldbecomparativelyeasytoassess,and thereforeworthinvestigation. 5.5 Practicalapplication Inlightofthecurrentfindings,subtletomoderatecoolingofthefeetdoesnotappearto increasevigilance.Greatercoolingprovesinadequateforotherreasons;moderatecoolingis 117 distracting(Cheungetal.,2007),assuch,althoughcoolingincreasesalertnessitislikelyto distractindividualsawayfromtaskdemands.Greatercoolingalsodiminishesdexterity,bywhich afunctionalresponsemayalsobehampered;thisisalsoareasonfornotusinghandsasamethod ofcooling.Previousexperimentationdirectingcoolairtothefacehasprovensimilarlyinadequate forimprovingperformanceinattentionaltasks,despitethegreaterperceptualandautonomic thermoafferentdrivers(Reyner&Horne,1998).Caffeineandpowernapsremainthebest-proven sleepinessinhibitors(Horne&Reyner,1996);withstandingversessitting(Caldwelletal.,2003) andexposuretobrightlight(Cajochenetal.,2003;Kaidaetal.,2006;Czelsieretal.,1986)also providingmeansforreducingdrowsiness. Conversely,inaneraofincreasingsleepdisturbances,andreducedsleepduration,theresults ofthecurrentstudyareencouraginginthathealthyyoungadultsmaintaintemperaturerhythms relatedtosleeponset,regardlessofmoderateexposuretocoldatlocalisedregions(i.e.,bare-feet onacoldevening).Providedtherestofthebodyiswarm,evenmoderatelycoldfeet(Tsk~25OC) havenoeffectonTCdecline,despiteconsiderablevasoconstrictionoccurringinthelowerlimbs. Whileconsiderabledifficultyinitiatingsleephasbeencorrelatedwithcoldextremities(Kräuchiet al.,2008),thecurrentstudyindicatesthatthismaybelessofanissueinhealthyyoung populations. Insummary,althoughperipheralwarminghasafacilitativeeffectonsleepinitiation,the implicationthatcoolingbyassociationmayreducesleeppropensityappearstenuous.Rather, thermoregulationassociatedwithsleeppressureappearscapableofresistingcoolinginhealthy youngadults. 5.6 ConclusionsandRecommendationsforfutureresearch ItiswidelyacceptedthatreducingtheDPGbywarmingtheextremitiesimprovessleeponset latencyandworsensvigilance.ThisassociationreliesontherelationshipbetweenTCandarousal 118 state,mediatedthroughskintemperaturechange.LargerperturbationsinTSkmightalsobe expectedtohavedistraction-inducingeffectsfromthermalperceptionsarisingfromTSkitself. Despitethenumerouslinesofevidenceindicatingrelationshipsbetweenvigilanceandbody temperature,thecurrentstudywasunabletosupportorrefuteanyinfluenceofthedistal extremitiesorassociatedgradientsonTCorarousalstate.Warmingextremitiescanapparently influenceTCandarousaldecline,howeverunlikeinFronczeketal’s(2008)narcoleptic population,coolingdidnotappeartoperformtheinversefunctioninhealthysubjectsforthe reasonsdescribedabove(5.1.2summary).Coolingthedistalextremitiesduringthecircadian phaseofnon-thermalheatlossdidnotimprovevigilanceandproducedonlymild,transient improvementsinsubjectivesleepiness.Asstatedprior,thefactorsthatmayberesponsiblefor thisisthatcoolingmayhaveassistedheatlossdespitelocalconstrictionfactorsandbloodflow reductionsfromAVAconstriction,howeveritcannotberuledoutthatmomentummayhave alreadyinstigatedsufficientheatlosstorendertheprotocolinsufficient.Itappearsthathealthy individualsmaybemorecapableofbufferingmoderateperturbationsindistalextremities, withoutaffectingtheeveningdeclineintemperature,thanthepopulationsusedincomparative studies. Despitethelargelynullfindingscurrently,thereisstillacompellingbasisforfutureresearch surroundingtheinteractionbetweenvigilance/wakefulnessandtemperature,withramifications foreasilyapplicablestrategies.Asstatedinthediscussion,theeffectofdistractioncannotbe overlookedasapotentialmeanstomaintainvigilanceorwakefulnessacrossextendedperiods. Distractionfromtemperaturemanipulationwouldperhapsbebestappliedbymanipulationsof thedistalextremities,whichhavehighperceptualthermoafferentdrive,attemperaturesresiding closetothermaldiscomfortthresholds(e.g.,TSk~20OC).Cheungetal(2007)demonstratedthe distractioneffectfrommild(TSk~23OC;TCnormal)whole-bodytemperaturemanipulation,and Kräuchietal(2008)hasindirectlyinferredthattheeffectoffootandhandcoolingaroundthe thermaldiscomfortthresholdimproveswakefulness–oratleastimpairssleepinduction. 119 However,minimallydistractingtemperaturemanipulationswouldbemoreappropriatewhere vigilanceisrequiredforcomplextasks;thismaybeachievablethroughmanipulationsofTCthat donotevokeordirectawarenesstothethermalmanipulations. 6.0 120 REFERENCES Abramson,D.I.(1965).Pathophysiologyofarteriovenousshuntsintheextremities.J CardiovascSurg,5,217-230. Achermann,P.(2004).Thetwo-processmodelofsleepregulationrevisited.AviatSpace EnvironMed,75(3Suppl),A37-43. Agnew,H.W.,Webb,W.B.,&Williams,G.H.(1964).Theeffectsofstagefoursleep deprivation.Electroencephalographyandclinicalneurophysiology,17,68-70. Agnew,H.W.,Webb,W.B.,&Williams,R.L.(1967).Comparisonofstagefourand1-REM sleepdeprivation.PerceptualandMotorSkills,24,851-858. Akerstedt,T.,&Gillberg,M.(1990).Subjectiveandobjectivesleepinessintheactive individual.IntJNeurosci,52(1-2),29-37. Altena,E.,VanDerWerf,Y.D.,Strijers,R.L.,&VanSomeren,E.J.(2008).Sleeplossaffects vigilance:effectsofchronicinsomniaandsleeptherapy.JSleepRes,17(3),335343.doi:10.1111/j.1365-2869.2008.00671.x Alvarez,G.G.,&Ayas,N.T.(2004).Theimpactofdailysleepdurationonhealth:areview oftheliterature.ProgCardiovascNurs,19(2),56-59. Arendt,J.,&Skene,D.J.(2005).Melatoninasachronobiotic.SleepMedRev,9(1),25-39. doi:10.1016/j.smrv.2004.05.002 Arens,Edward,Zhang,Hui,&Huizenga,Charlie.(2006a).Partial-andwhole-bodythermal sensationandcomfort—PartI:Uniformenvironmentalconditions.Journalof ThermalBiology,31(1-2),53-59.doi:10.1016/j.jtherbio.2005.11.028 Arens,Edward,Zhang,Hui,&Huizenga,Charlie.(2006b).Partial-andwhole-body thermalsensationandcomfort—PartII:Non-uniformenvironmentalconditions. JournalofThermalBiology,31(1-2),60-66.doi:10.1016/j.jtherbio.2005.11.027 Aschoff,J.(1983).Review:Circadiancontrolofbodytemperature.J.Therm.Biol.,8,143147. Aschoff,J.,&Wever,R.(1958).KernundSchaleimWärmehaushaltdesMenschen.Die Naturwissenschaften,45(20),477-485. Basner,M.,&Dinges,D.F.(2011).Maximisingthesensitvityofthepsychomotorvigilance test(PVT)tosleeploss.Sleep,34(5),581-591. Bass,J.,&Takahashi,J.S.(2010).Circadianintegrationofmetabolismandenergetics. Science,330(6009),1349-1354.doi:10.1126/science.1195027 Beersma,D.G.(1998).Modelsofhumansleepregulation.SleepMedRev,2(1),31-43. Belyavin,A.,&Wright,N.A.(1987).Changesinelectricalactivityofthebrainwith vigilance.ElectroencephalogrClinNeurophysiol,66(2),137-144.doi:Doi 10.1016/0013-4694(87)90183-0 Benzinger,T.H.(1961).Thediminutionofthermoregulatorysweatingduringcold receptionattheskin.ProcNatlAcadSciUSA,47,1683-1688. Benzinger,T.H.(1961a).Thediminutionofthermoregulatorysweatingduringcold receptionattheskin.ProcNatlAcadSciUSA,47,1683-1688. Benzinger,T.H.(1961b).Thequantitativemechanismandthesensoryreceptororganof humantemperaturecontrolinwarmenvironment.AnnInternMed,54(685-699). Benzinger,T.H.(1963).Peripheralcold-andcentralwarm-reception,mainoriginsof humanthermaldiscomfort.ProcNatlAcadSciUSA,49(832-839). 121 Boksem,M.A.,Meijman,T.F.,&Lorist,M.M.