UNIT- III DIFFERENTIATION METHODS 3.1 Differentiation of function of functions and Implicit functions. Simple Problems. 3.2 Differentiation of inverse trigonometric functions and parametric functions Simple problems. 3.3 Successive differentiation up to second order (parametric form not included) Definition of differential equation, formation of differential equation. Simple Problems. DIFFERENTIATION METHODS 3.1 DIFFERENTIATION OF FUNCTION OF FUNCTIONS Function of Functions Rule: If ‘y’ is a function of ‘u’ and ‘u’ is a function ‘x’ then dy dy du = . It is called Function of function Rule. This rule dx du dx can be extended. Chain Rule: If ‘y’ is a function of ‘u’ and ‘u’ is a function of ‘v’ and ‘v’ is a function of ‘x’ then dy dy du dv = . . dx du dv dx 3.1 WORKED EXAMPLES PART - A Find dy if dx 1) y = Sin(3 x + 4) 3) y = tan(4x + 3 ) ( 2 5) y = tan x + 7x + 3 2) y = Cos (2x + 3 ) 4) y = log(sec x + tan x ) ) 11 206 Solution: 1.) y = Sin(3x + 4) Put u= 3x+4 ∴ y = sin u u = 3x + 4 dy du = Cos u =3 du dx ∴ dy dy du = . = Cosu(3) = 3Cos(3 x + 4) dx du dx 2.) y = Cos (2x + 3) Put u = 2x + 3 ∴ y = Cos u u = 2x + 3 dy du = −Sin u =2 du dx dy dy du = . = (− sin u)2 dx du dx = −2Sin(2x + 3) 3.) y = tan(4x + 3 ) Put u = 4x + 3 ∴ y = tan u u = 4x + 3 dy du = Sec 2u =4 du dx ∴ dy = 4 sec 2 u = 4 sec 2 (4x + 3) dx 4.) y = log(sec x + tan x ) Put u = sec x + tan x ∴ y = log u u = sec x + tan x du = sec x tan x + sec 2 x dy 1 = dx du u = sec x (tan x + sec x ) dy 1 sec x (sec x + tan x ) = [sec x (sec x + tan x )] = = sec x dx u sec x + tan x 207 ( 5.) y = x 2 + 7 x + 3 ) 11 2 Put u = x + 7 x + 3 ∴ y = u11 u = x 2 + 7x + 3 dy du = 11 u10 = 2x + 7 du dx 10 dy = 11 u10 (2x + 7 ) = 11 x 2 + 7 x + 3 (2x + 7 ) dx ( ) PART - B Differentiate the following w.r.t.to ‘x’ ( ) 1.) Sin x 2 + 1 2.) eSinx 3.) Sin 3 x 4.) logsinx 5.) e Sin 2 x 6.) log(sin5x) tan −1 2 x 7.) e 9.) log sec2 x Solution: ( 8.) sin4 3x 10.) cos e5 x ) ( ( ) ) 1.) Let y = sin x 2 + 1 Put u = x + 1 2 ∴ y = sin u u = x 2 + 1 dy du = cos u = 2x du dx dy dy du = = cos u(2x ) . dx du dx = 2xCos( x 2 + 1) 2.) y = eSinx Put u = sin x ∴ y = eu u = sin x dy du = eu = cos x du dx dy dy du = = eu . cos x = esin x . cos x dx du dx 208 3.) y = sin3 x Put u = Sinx ∴ y = u3 u = sin x dy du 2 = 3u = cos x du dx dy = 3u2 .Cosx = 3 Sin 2 x.Cosx dx 4.) y = log(sin x ) Put u = Sinx ∴ y = log u u = sin x dy 1 du = = cos x du u dx dy 1 Cosx = Cosx = = Cotx dx u sin x 5.) y = e sin 2 x 2 Put u = Sin x u y =e dy du d = eu . = eu . sin2 x dx dx dx ( ) = e sin x (2 sin x Cosx ) 6.) y = log(sin5x) 2 1 d (sin 5x ) sin 5 x dx 1 (5 cos 5x ) = 5 cot 5x = sin 5 x −1 y = e tan (2 x ) dy dx 7.) = ( ) −1 dy d tan −1 2x = e tan 2 x dx dx −1 1 (2) = e tan 2 x . 