7.6 Improper Integrals

www.ck12.org
Chapter 7. Integration Techniques, Solution Key
7.6 Improper Integrals
Review Questions
1. a. This is improper because there is an infinite discontinuity between the limits of integration at x = 3.
b. This is not improper.
c. This is improper because there is an infinite discontinuity at x = 0.
d. This is improper because the integral has an infinite interval of integration.
e. This is not improper.
2.
l
R∞ 1
−x1.001 1
dx
=
lim
l→∞
2.001
1.001 1 = 1.001
x
l
3.
Z−2
−∞
1
1
−
dx = lim [ln|x − 1|−ln|x + 1|]−2
l
l→−∞
x−1 x+1
= ln3 − 0 − lim [ln|l − 1|−ln|l + 1|]
l→−∞
l −1
= ln3 − ln l +1
l 1− 1
l = ln3 − ln l 1 + 1l = ln3 − 0
= ln3
4.
Z0
5x
1 5x 0
e
5
l
1
1
× l − e5l
5
5
e dx = lim
l→−∞
−∞
= lim
l→−∞
1
−0
5
1
=
5
=
5. The integral is divergent.
−π
6.
R2
tan x = 0 (Look at the symmetry of the graph on the interval.)
−π
2
245
7.6. Improper Integrals
www.ck12.org
7.
Z1
0
1
√
dx = sin−1 x|10
1 − x2
= sin−1 1 − sin−1 0
π
= −0
2
π
=
2
8. a.
Z∞
(e−x )2 dx
V =π
0
Z∞
=π
e−2x dx
0
∞
−e−2x
=π
2
0
1
= π 0+
2
π
=
2
b.
Z∞
A = 2π
q
f (x) 1 + [ f 0 (x)]2 dx
0
Z∞
= 2π
e−x
q
1 + [−e−x ]2 dx
e−x
p
1 + e−2x dx
0
Z∞
= 2π
0
Let e−x = tan u. Then −e−x dx = sec2 u du.
246
www.ck12.org
Chapter 7. Integration Techniques, Solution Key
Z∞
A = 2π
e−x
p
1 + e−2x dx
0
Z0
= 2π
∞
Z0
= 2π
sec2 u
p
1 + tan2 u du
sec3 u du
∞
1
1
sec u tan u + ln|sec u + tan u|
2
2
0 −2x 12 −x
−2x 21
−x = 2π (1 + e ) e + ln (1 + e ) + e ∞
√
= π[2 + ln( 2 + 1)]
= 2π
247