(2005).Effectsofmentalfatigueon attention:anERPstudy.BrainResCognBrainRes,25(1),107-116.doi: 10.1016/j.cogbrainres.2005.04.011 Boksem,M.A.,Meijman,T.F.,&Lorist,M.M.(2006).Mentalfatigue,motivationandaction monitoring.BiolPsychol,72(2),123-132.doi:10.1016/j.biopsycho.2005.08.007 Borb,A.A.,&Achermann,P.(1999).SleepHomeostasisandModelsofSleepRegulation.J BiolRhythms,14(6),559-570.doi:10.1177/074873099129000894 Borbely,A.A.(1982).Atwoprocessmodelofsleepregulation.HumNeurobiol,1(3),195204. Boulant,J..(1996).Hypothalamicneuronsregulatingbodytemperature.InM.J.Fregly& C.M.Blatteis(Eds.),HandbookofPhysiology,Section4:EnvironmentalPhysiology (pp.105-125).NewYork:OxfordUniversityPress. Brown,I.D.(1994).Driverfatigue.HumFactors,36(2),298-314.doi: 10.1177/001872089403600210 Brzezinski,A.(1997).Melatonininhumans.NEnglJMed,336(3),186-195.doi: 10.1056/NEJM199701163360306 Bulcao,C.F.,Frank,S.M.,Raja,S.N.,Tran,K.M.,&Goldstein,D.S.(2000).Relatvie contribultionofcoreandskintemperaturetothermalcomfortinhumans.Jtherm biol,25,147-150. Burgess,H.J.,Sletten,T.,Savic,N.,Gilbert,S.S.,&Dawson,D.(2001).Effectsofbrightlight andmelatoninonsleeppropensity,temperature,andcardiacactivityatnight.J ApplPhysiol,91(3),1214-1222. Cababac,M.,&Massonnet,B.(1977).Thermoregulatryresponsesasafunctionofcore temperatureinhumans.JPhysiol,265,587-596. Cagnacci,A.,Elliott,J.A.,&Yen,S.S.(1992).Melatonin:amajorregulatorofthecircadian rhythmofcoretemperatureinhumans.JClinEndocrinolMetab,75(2),447-452. Cajochen,C.,Zeitzer,J.M.,Czeisler,C.A.,&Dijk,D.J.(2000).Dose-resposnerelationship forlightintensityandocularandelectroencephalographiccorrelatedforhuman alertness.BehaviouralBrainReseach,115,75-83. Cajochen,C.,Munch,M.,Kobialka,S.,Kräuchi,K.,Steiner,R.,Oelhafen,P.,Orgul,S.,&WirzJustice,A.(2005).Highsensitivityofhumanmelatonin,alertness, thermoregulation,andheartratetoshortwavelengthlight.JClinEndocrinolMetab, 115(3),1311-6. Caldwell,J.A.,Prazinko,B.,&Caldwell,J.L.(2003).Bodypostureaffects electroencephalographicactivityandpsychomotorvigilancetaskperformancein sleep-deprivedsubjects.ClinNeurophysiol,114(1),23-31. Caldwell,J.N.,Matsuda-Nakamura,M.,&Taylor,N.A.(2014).Three-dimensional interactionsofmeanbodyandlocalskintemperaturesinthecontrolofhandand footbloodflows.EurJApplPhysiol,114(8),1679-1689.doi:10.1007/s00421-0142894-x Callaway,E.(1966).AveragesEvokedResponsesinPsychiatry.J.NervousandMental Disease,143(1),80-94. Candas,V.,&Dufour,A.(2007).HandSkintemperaturesassociatedwithlocalhand discomfortunderwhole-bodycoldexposre.JHumanEnvironmentalSystem,10(1), 31-37. Cardinali,D.P.,&Pevet,P.(1998).Thebasicsofmelatoninaction.SleepMedReviews, 2(175-190). 122 Carpentieri,A.,DiazdeBarboza,G.,Areco,V.,PeraltaLopez,M.,&TolosadeTalamoni,N. (2012).Newperspectivesinmelatoninuses.PharmacolRes,65(4),437-444.doi: 10.1016/j.phrs.2012.01.003 Cassone,V.M.,Chesworth,M.J.,&Armstrong,S.M.(1986).EntrainmentofRatCircadianRhythmsbyDailyInjectionofMelatoninDependsUpontheHypothalamic SuprachiasmaticNuclei.PhysiolBehav,36(6),1111-1121.doi:Doi10.1016/00319384(86)90488-9 Charkoudian,N.(2003).Skinbloodflowinadulthumanthermoreguation:howitworks, whenitdoesnot,andwhy.MayoClinProc,78(5),603-612. Charkoudian,N.(2010).Mechanismsandmodifiersofreflctinducedcutaneous vasodilationandvasoconstrictioninhumans.JApplPhysiol,109,1221-1228.doi: 10.1152/japplphysiol.00298.2010.-Human Cheng,C.,Matsukawa,T.,Sessler,D.I.,Ozaki,M.,Kurz,A.,Merrifield,B.,...Olofsson,P. (1995).Increasingmeanskintemperaturelinearlyreducesthecore-temperature thresholdsforvasoconstrictionandshiveringinhumans.Anesthesiology,82(5), 1160-1168. Cheung,S.S.,Westwood,D.A.,&Knox,M.K.(2007).Mildbodycoolingimpairsattention viadistractionfromskincooling.Ergonomics,50(2),275-288.doi: 10.1080/00140130601068683 Chokroverty,S.,Bhatt,M.,&Thomas,R.J.(2005).AtlasofSleepMedicineS.Chokroverty, M.Bhatt&R.J.Thomas(Eds.), Chua,E.C.,Tan,W.Q.,Yeo,S.C.,Lau,P.,Lee,I.,Mien,I.H.,...Gooley,J.J.(2012).Heartrate variabilitycanbeusedtoestimatesleepiness-relateddecrementsinpsychomotor vigilanceduringtotalsleepdeprivation.Sleep,35(3),325-334.doi: 10.5665/sleep.1688 Cline,C.H.O.,Thornton,S.B.,&Nair,S.S.(2004).Controlofhumanthermalcomfortusing digitfeedbacksetpointreset.Proceedingsofthe2004AmericanControlConference, Vols1-6,2302-2307. Cole,R.J.(1989).PosturalBaroreflexStimuliMayAffectEegArousalandSleepin Humans.JApplPhysiol,67(6),2369-2375. Cooper,N.R.,Croft,R.J.,Dominey,S.J.,Burgess,A.P.,&Gruzelier,J.H.(2003).Paradox lost?Exploringtheroleofalphaoscillationsduringexternallyvs.internally directedattentionandtheimplicationsforidlingandinhibitionhypotheses.IntJ Psychophysiol,47(1),65-74. Cotter,J.D.,Keizer,Z.E.,&Taylor,N.A.(1996).Theroleoflocalskintemperaturein determiningtheperceptionoflocalandwhole-bodythermalstate.InY.Shapiro,D. S.Moran&Y.Epstein(Eds.),EnvironmentalErgonomicsRecentProgressandNew Frontiers(pp.85-88).London:FreundPublishingHouse. Cotter,J.D.,&Taylor,N.A.(2005).Thedistributionofcutaneoussudomotorand alliesthesialthermosensitivityinmildlyheat-stressedhumans:anopen-loop approach.JPhysiol,565(Pt1),335-345.doi:10.1113/jphysiol.2004.081562 Crawshaw,L.I.,Nadel,E.R.,Stolwijk,J.A.,&Stamford,B.A.(1975).Effectoflocalcooling onsweatingrateandcoldsensation.PflugersArch,354(1),19-27. Czeisler,C.A.,Allan,J.S.,Strogatz,S.H.,Ronda,J.M.,Sanchez,R.,Rios,C.D.,...Kronauer, R.E.(1986).Brightlightresetsthehumancircadianpacemakerindependentofthe timingofthesleep-wakecycle.Science,233(4764),667-671. Dement,W.C.(1960).Theeffectsofdreamdeprivation.Science,131,1705-1707. 123 Deutsch,G.,Papanicolaou,A.C.,Bourbon,W.T.,&Eisenberg,H.M.(1987).Cerebralblood flowevidenceoffightfrontalactivationinattentiondemandingtasks.Intern.J. Neuroscience,36,23-28. Dinges,D.F.(1995).Anoverviewofsleepinessandaccidents.JSleepRes,4(S2),4-14. Dinges,D.F.,&Powell,J.W.(1985).MicrocomputerAnalysesofPerformanceona Portable,SimpleVisualRtTaskduringSustainedOperations.BehaviorResearch MethodsInstruments&Computers,17(6),652-655.doi:Doi10.3758/Bf03200977 Dorrian,J.,Rogers,N.L.,&Dinges,D.F.(2005).Psychomotorvigilanceperformance: Neurocognitiveassaysensitivetosleeploss.InC.A.Kushida(Ed.),Sleep Deprivation:clinicalissues,pharmacology,andsleeplosseffects(Vol.142).New York:MarcelDekker. Driver,H.S.,&Taylor,S.R.(2000).Exerciseandsleep.SleepMedRev,4(4),387-402.doi: 10.1053/smrv.2000.0110 Dubois,D.,&Dubois,E.F.(1916).Aformulatoestimatetheapproximatesurfaceareaif heightandweightbeknown.ArchInternMed,17,863-871. Edholm,O.G.,Fox,R.H.,&Macpherson,R.K.(1956).Theeffectofbodyheatingonthe circulationinskinandmuscle.JPhysiol,134(3),612-619. Enander,A.(1987).Effectsofmoderatecoldonperformanceofpsychomotorand cognitivetasks.Ergonomics,30(10),1431-1445.doi: 10.1080/00140138708966037 Eoh,HongJ.,Chung,MinK.,&Kim,Seong-Han.(2005).Electroencephalographicstudyof drowsinessinsimulateddrivingwithsleepdeprivation.InternationalJournalof IndustrialErgonomics,35(4),307-320.doi:10.1016/j.ergon.2004.09.006 Fagrell,B.(1985).Dynamicsofskinmicrocirculationinhumans.JCardiovascPharmacol,7 Suppl3,S53-58. Fagrell,B.,&Intaglietta,M.(1977).Thedynamicsofskinmicrocirculationasatoolforthe studyofsystemicdiseases.BiblAnat,16,231-234. Filtness,A.J.,Reyner,L.A.,&Horne,J.A.