2 1 + (2x ) −1 = 2e tan 2 x 1 + 4x 2 209 8.) y = Sin4 3 x = (sin 3x )4 dy 3 d (sin 3x ) = 4(sin 3x ) dx dx = 4 sin3 3 x (3 Cos3x ) = 12 sin3 3 x Cos3x ( 9.) Y= log sec2 x ) dy 1 d = (sec 2 x ) 2 dx sec x dx 1 = (2 sec x )(sec x tan x ) = 2 tan x sec 2 x ( ) d dy = − sin(e ) (e ) dx dx = − sin(e ).5e = −5e sin(e ) 10.) y = Cos e5 x 5x 5x 5x 3.1.2. 5x 5x 5x Differentiation of implicit functions If the variables x and y are connected by the relation of the form f(x,y)= 0 and it is not possible to express y as a function of x in the dy form y=f(x) then y is said to be an implicit function of x. To find in dx this case, we differentiate both sides of the given relation with respect to x. keeping in mind that derivative of φ(y ) w.r.t ‘x’ as dφ dy d (φ(y )) = dφ . dy . i.e dx dy dx dy dx For Example ( ) d (sin y ) = Cosy dy and d y 2 = 2y dy dx dx dx dx 210 WORKED EXAMPLES PART – A Find dy for the following functions dx 2 1) xy = c 2) y = cos (x + y) 2 2 2 2 3) y = 4ax 4) x + y = a 2 5) xy = k Solution: 1) 2) 2 xy = c Differentiate both sides w.r.t ‘x’ dy +y=0 x dx dy = −y x dx dy y =− dx x y = cos (x + y) Differentiate both sides w.r.t ‘x’ dy § dy · = − sin(x + y )¨1 + ¸ dx © dx ¹ = − sin(x + y ) − sin(x + y ) 3) dy dy + sin(x + y ) = − sin(x + y ) dx dx [1 + sin(x + y )] dy = − sin(x + y ) dx dy sin(x + y ) =− dx 1 + sin(x + y ) 2 y = 4ax Differentiate both sides w.r.t ‘x’ dy 2y = 4a dx dy 4a 2a = = dx 2y y 211 dy dx 4) 5) 2 2 2 x +y =a dy =0 2x + 2y dx dy = −2 x 2y dx dy x =− dx y 2 xy = k dy x 2y + y2 = 0 dx dy 2xy = −y 2 dx − y2 2xy −y = 2x dy dx = PART - B Find dy of the following dx 1) x2 a2 + y2 b2 =1 3) x 3 + y 3 = 3axy 5) y = x Solution: 1) x2 4) ax 2 + 2hxy + by 2 = 0 y2 =1 a b2 Differentiate both sides w.r.t ’x’ 2 + sin(a + y ) 2) x 2 + y 2 + 2gx + 2fy + c = 0 2x 2y dy + =0 a 2 b2 dx 2y dy 2x =− 2 b2 dx a 212 dy dx =− =− 2) 2x b2 . a 2 2y b2 x a2y x 2 + y 2 + 2gx + 2fy + c = 0 Differentiate both sides w.r.t ‘x’ dy dy + 2g + 2f =0 dx dx (2y + 2f ) dy = −2x − 2g dx dy 2(x + g) =− dx 2(y + f ) 2x + 2y § x + g· ¸¸ = −¨¨ © y+f ¹ 3) x 3 + y 3 = 3axy Differentiate both sides w.r.t ’x’ 3x 2 + 3y 2 § dy · = 3a¨ x + y¸ © dx ¹ dy = 3ax + 3ay dx dy dx dy dy − 3ax = 3ay − 3x 2 dx dx dy 2 3y − 3ax = 3ay − 3 x 2 dx 3y 2 ( dy