Example (WW 4 # 1): Use cylindrical shells to find the volume of the solid formed by rotating the region bounded by y = e 4x + 1 , y = 0, x = 0, and x = 0.8 about the y -axis. Using shells, Z V 0.8 2πx(e 4x + 1) dx = 0 Z = 2π 0.8 xe 4x + x dx 0 Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 1/8 Reminder: Integration by parts: Z I If you have an integral of a product, think of it as u dv . Let one factor be u and the other factor, along with dx, be dv . I Then Z Z u dv = uv − v du I Must choose dv to be something you can integrate. Most likely to work if v is not more complex than dv was. I Integration by parts is most likely to work if you can also choose u so that du is less complex than u is. Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 2/8 In Class Work Evaluate the following integrals using integration by parts, and check your answers!! Z xe 4x dx 1. Z 2. x ln(x) dx Z 3. 1 x sin(πx) dx Z0 4. Z 5. x 2 cos(2x) dx x sec2 (4x) dx Z 6. ln(x) dx Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 3/8 Solutions Z 1. xe 4x dx dv = e 4x dx 1 v = e 4x 4 u=x du = dx Z xe 4x Z dx = uv − = = 1 4x xe 4 1 4x xe 4 v du Z 1 − e 4x dx 4 1 − e 4x + C 16 Verify: 1 d 1 4x 1 1 ( xe − e 4x + C ) = (x)(4e 4x + e 4x − · 4e 4x = xe 4x dx 4 16 4 16 Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 4/8 Solutions Z 2. x ln(x) dx u = ln(x) dv = x dx x2 1 v= du = dx x 2 Z Z x ln(x) dx = uv − v du Z 2 Z x2 x 1 x 2 ln(x) 1 = ln(x) − · dx = − x dx 2 2 x 2 2 x 2 ln(x) x 2 = − +C 2 4 Verify: 1 1 1 1 d x 2 ln(x) x 2 ( − + C ) = · x 2 · + ln(x) · 2x − · 2x dx 2 4 2 x 2 4 x x = + x ln(x) − 2 2 Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 5/8 Solutions Z 1 3. x sin(πx) dx 0 u=x du = dx Z dv = sin(πx) dx v = − π1 cos(πx) 1 Z x sin(πx) dx = uv − v du 0 1 Z 1 x − cos(πx) + cos(πx) dx π π 0 1 1 x = − cos(πx) + 2 sin(πx) π π 0 1 1 1 = − cos(π) + 2 sin(π) − 0 + 2 sin(0) π π π 1 1 = − · −1 + 0 = π π = Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 6/8 Solutions Z 4. x 2 cos(2x) dx u = x2 dv = cos(2x) dx 1 du = 2x dx v = sin(2x) 2 Z Z Z x2 2 x cos(2x) dx = uv − v du = sin(2x) − x sin(2x) dx 2 u=x dv = sin(2x) dx du = dx v = − 21 cos(2x) Z Z x2 sin(2x) − [uv − v du] x 2 cos(2x) dx = 2 x2 x 1 = sin(2x) − [− cos(2x) + 2 2 2 = Math 104-Calculus 2 (Sklensky) Z cos(2x) dx] x2 x 1 sin(2x) + cos(2x) − sin(2x) + C 2 4 In-Class 2 Work February 24, 2012 7/8 Solutions Z x sec2 (4x) dx 5. u=x du = dx Z x sec2 (4x) dx Z x sec2 (4x) dx Math 104-Calculus 2 (Sklensky) dv = sec2 (4x) dx v = 14 tan(4x) Z = uv − v du Z 1 = x tan(4x) − tan(4x) dx 4 Z sin(4x) 1 x tan(4x) − dx = 4 cos(4x) 1 Let u = cos(4x).Then − du = sin(4x) dx 4 Z 1 1 1 = x tan(4x) + du 4 4 u x 1 = tan(4x) + ln | cos(4x)| + C 4 16 In-Class Work February 24, 2012 8/8 Solutions Z 6. ln(x) dx u = ln(x) du = x1 dx dv = dx v =x Z Z ln(x) dx = uv − v du Z 1 = x ln(x) − x · dx x Z = x ln(x) − 1 dx = x ln(x) − x + C Verify: d 1 (x ln(x) − x + C ) = x · + ln(x) − 1 dx x = ln(x) Math 104-Calculus 2 (Sklensky) In-Class Work February 24, 2012 9/8
© Copyright 2026 Paperzz