(2012).Driversleepiness-comparisonsbetween youngandoldermenduringamonotonousafternoonsimulateddrive.Biol Psychol,89(3),580-583.doi:10.1016/j.biopsycho.2012.01.002 Flammer,J.,Pache,M.,&Resink,T.(2001).Vasospasm,itsroleinthepothgenesisof diseaseswithparticularreferencetotheeye.ProgressinRetinalandEyeResearch, 20(3),319-349. Folkow,B.(1955).Nervouscontrolofthebloodvessels.PhysiolRev,35(3),629-663. Fronczek,R.,Middelkoop,H.A.,vanDijk,J.G.,&Lammers,G.J.(2006a).Focusingon vigilanceinsteadofsleepinessintheassessmentofnarcolepsy:highsensitivityof theSustainedAttentiontoResponseTask(SART).Sleep,29(2),187-191. Fronczek,R.,Overeem,S.,Lammers,G.J.,vanDijk,G.,&VanSomeren,E.J.(2006b). Alteredskintemperatureregulationinnarcolepsyrelatedtosleeppropensity. Sleep,29(11),1444-1449. Fronczek,R.,Raymann,R.J.,Romeijn,N.,Overeem,S.,Fischer,M.,vanDijk,J.G.,...Van Someren,E.J.(2008).Manipulationofcorebodyandskintemperatureimproves vigilanceandmaintenanceofwakefulnessinnarcolepsy.Sleep,31(2),233-240. Gagge,A.P.,&Gonzalez,R.R.(1996).Mechanismsofheatexchange:biophysicsand physiology.InM.J.Fregly&C.M.Blatteis(Eds.),Handbookofphysiolog,Section4: EnvironmentalPhysiology(pp.45-84).NewYork:OxfordUniversityPress. Galland,B.C.,Kennedy,G.J.,Mitchell,E.A.,&Taylor,B.J.(2012).Algorithmsforusingan activity-basedaccelerometerforidentificationofinfantsleep-wakestatesduring napstudies.SleepMed,13(6),743-751.doi:10.1016/j.sleep.2012.01.018 124 Gaus,S.E.,Strecker,R.E.,Tate,B.A.,Parker,R.A.,&Saper,C.B.(2002).Ventrolateral preopticnucleuscontainssleep-active,galaninergicneuronsinmultiple mammalianspecies.Neuroscience,115(1),285-294. Gilbert,S.S.,Burgess,H.J.,Kennaway,D.J.,&Dawson,D.(2000).Attenuationofsleep propensity,corehypothermia,andperipheralheatlossaftertemazepamtolerance. AmJPhysiolRegulIntegrCompPhysiol,279(6),R1980-1987. Gillberg,M.,&Akerstedt,T.(1982).BodyTemperatureandSleepatDifferentTimesof Day.Sleep,5(4),378-388. Gillberg,M.,Kecklund,G.,&Akerstedt,T.(1996).Sleepinessandperformanceof perfessionaldriversinatrucksimulator-comparisonsbetweendayandnight driving.SleepResearch,5,12-15. Goldsmith,R.,&Hampton,I.F.(1968).Nocturnalmicroclimateofman.JPhysiol,194(1), 32P-33P. Gradisar,M.,Gardner,G.,&Dohnt,H.(2011).Recentworldwidesleeppatternsand problemsduringadolescence:areviewandmeta-analysisofage,region,andsleep. SleepMed,12(2),110-118.doi:10.1016/j.sleep.2010.11.008 Grandjean,E.(1979).Fatigueinindustry.BrJInternalMed,36,175-186. Grandjean,E.(1988).Fittingthetasktotheman.London:TaylorandFrancis. Grant,R.T.,&Holling,H.E.(1938).Furtherobservationsonthevascularresponsesofthe humanlimbtobodywarming:evidenceforsympatheticvasodilatornervesinthe normalsubject.ClinSci,3,273-285. Greenspan,J.D.,Taylor,D.J.,&McGillis,S.L.B.(1993).Bodysitevariationofcool perceptionthresholdswithovservationsofparadoxicalheat.Somatosensoryand MotorResearch,10(4),467-474. Greneche,J.,Krieger,J.,Erhardt,C.,Bonnefond,A.,Eschenlauer,A.,Muzet,A.,&Tassi,P. (2008).EEGspectralpowerandsleepinessduring24hofsustainedwakefulness inpatientswithobstructivesleepapneasyndrome.ClinNeurophysiol,119(2),418428.doi:10.1016/j.clinph.2007.11.002 Guyton,A.C.(1991).TextbookofMedicalPhysiology.Philadelphia:W.B.Saunders. Hakkinen,V.,Hirvonen,K.,Hasan,J.,Kataja,M.,Varri,A.,Loula,P.,&Eskola,H.(1993).The effectofsmalldifferencesinelectrodepositiononEOGsignals:applicationto vigilancestudies.ElectroencephalogrClinNeurophysiol,86(4),294-300. Hales,J.R.S.(1985).Skinarteriovenousanastomoses,theircontrolandrolein thermoregulation.PaperpresentedattheCardiovascularshunts. Hales,J.R.S.,Iriki,M.,Tsuchiya,K.,&Kozawa,E.(1978).Thermally-InducedCutaneous SympatheticActivityRelatedtoBlood-FlowthroughCapillariesandArteriovenous Anastomoses.PflugersArchiv-EuropeanJournalofPhysiology,375(1),17-24.doi: Doi10.1007/Bf00584143 Halson,S.L.(2014).Sleepineliteathletesandnutritionalinterventionstoenhancesleep. SportsMed,44Suppl1,S13-23.doi:10.1007/s40279-014-0147-0 Hardy,J.D.,&Soderstrom,G.F.(1938).Heatlossfromthenudebodyandperipheral bloodflowattemperaturesof22Cto35C.JNutrition,16(5),494-510. Haskell,E.H.,Palca,J.W.,Walker,J.M.,Berger,R.J.,&Heller,H.C.(1981).Theeffectsof highandlowambienttemperaturesonhumansleepstages.Electroencephalogr ClinNeurophysiol,51(5),494-501. Hassani,O.K.,Lee,M.G.,&Jones,B.E.(2009).Melanin-concentratinghormoneneurons dischargeinareciprocalmannertoorexinneuronsacrossthesleep-wakecycle. ProcNatlAcadSciUSA,106(7),2418-2422.doi:10.1073/pnas.0811400106 125 Heller,H.C.,Edgar,D.M.,Grahn,D.A.,&Glotzbach,S.F.(2011).Chapter59:Sleep, thermoregulation,circadianrhythmsD.M.Pollock(Ed.)HandbookofPhysiology- Environmetnalphysiologydoi:10.1002/cphy.cp040259 Hensel,H.(1982).Thermalsensationandthermoreceptorsinman.Springfield:CharlesC Thomas. Himanen,S.L.,&Hasan,J.(2000).LimitationsofRechtschaffenandKales.SleepMedRev, 4(2),149-167.doi:10.1053/smrv.1999.0086 Horne,J.A.,&Reyner,L.A.(1995).Driversleepiness.JSleepRes,4(S2),23-29. Horne,J.A.,&Reyner,L.A.(1996).Counteractingdriversleepiness:effectsofnapping, caffeine,andplacebo.Psychophysiology,33(3),306-309. Humphreys,M.A.,J.,McCartneyK.,Nicol,J.F.,&Raja,I.A.(1999).Ananalysisofsome observationsofthefingertemperatureandthermalcomfortofofficeworkers. ProceedingsofIndoorAir,602-607. Hurwitz,S.,Cohen,R.J.,&Williams,G.H.(2004).Diurnalvariationofaldosteroneand plasmareninactivity:timingrelationtomelatoninandcortisolandconsistency afterprolongedbedrest.JApplPhysiol,96(4),1406-1414.doi: 10.1152/japplphysiol.00611.2003 Iber,C.,Ancoli-Israel,S.,Chesson,A.,&Quan,S.F.(2007).TheAASMmanualforthe scoringofsleepandassociatedevens:rules,terminology,andtechnical specification.(1sted.).Wstchester,IL:AmericanAcademyofSleepMedicine. Jasper,H.H.(1958).Theten-twentyelectrodesystemoftheinternationalfederation. Electroencephalographyandclinicalneurophysiology,10,371-375. Jin,X.,Shearman,L.P.,Weaver,D.R.,Zylka,M.J.,deVries,G.J.,&Reppert,S.M.(1999).A molecularmechanismregulatingrhythmicoutputfromthesuprachiasmatic circadianclock.Cell,96(1),57-68. Johnson,R.F.,Moore,R.Y.,&Morin,L.P.(1988).Lossofentainmentandanatomical plasticityafterlesionsofthehamsterretinohypothalamictract.BrainRes,460, 297-313. Jones,C.,Lee,C.,&Rajaratnam,s.(2010).Sleep,LawandPolicy.InCappuccio,Miller& Lockley(Eds.),Sleep,health,andsociety:fromaetiologytopublichealth.NY,USA: OxfordUniversityPress. Kaida,K.,Takahashi,M.,Akerstedt,T.,Nakata,A.,Otsuka,Y.,Haratani,T.,&Fukasawa,K. (2006).ValidationoftheKarolinskasleepinessscaleagainstperformanceandEEG variables.ClinNeurophysiol,117(7),1574-1581.doi:10.1016/j.clinph.2006.03.011 Kanosue,K.,Hosono,T.,Yoda,T.,Liu,S.,&Yoshida,K.(1999).Neuronalnetwork underlyingthermoregulatoryvasomotorcontrol.Paperpresentedatthe1998 InternationalSymposuumonHumanBiometeorology,Tokyo. Karasek,M.,&Winczyk,K.(2006).Melatonininhumans.JPhysiolPharmacol,57Suppl 5(5),19-39. Kayaba,Y.,Nakamura,A.,Kasuya,Y.,Ohuchi,T.,Yanagisawa,M.,Komuro,I.,...Kuwaki,T. (2003).Attenuateddefenseresponseandlowbasalbloodpressureinorexin knockoutmice.AmJPhysiolRegulIntegrCompPhysiol,285(3),R581-593.doi: 10.1152/ajpregu.00671.2002 Kingma,B.,Frijns,A.,&vanMarkenLichtenbelt,W.