dx ) = = ( 3(y ) − ax ) 3 ay − x 2 2 ay − x 2 y 2 − ax 213 4) ax 2 + 2hxy + by 2 = 0 Differentiate both sides w.r.t ‘x’ dy § dy · 2ax + 2h¨ x + y ¸ + 2by =0 dx © dx ¹ dy dy + 2hy + 2by =0 dx dx (2hx + 2by ) dy = −2ax − 2hy dx dy − 2ax − 2hy = dx 2hx + 2by ( ax + hy ) =− hx + by y = x sin(a + y ) 5) Differentiate both sides w.r.t ‘x’ dy dy = x cos(a + y ) + sin(a + y ) dx dx dy dy − x cos(a + y ) = sin(a + y ) dx dx [1 − x cos(a + y )] dy = sin(a + y ) dx dy sin(a + y ) = dx 1 − x cos(a + y ) 3.2.1. Differentiation of Inverse Trigonometric Functions 2ax + 2hx If x = siny then -1 y = sin x -1 -1 -1 -1 -1 -1 sin x, cos x, tan x, cosec x, sec x and cot x are inverse trigonometric functions. Example: (1) If y = sin-1x, find dy dx y = sin−1 x ∴ sin y = x 214 Differentiate both sides w.r.t ‘x’ cosy dy =1 dx dy 1 = = dx cos y 1 cos 2 y = 1 1 − sin2 y = 1 1− x2 Example: (2) -1 Find the differentiation of cos x -1 Let y = cos x ∴cosy = x Differentiate both sides w.r.t ‘x’ dy - siny =1 dx dy 1 1 1 1 =− =− =− =− 2 2 dx sin y sin y 1 − cos y 1− x2 Example: (3) -1 Find the differentiation of tan x. -1 Let y = tan x ∴tany = x Differentiate both sides w.r.t ‘x’ sec 2 y ∴ dy =1 dx dy 1 1 1 = = = 2 2 dx sec y 1 + tan y 1 + x 2 Example: (4) -1 Find the differentiation of cot x. -1 Let y = cot x ∴coty = x Differentiate both sides w.r.t ‘x’ ∴ -cosec 2 y dy =1 dx dy 1 1 1 =− =− =− 2 2 dx cos e y 1 + cot y 1+ x2 215 Example: (5) -1 (Differentiation of sec x) -1 Let y = sec x ∴secy = x Differentiate both sides w.r.t ‘x’ secy tany ∴ dy =1 dx dy 1 1 1 = = = dx sec y tan y sec y sec 2 y − 1 x x 2 − 1 Example: (6) -1 Differentiation of cosec x -1 Let y = cosec x ∴cosecy = x Differentiate both sides w.r.t ‘x’ - cosec y cot y dy =1 dx dy 1 1 1 =− =− =− 2 dx cos ecy cot y cos ecy cos ec y − 1 x x2 − 1 FORMULA ( ) ( ) ( ) ( ( ) ) d 1 sin−1 x = dx 1− x2 d 1 cos −1 x = − 2) dx 1− x2 1) d 1 tan −1 x = dx 1+ x2 d 1 cot −1 x = − 4) dx 1+ x2 d 1 sec −1 x = 5) dx x x2 − 1 d 1 cos ec −1x = − 6) dx x x2 − 1 3) ( ) 216 WORKED EXAMPLES PART - A Differentiate the following w.r.t ‘x’ ( ) (4) (sin x ) ( ) (1) sin−1 x (2) cos −1 x 2 (5) x 2 sin−1 x −1 (6) 1 − x 2 sin−1 x Solution: 1) ( ) = 2) 1− d dx ( x) 2 1 1 = 1− x 2 x ( ) 1 1− ( x) 2 1 2 x 1− x d dx ( x )= − = 1 1 2 x (1 − x ) 1 1− x 2 x § 1· y = cot −1¨ ¸ ©x¹ d § 1· 1 ¨ ¸=− 1 dx x © ¹ § 1· 1+ 2 1+ ¨ ¸ x ©x¹ 2 · § ¨ − x ¸§¨ − 1 ·¸ = 1 ¨ x 2 + 1 ¸© x 2 ¹ x 2 + 1 © ¹ 4) (8) tan −1 x ( x) y = cos −1 x dy =− dx 3) 1 ( ) (7) e x tan−1 x y = sin−1 x dy = dx § 1· (3) cot −1¨ ¸ ©x¹ dy =− dx 1 ( ) y = sin−1 x 2 2 ( ) dy d = 2 sin−1 x sin−1 x dx dx § 1 ·¸ 2 sin−1 x = 2 sin−1 x ¨ = ¨ 2 ¸ 1− x2 © 1− x ¹ 217 § 1· ¨− 2 ¸ © x ¹ =− 1 2 x (1 − x ) 5) y = x 2 sin−1 x § dy 1 = x 2¨ ¨ 2 dx © 1− x = 6) x2 1− x · ¸ + 2x sin−1 x ¸ ¹ + 2x sin−1 x 2 y = 1 − x 2 sin−1 x § dy 1 = 1− x2 ¨ ¨ 2 dx © 1− x 7) · 1 x sin−1 x ¸ + sin−1 x ( − 2x ) = 1 − ¸ 2 1− x2 1− x2 ¹ y = e x tan−1 x ( ) dy § 1 · = ex ¨ ¸ + tan −1 x e x 2 dx © 1+ x ¹ º ª 1 = ex « + tan −1 x » 2 ¬1 + x ¼ 8) ( ) y = tan −1 x dy 1 = dx 1 + x ( ) 2 d dx ( x ) = 1 +1 x 2 1x = 2 1 x (1 + x ) PART - B Differentiate the following w.r.t ‘x’ § 2x · 1) sin−1¨ ¸ 2 © 1+ x ¹ § 2x · 2) tan −1¨ ¸ 2 © 1− x ¹ § 1− x 2 · ¸ 3) cos −1¨ ¨ 1+ x2 ¸ © ¹ Solution: 1.) § 2x · Let y = sin−1¨ ¸ 2 © 1+ x ¹ Put x = tan θ ∴ θ = tan-1x § 2 tan θ · ∴ y = sin-1¨ ¸ 2 © 1 + tan θ ¹ 2 sin A · § ¨∴ sin 2A = ¸ 1 sin2 A ¹ + © 218 = sin-1(sin 2θ ) = 2θ y = 2 tan −1 x dy 2 = dx 1 + x 2 2.) § 2x · Let y = tan −1¨ ¸ 2 © 1− x ¹ Put x = tan θ ∴ θ = tan-1x § 2 tan θ · ∴ y = tan-1¨ ¸ 2 © 1 − tan θ ¹ = tan-1(tan 2θ) = 2θ ª 2tan A º » « tan2A = 1 − tan2 A »¼ «¬ y = 2 tan −1 x dy 2 = dx 1 + x 2 3.) Let § 1− x2 · ¸ y = Cos −1¨ ¨ 1+ x2 ¸ © ¹ Put x = tan θ ∴ θ = tan-1x § 1 − tan2 θ · ¸ ∴ y = Cos -1¨ ¨ 1 + tan2 θ ¸ © ¹ = Cos -1(Cos2θ) = 2θ ª 1 - tan2 A º = Cos2A » « 1 + tan2 A ¼» ¬« ∴ y = 2 tan −1 x dy 2 = dx 1 + x 2 219 3.2.2. Differentiation of parametric function: Sometimes ‘x’ and ‘y’ are functions of a third variable called a dy as parameter without eliminating the parameter, we can find dx follows. Let x = f(θ) and y = F(θ) so that ‘θ ’ is a parameter. dy dy dy dθ dθ = . = dx dθ dx dx dθ WORKED EXAMPLES PART-A dy 1.) If x = a Cos θ and y = b Sin θ, find dx Solution: dx = − a sin θ dθ dy = b cos θ dθ dy dy dθ b cos θ b = = = − cot θ dx dx dθ − a sin θ a 2.) Find dy if x = at2 and y = 2at dx Solution: dx = 2at dt dy = 2a dt dy dy dt 2a 1 = = = dx dx dt 2at t 220 3.) Find dy if x = a sec θ and y = b tan θ dx Solution: dx = a sec θ tan θ dθ dy = b sec 2 θ dθ dy dy dθ b sec 2 θ b sec θ = = = dx dx dθ a sec θ tan θ a tan θ § 1 · b¨ ¸ b b Cosθ ¹ = = Co sec θ = © § sin θ · a sin θ a a¨ ¸ © Cosθ ¹ 4.) Find dy c if x= ct and y = dx t Solution: dx =c dt dy c =− 2 dt t dy − c t2 1 =− =− 2 dx c t PART - B 1.) Find dy if x= cost + tsint and y=sint- tcost dx Solution: dx = − sin t + t cos t + sin t = t cos t dt dy = cos t + t sin t − cos t = t sin t dt dy t sin t = = tan t dx t cos t 221 2.) dy if x = sin 