www.ck12.org Chapter 7. Integration Techniques, Solution Key 7.6 Improper Integrals Review Questions 1. a. This is improper because there is an infinite discontinuity between the limits of integration at x = 3. b. This is not improper. c. This is improper because there is an infinite discontinuity at x = 0. d. This is improper because the integral has an infinite interval of integration. e. This is not improper. 2. l R∞ 1 −x1.001 1 dx = lim l→∞ 2.001 1.001 1 = 1.001 x l 3. Z−2 −∞ 1 1 − dx = lim [ln|x − 1|−ln|x + 1|]−2 l l→−∞ x−1 x+1 = ln3 − 0 − lim [ln|l − 1|−ln|l + 1|] l→−∞ l −1 = ln3 − ln l +1 l 1− 1 l = ln3 − ln l 1 + 1l = ln3 − 0 = ln3 4. Z0 5x 1 5x 0 e 5 l 1 1 × l − e5l 5 5 e dx = lim l→−∞ −∞ = lim l→−∞ 1 −0 5 1 = 5 = 5. The integral is divergent. −π 6. R2 tan x = 0 (Look at the symmetry of the graph on the interval.) −π 2 245 7.6. Improper Integrals www.ck12.org 7. Z1 0 1 √ dx = sin−1 x|10 1 − x2 = sin−1 1 − sin−1 0 π = −0 2 π = 2 8. a. Z∞ (e−x )2 dx V =π 0 Z∞ =π e−2x dx 0 ∞ −e−2x =π 2 0 1 = π 0+ 2 π = 2 b. Z∞ A = 2π q f (x) 1 + [ f 0 (x)]2 dx 0 Z∞ = 2π e−x q 1 + [−e−x ]2 dx e−x p 1 + e−2x dx 0 Z∞ = 2π 0 Let e−x = tan u. Then −e−x dx = sec2 u du. 246 www.ck12.org Chapter 7. Integration Techniques, Solution Key Z∞ A = 2π e−x p 1 + e−2x dx 0 Z0 = 2π ∞ Z0 = 2π sec2 u p 1 + tan2 u du sec3 u du ∞ 1 1 sec u tan u + ln|sec u + tan u| 2 2 0 −2x 12 −x −2x 21 −x = 2π (1 + e ) e + ln (1 + e ) + e ∞ √ = π[2 + ln( 2 + 1)] = 2π 247
© Copyright 2026 Paperzz