(2012).Thethermoneutralzone: implicationsformetabolicstudies.FrontBiosci(EliteEd),4,1975-1985. Klimesch,W.(1999).EEGalphaandthetaoscillationsreflectcognitiveandmemory performance:areviewandanalysis.BrainResRev,29(2-3),169-195. 126 Kobayashi,Shigeo,Okazawa,Makoto,Hori,Aiko,Matsumura,Kiyoshi,&Hosokawa, Hiroshi.(2006).Paradigmshiftinsensorysystem—Animalsdonothavesensors. JournalofThermalBiology,31(1-2),19-23.doi:10.1016/j.jtherbio.2005.11.011 Kopruner,V.,Pfurtscheller,G.,&Auer,L.M.(1984).QuantitativeEEGinnormalsandin patientswithcerebralischemia.InG.Pfurtscheller,E.J.Jonkman&F.Lopesda Silva(Eds.),BrainIschemia:QuantitativeEEGandImagingTechniques,Progressin BrainResearch(Vol.62,pp.29-50):ElsevierSciencePublishers. Kräuchi,K.(2007).Thehumansleep-wakecyclereconsideredfromathermoregulatory pointofview.PhysiolBehav,90(2-3),236-245.doi: 10.1016/j.physbeh.2006.09.005 Kräuchi,K.,Cajochen,C.,Werth,E.,&Wirz-Justice,A.(1999).Warmfeetpromotethe rapidonsetofsleep.Nature,401(6748),36-37.doi:10.1038/43366 Kräuchi,K.,Cajochen,C.,&Wirz-Justice,A.(1997).Arelationshipbetweenheatlossand sleepiness:effectsofposturalcahagneandmelatoninadministration.J.Appl. Physiol.,83(1),134-139. Kräuchi,K.,Gasio,P.F.,Vollenweider,S.,VonArb,M.,Dubler,B.,Orgul,S.,...Stutz,E.Z. (2008).Coldextremitiesanddifficultiesinitiatingsleep:evidenceofco-morbidity fromarandomsampleofaSwissurbanpopulation.JSleepRes,17(4),420-426. doi:10.1111/j.1365-2869.2008.00678.x Kräuchi,K.,&Wirz-Justice,A.(1994).Circadianrhythmofheatproduction,heartrate,and skinandcoretemperatureunderunmaskingconditionsinmen.AmJPhysiol, 267(3Pt2),R819-829. Kräuchi,Kurt.(2002).Howisthecircadianrhythmofcorebodytemperatureregulated? ClinicalAutonomicResearch,12(3),147-149.doi:10.1007/s10286-002-0043-9 Kräuchi,Kurt,Cajochen,C.,Werth,E.,&Wirz-Justice,A.(2000).Functionlinkbetween distalvasodilationandsleep-onsetlatency?AmJPhysiolRegulIntegrCompPhysiol, 278,741-748. Kräuchi,Kurt,&Deboer,T.(2010).Bodytemperatures,sleepandhibernation.InM.H. Kryger,T.Roth&W.C.Dement(Eds.),PrinciplesandPracticeofSleepMedicine (5thEd)(5ed.).Missouri:Elsevierhealthsciences. Lal,S.K.,&Craig,A.(2001).Acriticalreviewofthepsychophysiologyofdriverfatigue. BiolPsychol,55(3),173-194. Lal,S.K.,&Craig,A.(2002).Driverfatigue:electroencephalographyandpsychological assessment.Psychophysiology,39(3),313-321.doi:10.1017.S0048577201393095 Lee,M.G.,Hassani,O.K.,&Jones,B.E.(2005).Dischargeofidentifiedorexin/hypocretin neuronsacrossthesleep-wakingcycle.JNeurosci,25(28),6716-6720.doi: 10.1523/JNEUROSCI.1887-05.2005 Lewis,T.,&Pickering,G.W.(1931).Vasodilationinthelimbsinresponsetowarmingthe body;evidenceforsypatheticvasodilatornervesinman.Heart,16(33-51). Liao,W.C.(2002).Effectsofpassivebodyheatingonbodytemperatureandsleep regulationintheelderly:asystematicreview.IntJNursStud,39(8),803-810. Lim,J.,&Dinges,D.F.(2008).Sleepdeprivationandvigilantattention.AnnNYAcadSci, 1129,305-322.doi:10.1196/annals.1417.002 Loh,S.,Lamond,N.,Dorrian,J.,Roach,G.,&Dawson,D.(2004).Thevalidityof psychomotorvigilancetasksoflessthan10-minuteduration.BehaviorResearch MethodsInstruments&Computers,36(2),339-346.doi:Doi10.3758/Bf03195580 Lorist,M.M.(2008).Impactoftop-downcontrolduringmentalfatigue.BrainRes,1232, 113-123.doi:10.1016/j.brainres.2008.07.053 127 Love,L.H.(1948).Heatlossandbloodflowofthefeetunderhotandcoldconditions.J ApplPhysiol,1(1),20-34. Lv,Yong-Gang,&Liu,Jing.(2007).Effectoftransienttemperatureonthermoreceptor responseandthermalsensation.BuildingandEnvironment,42(2),656-664.doi: 10.1016/j.buildenv.2005.10.030 Madrid,R.E.,Treo,E.F.,Herrera,M.C.,&Martinez,C.C.(2010).Electrodes.InR.Splinter (Ed.),HandbookofPhysicsinMedicineandBiology(pp.1-21).NY,USA:CRCPress. Marzano,C.,Ferrara,M.,Moroni,F.,&DeGennaro,L.(2011).Electroencephalographic sleepinertiaoftheawakeningbrain.Neuroscience,176,308-317.doi: 10.1016/j.neuroscience.2010.12.014 McDonnell,A.C.,Eiken,O.,Mekjavic,P.J.,&Mekjavic,I.B.(2014).Circadianrhythmof peripheralperfusionduring10-dayhypoxicconfinementandbedrest.EurJAppl Physiol,114(10),2093-2104.doi:10.1007/s00421-014-2923-9 McEvoy,L.K.,Smith,M.E.,&Gevins,A.(2000).Test-retestreliabilityofcognitiveEEG.Clin Neurophysiol,111(3),457-463. Mekjavic,I.B.,&Bligh,J.(1989).Corethresholdtemperaturesforsweating.CanJPhysiol Pharmacol,67(9),1038-1044. Mekjavic,I.B.,&Morrison,J.B.(1986).Evaluationofpredictiveformulaefordetermining metabolicrateduringcoldwaterimmersion.AviatSpaceEnvironMed,57(7),671680. Mekjavic,I.B.,Sundberg,C.J.,&Linnarsson,D.(1991).CoreTemperatureNullZone.JAppl Physiol,71(4),1289-1295. Mekjavic,I.,&Eiken,O.(2006).Contributionofthermalandnonthermalfactorstothe regulationofbodytemperatureinhumans.JApplPhysiol,100,2065-2072.doi: 10.1152/japplphysiol.01118.2005.-The Mesulam,M.M.(1986).Frontalcortexandbehavior.AnnNeurol,19(4),320-325.doi: 10.1002/ana.410190403 Mills,J.N.,Minors,D.S.,&Waterhouse,J.M.(1978).Adaptationtoabrupttimeshiftsof theoscillatorscontrollinghumancircadianrhythms.JPhysiol,285,455-470. Moore,R.Y.(2007).Suprachiasmaticnucleusinsleep-wakeregulation.SleepMed,8Suppl 3,27-33.doi:10.1016/j.sleep.2007.10.003 Moore,R.Y.,&Danchenko,R.L.(2002).Paraventricular-subparaventricularhypothalamic lesionsselectivelyaffectcircadianfunction.ChronobiologyInternational,19,345360. Murphy,P.J.,&Campbell,S.S.(1997).Nighttimedropinbodytemperature:a physiologicaltriggerforsleeponset?Sleep,20(7),505-511. Nadel,E.R.,Bullard,R.W.,&Stolwijk,J.A.(1971).Importanceofskintemperatureinthe regulationofsweating.JApplPhysiol,31(1),80-87. Nagashima,K.,Nakai,S.,Tanaka,M.,&Kanosue,K.(2000).Neuronalcircuitriesinvolved inthermoregulation.AutonNeurosci,85(1-3),18-25.doi:10.1016/S15660702(00)00216-2 Nakazawa,Y.,Kotorii,M.,Ohshima,M.,Kotorii,T.,&Hasuzawa,H.(1978).Changesin sleeppatternaftersleepdeprivation.FoliaPsychiatrNeurolJpn,32(1),85-93. Niedermeyer,E.(1999).ThenormalEEGofthewakingadult.InE.Niedermeyer&F. LopesdaSilva(Eds.),Electroencephalography:BasicPrinciples,Clinical AplicationsandRelatedFields(pp.149-173).Baltimore,MD:Lippincott,Williams &Wilkins. 128 Oken,B.S.,Salinsky,M.C.,&Elsas,S.M.(2006).Vigilance,alertness,orsustained attention:physiologicalbasisandmeasurement.ClinNeurophysiol,117(9),18851901.doi:10.1016/j.clinph.2006.01.017 Olds,T.,Maher,C.,Blunden,S.,&Matricciani,L.(2010).Normativedataonthesleep habitsofAustralianchildrenandadolescents.Sleep,33(10),1381-1388. Overeem,Sebastiaan,Reading,Paul,&Bassetti,ClaudioL.(2012).Narcolepsy.Sleep MedicineClinics,7(2),263-281.doi:10.1016/j.jsmc.2012.03.013 Palca,J.W.,Walker,J.M.,&Berger,R.J.(1986).Thermoregulation,metabolism,andstages ofsleepincold-exposedmen.JApplPhysiol,61(3),940-947. Pandi-Perumal,S.R.,Trakht,I.,Srinivasan,V.,Spence,D.W.,Maestroni,G.J.,Zisapel,N.,& Cardinali,D.P.(2008).Physiologicaleffectsofmelatonin:roleofmelatonin receptorsandsignaltransductionpathways.ProgNeurobiol,85(3),335-353.doi: 10.1016/j.pneurobio.2008.04.001 Parmeggiani,P.L.,&Rabini,C.(1970).Sleepandenvironmentaltemperature.ArchItal Biol,108(2),369-387. Patil,P.G.,Apfelbaum,J.L.,&Zacny,J.P.(1995).Effectsofacold-waterstressoron psychomotorandcognitivefunctioninginhumans.PhysiolBehav,58(6),12811286. Pierau,F.