2t and y = cos 2t dx 1 cos 2t cos 2t(2) = = sin 2t 2 sin 2t 1 (− sin 2t)2 = − sin 2t = 2 cos 2t cos 2t Find dx dt dy dt § − sin 2t · ¨ ¸ dy ¨© cos 2t ¸¹ sin 2t sin 2t = =− dx § cos 2t · cos 2t cos 2t ¨¨ ¸¸ sin 2 t © ¹ 3 ( sin 2t ) 2 =− (cos 2t)3 2 3.) Find = −(tan 2t ) 3 2 dy if x = a(θ + sin θ)andy = a(1 − cos θ) dx Solution: dx = a(1 + cos θ ) dθ dy = a(0 + sin θ ) = a(sin θ ) dθ dy a sin θ sin θ = = dx a(1 + cos θ ) 1 + cos θ = 4.) Find 2 sin θ 2 cos θ 2 2 cos θ 2 2 = tan θ 2 dy if y = log(sec θ + tan θ ) and x = sec θ dx Solution: dy 1 sec θ tan θ + sec 2 θ = dθ sec θ + tan θ sec θ(tan θ + sec θ) = = sec θ sec θ + tan θ ( 222 ) dx = sec θ tan θ dθ dy sec θ 1 = = = cot θ. dx sec θ tan θ tan θ 3.3.1 Successive differentiation: dy , the derivative of y w.r. to x is a function of x If y = f( x ), then dx dy and can be differentiated once again. To fix the idea, we shall call dx as the first order derivative of y with respect to x and the derivative of dy w.r. to ‘x’ as a second order derivative of y w.r. to x and will be dx denoted by d2 y dx 2 . Similarly the derivative of third order derivative and will be denoted by Note: Alternative notations for dy = y1 = y ' = f '(x ) = D( y ) dx d2 y dx 2 dn y dx n = y 2 = y '' = f ''(x ) = D 2 (y ) = y n = y (n ) = f (n ) ( x ) = D n ( y ) 223 d2 y dx 2 d3 y dx 3 w.r.t ’x’ will be called and so on. WORKED EXAMPLES PART - A 1.) If y = tan x, find d2 y dx 2 y = tan x, dy = sec 2 x dx d2 y dx 2 = 2 sec x(sec x tan x ) = 2 sec 2 x tan x 2.) If y = log(sin x ) , find y2 y1 = 1 cos x = cot x sin x y 2 = − cos ec 2 x. 3.) If y = a cos x + b sin x, find y 2 y 1 = −a sin x + b cos x y 2 = −a cos x − b sin x. 4.) If y = Ae3 x + Be −5 x , find D 2 ( y ) D( y ) = 3 A e3 x − 5 B e−5 x D 2 ( y ) = 9 A e3 x + 25 B e− 5 x 5.) 1 , find y 2 x 1 y1 = − 2 x 2 y2 = 3 x If y = 224 PART - B 1.) ( ) 2 2 If y = x sin x, prove that x y 2 − 4xy1 + x + 6 y = 0 2 Solution: y = x 2 sin x y 1 = x 2 (cos x ) + 2x sin x = x 2 cos x + 2x sin x y 2 = x 2 (− sin x ) + 2x cos x + 2x cos x + 2 sin x 2 = -x sinx + 4xcosx + 2sinx [ ∴ x 2 y 2 − 4xy1 + ( x 2 + 6)y = x 2 − x 2 sin x + 4x cos x + 2 sin x ] − 4x(x cos x + 2x sin x ) + ( x + 6)x 2 sin x 2 2 = − x 4 sin x + 4x 3 cos x + 2x 2 sin x − 4x 3 cos x − 8x 2 sin x + x 4 sin x + 6x 2 sin x =0 2 2.) If y = a cos log x + b sin log x , show that x y 2 + xy1 + y = 0, Solution: y = a cos log x + b sin log x § 1· § 1· y1 = −a sin log x ¨ ¸ + b cos log x ¨ ¸ ©x¹ ©x¹ Multiply by x on both sides ∴ xy1 = −a sin log x + b cos log x Differentiate both sides w.r.to x § 1· § 1· xy 2 + y1 = −a cos log x ¨ ¸ − b sin log x ¨ ¸ x © ¹ ©x¹ Again multiply by x on both sides ∴ x 2 y 2 + xy1 = −a cos log x − b sin log x = −(a cos log x + b sin log x ) = −y ∴ x 2 y 2 + xy1 + y = 0 225 3.) If y = esin y = e sin −1 y1 = e sin −1 x ( ) , prove that 1 − x 2 y 2 − xy1 − y = 0 x −1 x . 