Rainfall'Shocks'and'Property'Crimes'in'Agrarian'Societies:' Evidence'from'India' ' David!S!Blakeslee1! Ram!Fishman2! ! We! examine! the! effects! of! rainfall! shocks! on! various! the! incidence! of! crime! in! India! from! the! years! 1971@2000.! We! find! that! the! incidence! of! most! crimes! increases! with! negative!rainfall!shocks.!Positive!rainfall!shocks,!in!contrast,! lead! to! increases! in! property! crimes,! but! have! no! effect! on! non@property! crimes.! These! findings! are! consistent! with! economic! models! of! crime! emphasizing! both! opportunity! costs!and!returns.! ' ' Introduction' The! Economic! theory! of! crime! (starting! with! Becker! 1974)! postulates! that! individuals’! decisions! to! engage! in! criminal! activity! depend! on! the! associated! benefits! and! costs.! In! the! case! of! property! crime,! benefits! include! the! prospects! of! profitable! loot,! and! costs! include! the! potential! consequences! of! being! caught! and! punished.!! Positive!aggregate!income!shocks!may!increase!both!the!costs!and!the!benefits! of! criminal! activity! –! individuals! with! higher! non@criminal! income! have! more! “to! lose”!if!caught,!but!the!returns!from!predatory!activity!are!also!likely!to!be!higher!–! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1!Columbia!University.! 2!George!Washington!University.! ! 1! there! is! more! “to! gain”.! The! economic! theory! of! crime! suggests,! therefore,! that! in! principle,!both!positive!and!negative!aggregate!income!shocks!might!increase!crime! rates.! In! this! paper,! we! use! panel! data! on! crime! rates! in! India! to! show! that! both! positive! and! negative! weather! (rainfall)! shocks,! which! strongly! affect! agricultural! income,!can!increase!crime!rates.!We!consider!a!variety!of!types!of!criminal!activity,! and! in! accordance! with! theory,! find! that! property! crime! increases! in! response! to! both! types! of! shocks,! whereas! violent! crime,! for! which! the! “benefits”! are! income@! independent,!increases!only!in!response!to!negative!shocks,!when!individuals!have! “less!to!lose”.!! The!impact!of!negative!income!shocks!on!crime!rates!has!been!demonstrated!by! several! authors.! For! example,! Miguel! (2003)! finds! that! negative! weather! shocks! increase! murder! rates! (“witch! killing”)! in! rural! Tanzania.! In! India,! Bohlken! and! Sergenti! (2011)! and! Sarsons! (2011)! find! an! association! between! negative! rainfall! shocks!and!the!incidence!of!Hindu@Muslim!riots,!and!Sekhri!and!Storeygard!(2010)! find!an!association!between!negative!rainfall!shocks!and!crimes!against!women!and! vulnerable! minorities.! A! related! literature! shows! civil! conflict! can! also! arise! as! a! result! of! weather! related! income! shocks! (for! example! Miguel! et! al! 2004.! For! a! review!see!Burke!and!Hsiang!2012).!Several!papers!(Angrist!&!Kugler!2008,!Dube!&! Vargas!2008,!Nunn!&!Qian!2012,!Lei!&!Michaels!2011)!have!also!provided!evidence! of!rapacity!@!increased!conflict!in!response!to!positive!income!shocks!in!sectors!that! are! relatively! less! labor! intensive! (so! the! “more! to! gain”! effect! dominates! over! the! “more!to!lose”!effect).!Our!results!are!unique!in!that!they!suggest!that!positive!and! ! 