(1996).Peripheralthermoreceptors.InM.J.Fregly&C.M.Blatteis(Eds.), HandbookofPhysiology,Section4:EnvironmentalPhysiology(Vol.85-104).New York:OxfordUniversityPress. Pizzagalli,D.A.(2007).Electroencephalographyandhigh-denistyelectrophysiological sourcelocalisation.InJ.T.Cacioppo,L.G.Tassinary&G.Berntson(Eds.),Handbook ofpsychophysiology(thirded.,pp.56-84).NewYork,USA:CambridgeUniversity Press. Porkka-Heiskanen,T.,Alanko,L.,Kalinchuk,A.,&Stenberg,D.(2002).Adenosineand sleep.SleepMedRev,6(4),321-332. Porkka-Heiskanen,Tarja,&Kalinchuk,AnnaV.(2011).Adenosineasasleepfactor.Sleep andBiologicalRhythms,9,18-23.doi:10.1111/j.1479-8425.2010.00472.x Prinzel,LawrenceJ.,Freeman,FrederickG.,Scerbo,MarkW.,Mikulka,PeterJ.,&Pope, AlanT.(2003).EffectsofaPsychophysiologicalSystemforAdaptiveAutomation onPerformance,Workload,andtheEvent-RelatedPotentialP300Component. HumanFactors:TheJournaloftheHumanFactorsandErgonomicsSociety,45(4), 601-613.doi:10.1518/hfes.45.4.601.27092 Putilov,A.A.,&Donskaya,O.G.(2013).ConstructionandvalidationoftheEEGanalogues oftheKarolinskasleepinessscalebasedontheKarolinskadrowsinesstest.Clin Neurophysiol,124(7),1346-1352.doi:10.1016/j.clinph.2013.01.018 Ranson,S.W.(1939).TheHypothalamusasaThermostatRegulatingBodyTemperature. PsychosomaticMedicine,1(4),486-495. Ray,W.J.,&Cole,H.W.(1985a).EEGactivityduringcognitiveprocessing:influenceof attentionalfactors.IntJPsychophysiol,3(1),43-48. Ray,W.J.,&Cole,H.W.(1985b).EEGalphaactivityreflectsattentionaldemandsandbeta activityreflectsemotionalandcognitvieprocesses.Science,228,750-752. Raymann,R.J.,Swaab,D.F.,&VanSomeren,E.J.(2005).Cutaneouswarmingpromotes sleeponset.AmJPhysiolRegulIntegrCompPhysiol,288(6),R1589-1597.doi: 10.1152/ajpregu.00492.2004 Raymann,R.J.,Swaab,D.F.,&VanSomeren,E.J.(2007a).Skintemperatureandsleeponsetlatency:changeswithageandinsomnia.PhysiolBehav,90(2-3),257-266. doi:10.1016/j.physbeh.2006.09.008 129 Raymann,R.J.,Swaab,D.F.,&VanSomeren,E.J.(2008).Skindeep:enhancedsleepdepth bycutaneoustemperaturemanipulation.Brain,131(Pt2),500-513.doi: 10.1093/brain/awm315 Raymann,R.J.,&VanSomeren,E.J.(2007b).Timeontaskimpairmentofpsychomotor vigilanceisaffectedbymildskinwarmingandchangeswithagingandinsomnia. Sleep,30(1),96-103. Rechtschaffen,A.,&Kales,A.(1968).Amanualofstandardizedterminology,techniques andscoringsystemforsleepstagesofhumansubjects. Refinetti,R.,&Menaker,M.(1992).Thercircadianrhythmofbodytemperature.Physiol Behav,51(3),613-637. Reid,G.,&Flonta,M.L.(2001).Physiology.Coldcurrentinthermoreceptiveneurons. Nature,413(6855),480.doi:10.1038/35097164 Reppert,S.M.,&Weaver,D.R.(2002).Coordinationofcircadiantiminginmammals. Nature,418(6901),935-941.doi:10.1038/nature00965 Reyner,L.A.,&Horne,J.A.(1998).Evaluationof'in-car'countermeasurestosleepiness: Coldairandradio.Sleep,21(1),46-50. Reyner,L.A.,Wells,S.J.,Mortlock,V.,&Horne,J.A.(2012).'Post-lunch'sleepinessduring prolonged,monotonousdriving-effectsofmealsize.PhysiolBehav,105(4),10881091.doi:10.1016/j.physbeh.2011.11.025 Romanovsky,A.A.(2007).Thermoregulation:someconceptshavechanged.Functional architectureofthethermoregulatorysystem.AmJPhysiolRegulIntegrComp Physiol,292(1),R37-46.doi:10.1152/ajpregu.00668.2006 Romeijn,N.,Raymann,R.J.,Most,E.,TeLindert,B.,VanDerMeijden,W.P.,Fronczek,R.,.. .VanSomeren,E.J.(2012a).Sleep,vigilance,andthermosensitivity.PflugersArch, 463(1),169-176.doi:10.1007/s00424-011-1042-2 Romeijn,N.,&VanSomeren,E.J.(2011).Correlatedfluctuationsofdaytimeskin temperatureandvigilance.JBiolRhythms,26(1),68-77.doi: 10.1177/0748730410391894 Romeijn,N.,Verweij,I.M.,Koeleman,A.,Mooij,A.,Steimke,R.,Virkkala,J.,...Van Someren,E.J.(2012b).Coldhands,warmfeet:sleepdeprivationdisrupts thermoregulationanditsassociationwithvigilance.Sleep,35(12),1673-1683.doi: 10.5665/sleep.2242 Rowell,L.B.(1970).Redistributionofbloodflowduringsustainedhighskintemperature inrestingman.JApplPhysiol,28(415-420). Ruehland,W.R.,O'Donoghue,F.J.,Pierce,R.J.,Thornton,A.T.,Singh,P.,Copland,J.M.,... Rochford,P.D.(2011).The2007AASMrecommendationsforEEGelectrode placementinpolysomnography:impactonsleepandcorticalarousalscoring. Sleep,34(1),73-81. Sakurai,T.,Mieda,M.,&Tsujino,N.(2010).Theorexinsystem:rolesinsleep/wake regulation.AnnNYAcadSci,1200,149-161.doi:10.1111/j.17496632.2010.05513.x Santamaria,J.,&Chiappa,K.H.(1987).TheEEGofdrowsinessinnormaladults.JClin Neurophysiol,4(4),327-382. Saper,C.B.,Chou,T.C.,&Scammell,T.E.(2001).Thesleepswitch:hypothalamiccontrol ofsleepandwakefulness.TrendsNeurosci,24(12),726-731. Saper,C.B.,Scammell,T.E.,&Lu,J.(2005).Hypothalamicregulationofsleepand circadianrhythms.Nature,437(7063),1257-1263.doi:10.1038/nature04284 Schacter,D.L.(1977).EEGthetawavesandpsychologicalphenomena:areviewand analysis.BiolPsychol,5(1),47-82. 130 Schepers,R.J.,&Ringkamp,M.(2010).Thermoreceptorsandthermsensitiveafferents. Neuroscienceandbiobehavioralreviews,34,177-184.doi: 10.1016/j.neubiorev.2009.10.003 10.1016/j.neubiorev.2008.07.009 Schier,M.A.(2000).ChangesinEEGalphapowerduringsimulateddriving:a demonstration.IntJPsychophysiol,37(2),155-162. Sciences,CommissionforThermalPhysiologyoftheInternationalUnionofPhysiological. (2001).Glossaryoftermsforthermalphysiology.JapJPhysiol,51(2),245-280. Sewitch,D.E.,Kittrell,E.M.,Kupfer,D.J.,&Reynolds,C.F.,3rd.(1986).Bodytemperature andsleeparchitectureinresponsetoamildcoldstressinwomen.PhysiolBehav, 36(5),951-957. Simmons,S.E.,Saxby,B.K.,McGlone,F.P.,&Jones,D.A.(2008).Theeffectofpassive heatingandheadcoolingonperception,cardiovascularfunctionandcognitive performanceintheheat.EurJApplPhysiol,104(2),271-280.doi:10.1007/s00421008-0677-y Standring,S.(2008).Grey'sanatomy:theanatomicalbasisofclinicalpractice,40thedn (40thed.).Edinburgh:ChurchillLivingstone/Elsevier. Stern,J.A.(1994).BlinkRtate:Apossiblemeasureoffatigue.humanfactors,36(2),285297.doi:10.1177/001872089403600209 Stevens,J.C.,&Marks,L.E.(1979).Spatialsummationofcold.PhysiolBehav,22(3),541547. Stevens,J.C.,Marks,L.E.,&Simonson,D.C.(1974).RegionalSensitivityandSpatial SummationintheWarmthSense.PhysiolBehav,13(825-836). Tanaka,H.(2001).Effectsofshortnapandexerciseonelderlypeoplehavingdifficultyin sleeping.PsychiatryandClinicalNeurosciences,55(3),173-174.doi:Doi 10.1046/J.1440-1819.2001.00813.X Taylor,N.A.,Kondo,N.,&Kenney,W.L.(2008a).Thephysiologyofacuteheatexpousure, withimplicationsforhumanperformanceintheheat.InN.A.Taylor&H.Groeller (Eds.),Physiologicalbasesofhumanperformanceduringworkandexercise(pp. 341-358).Oxford:Elsevier. Taylor,N.A.,Machado-Moreira,C.A.,vandenHeuvel,A.M.,&Caldwell,J.N.(2014).Hands andfeet:physiologicalinsulators,radiatorsandevaporators.EurJApplPhysiol, 114(10),2037-2060.doi:10.1007/s00421-014-2940-8 Taylor,N.A.,Mekjavic,I.,&Tipton,M.(2008b).ThePhysiologyofAcuteColdExposure withParticularReferencetoHumanPerformanceintheCold.InN.A.Taylor&H. Groeller(Eds.),PhysiologicalBasesofHumanPerformanceduringWorkand ExerciseElsevier. Teplan,M.(2002).FundamentalsofEEGmeasurement.Measurementsciencereview,2(2), 1-11. Terry,P.C.,Lane,A.M.,Lane,H.J.,&Keohane,L.