1 1− x 2 1 − x 2 y1 = esin −1 x Differentiate both sides w.r.t x −1 1 1 ( 1 − x 2 y 2 + y1 − 2x ) = esin x 2 2 1− x 1− x2 1− x 2 on both sides Multiply by (1 − x )y − xy = y If y = (tan x ) , prove that (1 + x ) y 2 2 4.) 1 2 −1 Solution: ( y = tan−1 x 2 2 ) 2 § 1 · y1 = 2 tan −1 x ¨ ¸ 2 © 1+ x ¹ ( ) Multiply by 1+ x 2 on both sides (1 + x )y 2 1 = 2 tan−1 x Differentiate both sides w.r.t.x (1 + x )y 2 2 + y1(2x ) = 2 ( ) 1 1+ x2 Multiply by 1+ x 2 on both sides (1 + x ) y 2 2 2 ( ) + 2x 1 + x 2 y 1 = 2 226 2 ( ) + 2x 1 + x 2 y 1 = 2 3.3.2 Formation of differential equation: Definition: An equation involving differential coefficients is called differential equation. Examples: dy = 2xy dx dy + 2xy = x 2 2.) dx 1.) d2 y 3.) dx 2 −5 dy + 6y = x 2 dx 2 3 § d3 y · dy · § 4.) ¨¨ 3 ¸¸ + ¨1 + dx ¸ = 0 © ¹ © dx ¹ Order of the differential equation: The order of the differential equation is the order of the highest derivative appearing in the equation, after removing the radical sign and fraction involved in the equation. d2 y e.g: 1.) 2.) dx 2 +3 dy + 2y = e x (order is 2) dx 2 d3 y § dy · + 6¨ ¸ − 4y = 0 (order is 3) 3 dx © dx ¹ Degree of the differential equation: The degree of the differential equation is the power (or) degree of the highest derivative occuring in the differential equation. Example: 1.) 5 d2 y dx 2 +7 dy + 5y = e x dx (degree 1) 2 5 § d2 y · § dy · ¨ ¸ 7 5 + 7 y = sin x + ¨ ¸ 2.) ¨ 2 ¸ © dx ¹ © dx ¹ 227 (degree 2) 1.) WORKED EXAMPLES PART - A 2 If xy = c , form the differential equation by eliminating the Constant ‘c’ xy = c2 x 1.) dy +y=0 dx PART - B If y= A Cos 2x+ Bsin2x, form the differential equation by eliminating the constants ‘A’ and ‘B’. y=A Cos 2x + B sin 2x dy = −2 A sin 2x + 2 BCos2x dx d2 y dx 2 d2 y dx 2 2) = −4 A Cos2x − 4 B sin 2x = −4[ ACos 2x + B sin 2x ] = −4y + 4y = 0 is the required differential equation Form the differential equation by eliminating the constant ‘a’ and ‘b’ from the equation. xy = ae x + be − x Solution: Given xy = ae x + be − x Differentiate both sides w.r.to x x y1 + y = ae x − be − x Differentiate again w.r. to x, x y 2 + y1 + y1 = ae x + be − x x y 2 + 2y1 = xy x y 2 + 2y1 − xy = 0 is the required differential equation. 