Astrobiology Workshop 2013/11/28 Unique Late Archean Atmosphere Enhanced Volcanic and Biological Activities Yuichiro Ueno1,2* Sebastian O. Danielache3 Yoshiaki Endo1 Matthew Johnson4 Carbonyl sulfide (OCS) 1Department of Earth & Planetary Sciences, also at 2Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Japan 3Faculty of Science & Technology, Sophia University, Japan 4Copenhagen Center for Atmospheric Research, Univ. Copenhagen, Denmark. This document is provided by JAXA. Early Earths = Inhabited Different Planets O2 CO2 ? CH4? +∆33S: 33S-rich relative to normal mass dependent relation This document is provided by JAXA. after Johnston 2011 Sulfur: Key for Early Atmosphere ∆33S = δ33S - 0.5 δ34S ≠ 0 SO2 photolysis is known to produce the anomaly & important in O2-free early atmosphere Late Archean record is unique Q: Why ∆33S scatter? O2 +∆ −∆ This document is provided by JAXA. after Johnston 2011 CH4-rich Atmosphere (Late Archean) Pinti & Hashizume (2010) • Biological scenario (Methanotrophy) CH4 + O2 (or SO4) → energy CH4 → organic carbon (low δ13C) Anoxic world + Oxidant input This document is provided by JAXA. Link with Increasing Volcanic Activity ? Large Igneous Provinces (LIPs) through time Fortescue LIP @ 2.8~2.6 Ga Ernst (2007) Pirajino (2004) This document is provided by JAXA. Numerical Simulation ・ Inject 10 ppm SO2 @ t=0 ・ Tracing the fate of SO2 injected into CH4-rich atmosphere by intense volcanic eruption Model ・ >600 reactions (C-H-O-S chemistries) >1500 when including S isotopes ・ Fixed background species: N2: 1 bar CO2: 1% CO: 0.1% H2: 0.01% ・ Redox change CH4: 10 ppm – 1% This document is provided by JAXA. Fate of injected SO2 CO2 atmosphere: CO2 + CH4 atm. : H2SO4 (small ∆33S) OCS (>H2S>S0) + H2SO4 (large ∆33S) Ox. Red. CH4= 10ppm CH4= 1% 10 ppm SO2 injected into 1bar N2 , 1% CO2, 1ppm H2 atmosphere This document is provided by JAXA. Fate of injected SO2 CO2 atmosphere: CO2 + CH4 atm. : Why OCS ? H2SO4 (small ∆33S) OCS (>H2S>S0) + H2SO4 (large ∆33S) *high [S] & [CO] in reducing CH4 atm. SO2 + hν → SO + hν → S CO2 + hν → CO + O S + CO + M → OCS + M Elevated OCS requires 1) Reducing atmosphere (CH4/CO2 > 0.1) 2) High SO2 flux into atmosphere (>6x1011 mole/year = 3 x today’s volcanic flux) This document is provided by JAXA. Summary: fate of injected SO2 Previous model SO2 -∆ -∆ H2SO4 BaSO4 UV SO +∆ S0 +∆ FeS2 +∆ This document is provided by JAXA. Summary: fate of injected SO2 CO2 (oxidizing) atm. SO2 -∆ H2SO4 UV SO +∆ +∆ OCS, H2S, S0 -∆ SO42- HS- -∆ BaSO4 FeS2 +∆ +∆ * Small ∆33SSO4 This document is provided by JAXA. Summary: fate of injected SO2 CO2 (oxidizing) atm. SO2 -∆ H2SO4 CO2+CH4 (reducing) atm. SO2 UV SO -∆ H2SO4 +∆ UV +∆ Atmospheric OCS reservoir when (1) high volcanic SO2 flux (2) reducing (CH4) atm. SO +∆ OCS, H2S, S0 -∆ SO42- HS- +∆ -∆ SO42- -∆ BaSO4 FeS2 +∆ -∆ BaSO4 * Small ∆33SSO4 Sulfate reduction -∆ FeS2 OCS Long 2life time (> 10 day) > H2S > S0 +∆ HS- +∆ FeS2 +∆ * Large variation of ∆33SSO4 & ∆33Ssulifde This document is provided by JAXA. Ox. CO2 Red. CH4/CO2 CO2 ? ? ? CH4 OCS This document is provided by JAXA. after Johnston 2011 Archean record: ∆36S/∆33S = ~ -1 Archean 3500-2500 Ma BaSO4 ・∆33S = δ33S -0.515 δ34S ・∆36S = δ36S -1.90 δ34S CAS Sulfide ∆36S/∆33S : unlikely changed after photolysis This document is provided by JAXA. ∆33S-SO: Spectroscopic Prediction (revised) Model Experiment SO2 -∆ H2SO4 UV Isotope Effect SO +∆ OCS, H2S, S0 -∆ -∆ SO42BaSO4 HS- +∆ FeS2 +∆ Danielache et al. (2008 JGR) FTUV Our previous Cross section measurement 32SO Dual beam monochromater 33SO , , 2 2 34SO 2, 36SO 2 Endo et al. (in prep.) +Pressure effect correction *higher accuracy for σ This document is provided by JAXA. ∆33S-SO: Spectroscopic Prediction (revised) Model Isotope Effect SO2 -∆ H2SO4 UV Isotope Effect SO 32/33/34/36 J (photolysis rate) = 32/33/34/36σ (cross section) x I (UV flux) +∆ Solar Spectrum Ι OCS, H2S, S0 -∆ SO42- HS- +∆ Cross section σ 33σ 34σ 36σ Endo et al. (in prep.) 32 -∆ BaSO4 FeS2 +∆ This document is provided by JAXA. ∆33S-SO: Spectroscopic Prediction (revised) Model Solar UV SO2 photolysis (no shielding effect) SO2 -∆ H2SO4 UV Isotope Effect SO +∆33S Product SO & OCS, H2S, S +∆ OCS, H2S, S0 -∆ SO42- HS- -∆ BaSO4 FeS2 +∆ +∆ This document is provided by JAXA. ∆36S-SO: Spectroscopic Prediction (new result) Model Solar UV SO2 photolysis (no shielding effect) SO2 -∆ H2SO4 UV Isotope Effect SO ∆36S/∆33S = ~ -1 +∆ OCS, H2S, S0 OCS-shielding CO2shielding -∆ SO42- HS- -∆ BaSO4 FeS2 +∆ +∆ This document is provided by JAXA. Archean MIF: ∆36S/∆33S = ~ -1 Archean 3500-2500 Ma BaSO4 ・∆33S = δ33S -0.515 δ34S ・∆36S = δ36S -1.90 δ34S CAS Sulfide ∆36S/∆33S : unlikely changed after photolysis This document is provided by JAXA. Summary Late Archean (1) high volcanic SO2 flux (2) reducing (CH4) atm. result in S differentiation into Atmospheric OCS & Ocean SO4 New SO2 spectra • high accuracy & precision • result in ∆36S/∆33S = ~ -1 • Sulfate: –∆33S roughly reproducing Archean S-isotope record CO2+CH4 (reducing) atm. SO2 -∆ H2SO4 -∆ SO42- -∆ BaSO4 UV +∆ SO Sulfate reduction -∆ FeS2 Long life time (> 102 day) OCS > H2S > S0 +∆ HS- +∆ FeS2 +∆ This document is provided by JAXA. Greenhouse Effect CO2 < CH4 < N2O < OCS < NH3 (& H2O) Reducing species: possibly solving the Faint Young Sun Problem This document is provided by JAXA. Rise of O2: Trigger of 2.3 Ga Snowball Event O2 ? CO2 ? CH4 OCS Huronian Snowball This document is provided by JAXA. after Johnston 2011 Thank you ! This document is provided by JAXA.
© Copyright 2026 Paperzz