(1999).Developmentandvalidationofa moodmeasureforadolescents.JSportsSci,17(11),861-872.doi: 10.1080/026404199365425 Tononi,G.,&Cirelli,C.(2006).Sleepfunctionandsynaptichomeostasis.SleepMedRev, 10(1),49-62.doi:10.1016/j.smrv.2005.05.002 Tops,M.,Lorist,M.M.,Wijers,AlbertusA.,&Meijman,T.F.(2004).Tostressorrelax: Neurochemicalaspectsofactivityandrest.GedragOrganisatie,17,32-42. Torii,M.,Nakayama,H.,&Sasaki,T.(1995).Thermoregulationofexercisingmeninthe morningriseandeveningfallphasesofinternaltemperature.BrJSportsMed, 29(2),113-120. 131 Townsend,R.E.,&C.,JohnsonL.(1979).TherelationoffrequencyanalysedEEGto monitoringbehaviour.Electroencephalographyandclinicalneurophysiology,47, 272-279. Transport,Ministryof.(2011a).Fatigue:Crashstaticsticsfortheyearended31December 2010. Transport,Ministryof.(2011b).Yearlyreport:MotorVehicleCrashesinNewZealand2010. NewZealand:Retrievedfromhttp://www.transport.govt.nz. Transport,Ministryof.(2012).Fatiguecrashfacts2012. VanDenHeuvel,C.J.,Reid,K.J.,&Dawson,D.(1997).Effectofatenololonnocturnalsleep andtempreatureinyoungmen:reveralbypharmacologicaldosesofmelatonin. PhysiolBehav,61(6),795-802. vanDongen,H.P.A.,&Dinges,D.F.(2000).CircadianRhythmsinFatigue,Alertnessand Performance.InM.H.Kryger,T.Roth&W.C.Dement(Eds.),Principlesand PracticeofSleepMedicine(3ed.,pp.391-399).Philadelphia,PA:W.B.Saunders. VanDongen,H.P.,Maislin,G.,Mullington,J.M.,&Dinges,D.F.(2003).Thecumulativecost ofadditionalwakefulness:dose-responseeffectsonneurobehavioralfunctionsand sleepphysiologyfromchronicsleeprestrictionandtotalsleepdeprivation.Sleep, 26(2),117-126. VanSomeren,E.J.,Raymann,R.J.,Scherder,E.J.,Daanen,H.A.,&Swaab,D.F.(2002). Cicadianandage-relatedmodulationofthermoreceptionandtemperature regulation:mechanismsandfunctionalimplications.agingresearchrev,1,721778. VanSomeren,EusJ.W.(2004).Sleeppropensityismodulatedbycircadianandbehaviorinducedchangesincutaneoustemperature.JournalofThermalBiology,29(7-8), 437-444.doi:10.1016/j.jtherbio.2004.08.003 VanSomeren,EusJ.W.(2006).Mechanismsandfunctionsofcouplingbetweensleepand temperaturerhythms.ProgBrainResearch,153,309-324.doi:10.1016/s00796123(06)53018-3 Vinogradova,O.S.(1995).Expression,control,andprobablefunctionalsignificanceofthe neuronaltheta-rhythm.ProgNeurobiol,45(6),523-583. VonEconomo,C.(1931).Encephalitislethargica,itssequelaeandtreatment.London: OxfordUniversityPress. Wang,Danni,Zhang,Hui,Arens,Edward,&Huizenga,Charlie.(2007).Observationsof upper-extremityskintemperatureandcorrespondingoverall-bodythermal sensationsandcomfort.BuildingandEnvironment,42(12),3933-3943.doi: 10.1016/j.buildenv.2006.06.035 Warm,J.S.,Parasuraman,R.,&Matthews,G.(2008).VigilanceRequiresHardMental WorkandIsStressful.HumanFactors:TheJournaloftheHumanFactorsand ErgonomicsSociety,50(3),433-441.doi:10.1518/001872008x312152 Waterhouse,Jim,Drust,Barry,Weinert,Dietmar,Edwards,Benjamin,Gregson,Warren, Atkinson,Greg,...Reilly,Thomas.(2005).TheCircadianRhythmofCore Temperature:OriginandsomeImplicationsforExercisePerformance. ChronobiologyInternational,22(2),207-225.doi:10.1081/cbi-200053477 Weiss,B.,&Laties,V.G.(1961).Behaviouralthermoregulation.Science,133,1338-1344. Wenger,B.C.,Roberts,M.F.,Stolwijk,J.A.J.,&Nadel,E.R.(1976).Nocturnalloweringof thresholdsforsweatingandvasodilation.JBiolRhythms,41(1),15-19. Werner,J.(1980).Theconceptofregulationforhumanbodytemperature.Jthermbiol,5, 75-82. 132 Werner,J.(2010).Systemproperties,feedbackcontrolandeffectorcoordinationof humantemperatureregulation.EurJApplPhysiol,109(1),13-25.doi: 10.1007/s00421-009-1216-1 Werner,J.,&Reents,T.(1980).Acrontributiontothetopographyoftemperature regulationinman.EurJApplPhysiol,45,87-94. Wilkinson,R.T.,&Houghton,D.(1982).Fieldtestofarousal:aportablereactiontimer withdatastorage.HumFactors,24(4),487-493.doi: 10.1177/001872088202400409 Wright,K.P.,Jr.,Myers,B.L.,Plenzler,S.C.,Drake,C.L.,&Badia,P.(2000).Acuteeffectsof brightlightandcaffeineonnighttimemelatoninandtemperaturelevelinwomen takingandnottakingoralcontraceptives.BrainRes,873,310-17. Wright,K.P.,Jr.,Hull,J.T.,&Czeisler,C.A.(2002).Relationshipbetweenalertness, performance,andbodytemperatureinhumans.AmJPhysiolRegulIntegrComp Physiol,283(6),R1370-1377.doi:10.1152/ajpregu.00205.2002 Wright,K.P.,Jr.,McHill,A.W.,Birks,B.R.,Griffin,B.R.,Rusterholz,T.,&Chinoy,E.D. (2013).Entrainmentofthehumancircadianclocktothenaturallight-darkcycle. CurrBiol,23(16),1554-1558.doi:10.1016/j.cub.2013.06.039 Wyss,C.R.,Brengelmann,G.L.,&Johnson,J.M.(1974).Controlofskinbloodflow, sweating,andheatrate:roleofskinvs.coretemperature.JApplPhysiol,36(6), 726-733. Yamanaka,Yujiro,Honma,Ken-ichi,Hashimoto,Satoko,Takasu,Nana,Miyazaki, Toshihiko,&Honma,Sato.(2006).Effectsofphysicalexerciseonhumancircadian rhythms.SleepandBiologicalRhythms,4(3),199-206.doi:10.1111/j.14798425.2006.00234.x Yerkes,R.M.,&Dodson,J.D.(1908).Therelationofstrengthofstimulustorapidityof habit-formation.JournalofComparativeNeurologyandPsychology,18(5),459-482. doi:Doi10.1002/Cne.920180503 Yoshida,H.,Ishikawa,T.,Shiraishi,F.,&Kobayashi,T.(1998).Effectsofthetimingof exerciseonthenightsleep.PsychiatryClinNeurosci,52(2),139-140.doi: 10.1111/j.1440-1819.1998.tb00994.x Zealand,StatisticsNew.(2001).AroundtheClock. Zhang,Hui,Arens,Edward,Huizenga,Charlie,&Han,Taeyoung.(2010a).Thermal sensationandcomfortmodelsfornon-uniformandtransientenvironments,part II:Localcomfortofindividualbodyparts.BuildingandEnvironment,45(2),389398.doi:10.1016/j.buildenv.2009.06.015 Zhang,Hui,Arens,Edward,Huizenga,Charlie,&Han,Taeyoung.(2010b).Thermal sensationandcomfortmodelsfornon-uniformandtransientenvironments,part III:Whole-bodysensationandcomfort.BuildingandEnvironment,45(2),399-410. doi:10.1016/j.buildenv.2009.06.020 Zhang,Hui,Arens,Edward,Huizenga,Charlie,&Han,Taeyoung.(2010c).Thermal sensationandcomfortmodelsfornon-uniformandtransientenvironments:PartI: Localsensationofindividualbodyparts.BuildingandEnvironment,45(2),380388.doi:10.1016/j.buildenv.2009.06.018 133 7.0 APPENDICES AppendixA:Participantinformationandconsentform Referencenumber:13/087 April2013 PARTICIPANTINFORMATIONSHEET DistalSkinTemperatureandCognitivePerformance Thankyouforexpressinganinterestinthisproject.Pleasereadthefollowing informationcarefullybeforedecidingwhethertoparticipateinthestudy.Ifyouhave anyquestions,pleasedonothesitatetoask. AimoftheStudy: Toexaminewhethercognitivefunctionisaffectedbytemperatureofthefeet.This studyisbeingundertakenforaMastersofPhysicalEducationresearchproject,underthesupervision oflecturerswithintheSchoolsofPhysicalEducationandMedicine.Theresearchwilltakeplaceinthe SchoolofPhysicalEducation(LaboratoryB01or113,55UnionStWest). TypeofParticipantsNeeded: Healthyyoungadults(18-30years)residinginDunedin,whoarewillingtostayuplateonthreenights toperformamonotonouspsychomotorvigilance(sustained,prolongedreactiontime)taskwhilealso havingtheirbrainfunctionandbodytemperaturemeasured(seebelow). WhatWillTheParticipantsBeDoing? Ifyouarewillingtoparticipate,youwillneedtoattendthelabonuptofouroccasions;onebeinga familiarisationsessionof~1hourduration,andthen2or3datacollectionsessionsofupto3hours