228 I. EXERCISE PART - A Differentiate the following w.r. to ‘x’ 1.) (3x + 5) (2.) sin2 (5x + 3 ) 10 ( 4.) tan−1 3 x II. III. Find ) 2 (5.) e sin −1 (3.) e cos 3 (6.) log(tan2 x ) 2x dy if dx 1.) x 2 + y 2 = 0 (2.) x sin y = 0 3.) xy = k (4.) xy2 = x + y 1.) sin−1 5 x (2.) sin−1(cos x ) 3.) sin−1 3 x (4.) tan−1 4x ( ) 3 PART - B I) Differentiate the following w.r.t ‘x’ 3.) e sin −1 x ) Find 2x tan 5 x 6.) xCos ( x ) −1 7.) 1 + x tan x II) −1 −1 5.) x tan x ( ) 4.) e tan cos 6 x 2 2 ( 2.) x 2 + 1 Cos5x 5x 1.) e cos 2x sin 3 x 8.) dy of the following dx 1.) 2x 2 + 6xy + y 2 = 1 2.) x 2 sin y = C 3.) y = a + xey 4.) x 2 + 3 xy + 2y 2 = 4 5.) x m y n = am+ n 229 x x sin−1 x III) Differentiate the following w.r.t ‘x’ § 3x − x 3 · ¸ 1.) y = tan −1¨ ¨ 1 − 3x 2 ¸ © ¹ § x 2.) y = sin−1¨ ¨ 2 2 © x +a 3.) y = sin−1 3x − 4x 3 4.) y = cos −1 4x 3 − 3x ( 5.) y = ( ) 1− x 2 − 4 x 6.) y = sin−1§¨ 2x 1 − x 2 ·¸ © ¹ § 1 · 7.) y = sec −1¨ 2 ¸ © 2x − 1 ¹ IV) Find § 1 · 8.) y = sin−1¨ ¸ 2 © 1 − 2x ¹ dy if dx 1.) x = 3 sin t − sin3 t 2.) x = a(θ − sin θ) 3.) x = cos3 θ V) and y = cos t - cos3 t and y = a(1 − cos θ ) and y = sin3θ (1 − x )y − 4x y + (x + 6)y = 0 x ) , Show that (1 − x )y − x y − 2 = 0 , Pr ove that (1 − x )y + (2x − 1)y = 0 1.) If y = x 2 cos x, Pr ove that ( 3.) If y = e tan −1 2 2 2 2 2.) If y = sin−1 2 x 2 5.) If y = ea cos −1 x 9 3.) − 3ecos 3 x Cos 2 x sin x 2e sin (1 − x )y 1 (1 + x )y 2 2 , Pr ove that 1.) 30(3 X + 5) 5.) 1 2 2 −1 1 2 4.) If y = logª x + x 2 + 1º , Show that «¬ »¼ I ) · ¸ ¸ ¹ 2 + xy1 = 2 − x y1 − a 2 y = 0 ANSWER PART - A 2.) 10 sin(5x + 3 ) cos(5x + 3 ) 4.) 6 tan −1 3x 1 + 9x 2 (2x ) 1 − 4x 2 2 6.) Cosec x secx 230 II. 1.) III. 1.) 4.) −x y − tan y x 2.) −5 1 − 25 x 2.) -1 2 ( 12 tan −1 4x 1 + 16 x 2 3.) −y x 3.) ) 4.) 1− y2 2xy − 1 1 x 9x 2 − 1 2 PART - B I 1.) e5 x [3 cos 2x cos 3x ] − 2 sin 2x sin 3x + 5 cos 2x sin 3x ( ) 2.) 2x cos 5 x − 5 x 2 + 1 sin 5 x ª cos 6 x 3.) esin−1x «− 6 sin 6x + «¬ 1− x 2 4.) e tan 5.) −1 2 tan 5x º 2 » «5 sec 5x + 1 + 4x 2 ¼ ¬ 2x ª x2 1+ x º » »¼ 2 + 2x tan −1 x 6.) 7.) 1 + 2x tan−1 x II. III. 1.) − 2x + 3 y 3x + y 2.) − 2 tan y x 4.) − 2x + 3 y 3x + 4y 5.) − my nx 1.) 5.) IV. 8.) 3 1+ x ( 2.) 2 1 2 1+ x 2 3 1.) − tan t ) 6.) a a +x 2 2 2 1− x2 2.) cot θ 2 3.) 7.) −x 1− x 2 x 1− x2 + sin−1 x 2 x 3.) 3 1− x 2 −2 1− x2 3.) − tan θ 231 + cos −1 x 4.) 8.) ey 1 − xey −3 1− x2 2 1− x2
© Copyright 2026 Paperzz