each(spacedoneweekapart).Thedatacollectionsessionswillbeginat~10pm,therebyrequiringyou tostayup~2-3hourslaterthanusual,toperformamonotonousmentalfunctiontaskfor~40minutes oneachoccasion.Oneachofthesedaysyouwillneedtoavoidexerciseandcaffeinatedandalcoholic drinksfrommidday,andfollowthesamedietaryregime(includinghydration).Youwillberemindedof theserequests. Duringeachsessionyouwillhavetheelectricalactivityofyourbrain(EEG)andeyes(EOG)recorded usingelectrodesattachedviaacapandgluedtoyourscalp,yourheart’selectricalactivity(ECG) recordedfromelectrodesattachedtoyourskin,andyourbodytemperaturemeasuredusingelectrical thermometerswornonyourskinandwithinyourrectum.Youwillneedtoinsertthethermistor;itis sterile,flexibleanddisposable,andshouldnotbeuncomfortable.Periodicassessmentwillbemadeof yourmentalfunctioning(performanceonavigilancetask),perceivedtemperature,thermalcomfort andmoodstate.Thetaskwillinvolveaprolongedsustainedreactiontimeperformancetask,whichwill beperformedwhilethetemperatureofyourfeetisaltered. BenefitsofthisResearch: Mentalfunctionandthermoregulationarelinked,butthenatureoftheselinksisnotyetwell understood.Ourresearchisfocussedonimprovingsociety’sknowledgeofhowstronglyandinwhich directionrelationsexistbetweendistalskintemperatures(esp.thefeet),mentalfunctionandarousal state.Someimmediatebenefitsofthisknowledgeareinhelpingprovidetheevidencefor recommendationsaimedatreducingsleepdeprivation,andconversely,inpreventingsleeponset(e.g., inreducingfatigue-relatedroaddeaths). RisksandBenefitstotheParticipant Therearenodiscernible,knownrisksorbenefitsofparticipation,otherthan: • Thesocialandperhapstransientphysicaldiscomfortofrectaltemperaturemeasurement; 134 • Theinconvenienceanddiscomfortofremaininguplateandtheprolongedtask; • Sleep-deprivationonthedayfollowingeachtestingsession,therebyincreasingyourriskof impairedvigilance(e.g.,higherlikelihoodofhavingamotorvehicleaccident,orconcentrating inlecturesorotherwork)andimpairingyourimmunefunction(e.g.,possiblyhigher susceptibilitytoupperrespiratorytractinfection); • Milddiscomfortoffootcooling. Therecordingequipmentcarriesnoriskordiscomfort. Youwillbeinformedoftheresultsofthisproject,andtheirpracticalimplications,following completionofthedatacollectionandanalysis. DataInformationRequired • • • • Nameandphonenumber:Forcontactreasons. Ageandbodymass:Forparticipantcharacteristicspurposes. Usualsleeppatterns(viaa7-daysleepdiary). Heartrate,corebodyandskintemperatures,brainandeyeelectricalactivity,sustainedreaction timeperformanceandperceptionsofmoodandtemperature.Thisinformationisrequiredto examinethephysiological,perceivedandperformance-relatedeffectsofincreasinganddecreasing foottemperature. Alldataobtainedwillbeusedsolelyforthepurposesdescribedabove.Resultsofthisprojectwillbe includedinaMaster’sdegreethesis(whichwillbeavailableintheUniversityofOtagoLibrary)and maybepublishedinthescientificliterature,butanydataincludedwillnotbelinkedtoaspecific participant.Yourdatawillbeassignedapersonalidentificationnumbertoensureanonymityinboth theanalysisanddocumentationofresults.Thedataobtainedinthisstudywillonlybeavailabletothe MPhEdstudent(MrRyanSixtus),AssocProfJimCotter,AssocProfBarbaraGallandandDrJon Shemmell. Thedatacollectedwillbesecurelystoredinsuchawaythatonlythosementionedabovewillbeable togainaccesstothem.Dataobtainedasaresultoftheresearchwillberetainedforatleast5yearsin securestorage.Anypersonalinformationheldonparticipants(name,age,bodymass,phonenumber) willbedestroyedlatein2013whereasmeasurement/responsedatawillberetainedforatleastfive yearsfollowingpossiblepublicationofthereport. CanParticipantsChangetheirMindandWithdrawfromtheProject? You may withdraw from participation in the project at any time and without any disadvantage to yourselfofanykind. 135 ContactInformation Pleasefeelfreetocontactusatanytimewithquestionsandconcernsyoumayhaveabout participatinginthisresearchstudy. AssocProfJimCotterMrRyanSixtus SchoolofPhysicalEducation SchoolofPhysicalEducation Phone:479-9109 Phone:479-8991 email:[email protected] email:[email protected] Ifyouwishtocontactanindependentpersonregardinganyaspectofyourparticipation,please contact:ProfessorDouglasBooth,Dean,SchoolofPhysicalEducation,Otago,Phone:479-8995 ThisstudyhasbeenapprovedbytheUniversityofOtagoHumanEthicsCommittee.Ifyouhave anyconcernsabouttheethicalconductoftheresearchyoumaycontacttheCommittee throughtheHumanEthicsCommitteeAdministrator(ph.034798256).Anyissuesyouraise willbetreatedinconfidenceandinvestigatedandyouwillbeinformedoftheoutcome. 136 Referencenumber:13/087 April2013 CONSENTFORMFORPARTICIPANTS DistalSkinTemperatureandCognitivePerformance IhavereadtheInformationSheetconcerningthisprojectandunderstand whatitisabout.Allmyquestionshavebeenansweredtomysatisfaction.I understandthatIamfreetorequestfurtherinformationatanystage. Iknowthat: 1. 2. 3. Myparticipationintheprojectisentirelyvoluntary; Iamfreetowithdrawfromtheprojectatanytimewithoutanydisadvantage; Thedatawillbedestroyedattheconclusionoftheprojectbutanyrawdataonwhichtheresults oftheprojectdependmayberetainedinsecurestorageforuptofiveyearstoassistinchecking theaccuracyofthisresearchordevelopingfutureresearch,afterwhichtheywillbedestroyed; 4. Iwillberequiredtofollowsleepanddietaryrestrictionsonuptofouroccasions; 5. Iwillhavemymood,heartrateprofiles,cognitiveperformance,deepbodyandskin temperatures,andbrainandeyemuscleactivitymeasuredonuptofouroccasions,threeof whicharelateatnight,approximately1weekapart; 6. Iwillnotbereceivinganyrewardorcompensationformyparticipationinthisstudy. 7. TheresultsoftheprojectmaybepublishedandwillbeavailableintheUniversityofOtagoLibrary (Dunedin,NewZealand)buteveryattemptwillbemadetopreservemyanonymity. Iagreetotakepartinthisproject. ............................................................................. ............................... (SignatureofParticipant) (Date) ThisstudyhasbeenapprovedbytheUniversityofOtagoHumanEthicsCommittee.Ifyouhaveanyconcerns abouttheethicalconductoftheresearchyoumaycontacttheCommitteethroughtheHumanEthicsCommittee Administrator(ph.034798256).Anyissuesyouraisewillbetreatedinconfidenceandinvestigatedandyouwill beinformedoftheoutcome. 137 AppendixB:Activitymonitoringandsleepdiary ActivityMonitoringandSleepDiary Pleasestartfillingoutthetablebelowonthefirstnightbeforeyougotosleepandthenas soonasyouwakeinthemorning,andcontinuetodosoforthedurationofthestudy.It wouldbegreatifyoucouldattempttomaintainacontinuoussleeptimebetween weekdaysandweekendsforthedurationofthestudytoensureyouarewellrestedfor theprotocolintheeveningoftheseventhday. Somenotesthatmayhelp: Alcohol:Excessivealcoholintakeisnotadvisedregardless,howeverifyoufeelyoumust, ittakes48hourstonormalisesleeppatternsfollowinga“latenightout”,assuchwe wouldaskyoutodosowithinthefirstthreedaysofyoursleepdiaryandjustrecord thetimeyouwenttosleep. Caffeinecontainingdrinks:energydrinks,softdrinkslikecokeandPepsi,coffee,tea(there aredecaffeinatedoptions). Physicalactivity:Ifyoudoexerciseregularly,thenitmaybeadvisabletohaveaneasy/off dayonthenightoftheexperiment,asthelatenightwillconsiderablyfatigueyouanyway. Thisismoreaconcernwhenyouareheadinghomefollowingthelab. Hydrationlevels:adequatehydrationpriortothetestcanbegainedthroughintakeofa goodglassofwater,orjuicewiththeeveningmeal.Weaskthatyoualsohaveagood dinnerbeforecominginbecausethetestwillrequireafewextrahoursoftimeoutofyour day/night. Ifyoucouldwashyourhairpriortocominginthatwillsavealotofabrasionnecessary tolowerimpedance. Date 138 Timetobed Timeoutofbed Dayone: Startingdate: Daytwo: Daythree: Dayfour: Dayfive: Pleasestopcaffeine intakeuntilexperiment night Daysix: Howwelldoyoufeelyouslept?IfBadlypleasecontactme0273220250 Extraday: Dayseven: Experimentalnight Pleasemaintain hydration,andrefrain fromalcoholandcaffeine today Additionalnotes: Whathaveyoueatentonight???ANDwhen??? Whatareyouwearing???(e.g.,sweatersandwarmhoodie) 139 SecondWeek Startingdate: Dayone: Daytwo: Daythree: Dayfour: Dayfive: Pleasestopcaffeine intakeuntilexperiment night Daysix: Howwelldoyoufeelyouslept?IfBadlypleasecontactme0273220250 Extraday: Dayseven: Experimentalnight Pleasemaintain hydration,andrefrain fromalcoholandcaffeine today REMEMBERTOEATANDWEAR WHATYOUDIDTHEFIRSTTIMEJ 140 thirdWeek: Startingdate: Dayone: Daytwo: Daythree: Dayfour: Dayfive: Pleasestopcaffeine intakeuntilexperiment night Daysix: Howwelldoyoufeelyouslept?IfBadlypleasecontactme0273220250 Extraday: Dayseven: Experimentalnight Pleasemaintain hydration,andrefrain fromalcoholandcaffeine today REMEMBERTOEATANDWEAR WHATYOUDIDTHEFIRSTTIMEJ Thankyouforparticipating. 141 AppendixC:Participantsetup Figure1:Depictionofparticipantsetupfromviewofexperimenter. AppendixD:Criteriaforanalysisofthe10minPVT. Table1:Criteriafortheanalysisofthe10-minPVT.Extractedfrom BasnerandDinges,2011(Basneretal.,2011) 142 143 AppendixE:Outlinefordrowsinessscoring Table1:Outlineforsignificanteventsinprogressingdrowsiness 144 AppendixF:Pilottemperatures Table1:TrialcoolingprotocolforapplicationtoMildandModerateconditionsinmainstudy. cooling30 cooling25 pre inboot Tpad 31.2 34.1 32.45 31.7 31 30.4 29.95 29.95 30.6 31.05 30.85 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 29.2 27.25 25.9 25 24.25 23.75 23.5 23.5 23.8 23.9 Ttop Farch F1mt average water difference 30.8 32.45 30.95 31.35 21.6 9.75 33.35 33.55 32.65 33.41 21.65 11.76 32.3 32.05 31 31.95 22.15 9.80 31.6 31.35 30.25 31.23 22.4 8.83 31.05 30.75 29.65 30.61 22 8.61 30.45 30.3 29.25 30.10 22.25 7.85 30 29.9 28.9 29.69 22.85 6.84 30 29.7 28.9 29.64 23.6 6.04 30.55 29.7 29.15 30.00 24.75 5.25 30.95 29.75 29.45 30.30 24.95 5.35 30.8 29.65 29.45 30.19 25 5.19 29.1 28.4 28.05 28.69 16.9 11.79 27.35 27.15 26.35 27.03 14.45 12.58 26 26.45 25.25 25.90 14.15 11.75 25.1 25.9 24.6 25.15 14.65 10.50 24.4 25.55 24.25 24.61 15.35 9.26 23.85 25.4 24.1 24.28 17.55 6.73 23.55 25.4 24.25 24.18 17.85 6.33 23.5 25.5 24.45 24.24 20.5 3.74 23.7 25.7 24.9 24.525 21.2 3.33 23.8 25.75 25.1 24.6375 21.35 3.29 Originalpilotstudyconsistedofasimulateddrivingtask,withEEGcomprisingarousal markers,whileundergoingfandirectedcooling.Testingtookplaceovertwohoursstartingat 23:30.Fourparticipantstookpart.Coolingintheoriginalstudyconsistedoftwophases:Foot bath,eitherwarm()orcool(),followedbywearingwarmsocksordirectedfanblowingoverice (Figure1).Coolingmethodsweredeemedtobeinadequatefortestingthehypothesis,whichled totheabovepilottestingofamoresustained,andreliablemethod.MuchoftheEEGinputwaslost duetonoise(likelyelectrostaticandmechanical,aswellasduetonoviceprotocol),butan indicationisprovidedinFigure2. 145 33 31 Temperature(oC) 29 27 25 Warming 23 Cooling 21 19 pre 2 4 6 8 10 Post 10 20 30 40 50 60 70 80 90 100 110 120 Post 17 Figure1:Originalstudyfoottemperaturemanipulationsforbothcoolingandwarmingprotocols. EEG Power (uV) 250 200 150 Cooling Alpha Cooling Beta Warming Alpha Warming Beta 100 50 0 Pre Post Condition Figure2:CollatedEEG(referentialelectrodederivationsF4,FCz,O2toA1),ofbothpeakalpha(812Hz),andpeakbeta(13-30Hz)powersPre-andPost-test,forbothwarmingandcooling protocols. 146 AppendixG:Waterperfusedbooties Figure1:Viewofinternaltubingliningthecustomfittedbooties. Figure2:Customfittedbootiesworn. Thewaterperfusedbootiesopenedouttorevealinnertubing(Figure1)andwhileworn(Figure 2).Lacesandwhitepatchonmedialborderareelasticated(indicatedbyredarrow). 147 AppendixH:KarolinskaSleepinessScale KarolinskaSleepinessScale(KSS) 1========== extremelyalert 2=========== veryalert 3=========== alert 4=========== ratheralert 5=========== neitheralertnorsleepy 6=========== somesignsofsleepiness 7=========== sleepy,noefforttostayawake 8=========== sleepy,someefforttostayawake 9===========verysleepy,greatefforttokeepawake,fightingsleep 148 AppendixI:Thermalsensationandthermaldiscomfortscales PERCEIVED TEMPERATURE SCALE THERMAL DISCOMFORT SCALE “How%does%the%temperature%of%your% “How%comfortable%do%you%feel%with%the% Body%[feet]%feel?”% temperature%of%your%body?”% 1 2 Unbearably cold Extremely cold 3 Very cold 4 Cold 5 Cool 6 Slightly cool 7 Neutral 8 Slightly warm 9 Warm 10 Hot 11 Very hot 12 Extremely Hot 13 Unbearably hot 1 Comfortable 2 Slightly uncomfortable 3 Comfortable 4 Very Uncomfortable 5 Extremely uncomfortable 149 AppendixJ:TheBrunelMoodStatequestionnaire Extremely Quiteabit Moderately Alittle Notatall TheBrunelMoodscale Belowisalistofwordsthatdescribefeelings.Pleasereadeachonecarefully.Thencross theboxthatbestdescribesHOWYOUFEELRIGHTNOW.Makesureyouanswerevery question. Name …………………………………….. Date __/__/2009 1 Panicky……………………………………………. q q q q q 2 Lively……………………………………………... q q q q q 3 Confused………………………………………….. q q q q q 4 Wornout………………………………………….. q q q q q 5 Depressed…………………………………………. q q q q q 6 Downhearted……………………………………… q q q q q 7 Annoyed…………………………………………... q q q q q 8 Exhausted…………………………………………. q q q q q 9 Mixed-up………………………………………….. q q q q q 10 Sleepy…………………………………………….. q q q q q 11 Bitter………………………………………………. q q q q q 12 Unhappy…………………………………………... q q q q q 13 Anxious…………………………………………… q q q q q 14 Worried…………………………………………… q q q q q 15 Energetic………………………………………….. q q q q q 16 Miserable………………………………………….. q q q q q 17 Muddled……………………………....................... q q q q q 18 Nervous…………………………………………… q q q q q 19 Angry……………………………………………... q q q q q 20 Active……………………………………………... q q q q q 21 Tired………………………………………………. q q q q q 22 Badtempered……………………………………... q q q q q 23 Alert………………………………………………. q q q q q 24 Uncertain…………………………………………. q q q q q Howmuchsleephaveyouhadinthelast24hours?.......hours......minutes 150 AppendixK:Additionaldata Moodstates,vigourandfatigue Figure1:BRUMSmoodcharacteristic:Vigourprepost.Condition1=Control,2=Mild,3=Moderate Figure2:BRUMSmoodcharacteristic:Fatigueprepost.Condition1=Control,2=Mild,3=Moderate 151 AppendixL:Participanteight 38 P8 Core temperature (OC) Group 37 36 35 50 100 150 200 50 control 100 150 200 mild 50 100 150 200 moderate Condition Figure1:Participanteightcoretemperatureacrossconditions,comparedtothegrouptrend. Condition 2 DPG (OC) 0 control 50 100 150 200 mild 50 100 150 200 moderate 50 100 150 200 -2 -4 -6 P8 Group -8 Figure2:ParticipanteightDPGacrossconditions,comparedtothegrouptrend.
© Copyright 2026 Paperzz