2! negative!income!shocks!within!the!same!sector!can!both!increase!crime!rates.!! Like!much!of!the!literature,!this!paper!is!based!on!evidence!from!a!developing! country.!For!positive!income!shocks!to!affect!property!crime,!it!seems!necessary!for! incomes!to!be!easily!observable.!Rural!areas!of!developing!countries,!where!income! is!dominated!by!agriculture!but!population!density!is!still!high,!and!law@protecting! institutions! may! be! relatively! weak,! therefore! present! a! likely! setting! where! these! patterns! can! be! observed.! In! addition,! agricultural! income! is! highly! sensitive! to! exogenous!weather!shocks,!facilitating!identification.! ! Conceptual'Framework' We! present! a! highly! simplified! model! of! criminal! activity.! A! continuum! of! individuals,!indexed!by!0<i<M!and!ordered!by!their!incomes!πi,0!!(the!index!0!stands! for!an!average!year),!make!decisions!on!whether!to!engage!in!criminal!activity.!For! property!crimes,!we!assume!that!the!highest!income@earners!can!be!identified!and! targeted,!so!that!the!rewards!from!crime,!if!successful,!are!proportional!to!πM,0!.!The! probability! of! success! is! p,! and! the! probability! of! failure! (arrest! and! punishment),! assumed! to! be! welfare! equivalent! to! an! income! of! π=0,! is! 1@p.! Utility! is! rising! concave!function!of!income!u(π).!An!individual!compares!the!benefits!from!criminal! activity!to!those!from!productive!activity,!and!decides!to!engage!in!criminal!activity! if!! ! ! ! !!,! < !" !!,! + !!!,! + 1 − ! ! 0 ! If!u(π)!is!sufficiently!steep!at!π=0!and!sufficiently!flat!at!π=M,!then!its!easy!to!show! there!is!an!intermediate!value!of!π!for!which!the!inequality!is!satisfied!for!all!lower! ! 3! values!and!not!satisfied!for!all!higher!values!–!sufficiently!poor!individuals!engage!in! crime.!! Consider! now! a! positive! or! negative! income! shocks,! for! which! the! income! distributions!become!πi,+!≥!πi,0!and!πi,@!≤!πi,0.!!We!assume!all!individuals!are!better!or! worse!off,!respectively,!as!a!result!of!these!shocks,!but!that!wealthier!individuals!are! disproportionally!affected:!they!gain!more!from!positive!shocks!and!are!less!affected! by!negative!shocks,!i.e.!for!all!i:! !!,! !!,! !≥! ! !!,! !!,! ! !!,! !!,! !≥! ! !!,! !!,! Under!these!conditions,!it!is!possible!for!both!negative!or!positive!income!shocks!to! raise! crime! rates.! To! illustrate,! consider! risk! neutral! individuals,! for! whom! the! condition!for!crime!becomes!!!! (1 − !)!!,! < !"!!,! ! Obviously,!the!above!conditions!guarantee!that!every!individual!who!chooses!crime! in!a!normal!year!will!also!choose!crime!in!either!a!positive!or!a!negative!shock!year.! Note! that! for! violent! crime! (not! property! related),! the! benefit! of! crime! B! is! not! dependent!on!income,!so!the!condition!for!choosing!crime!is! ! ! ! !!,! < !" !!,! , ! + 1 − ! ! 0 ! !and!therefore!only!an!increase!in!an!individual’s!income!will!make!her!less!likely!to! choose!crime.! Inequality!and!the!above!conditions!(which!essentially!increase!inequality!in!a! shock! year)! are! needed! in! the! model! in! order! for! both! types! of! shocks! to! increase! ! 4! crime.! Homogenous! shocks! to! an! equal! society! will! not! do! much! to! change! crime! rates,! especially! for! positive! income! shocks.! However,! the! above! assumptions! are! quite!natural!in!the!agricultural!context.!For!example,!access!to!irrigation,!which!is! often!wealth!and!class!stratified!in!India,!can!both!reduce!the!impacts!of!a!negative! rainfall! shock,! and! enhance! the! positive! impact! of! bountiful! rain! by! using! stored! water!to!expand!double!cropping!in!the!dry!season.!! There!are!also!other!models!that!can!lead!to!increases!in!crime!from!both!types! of! shocks.! For! example,! there! could! be! two! sectors,! with! restrictions! on! labor! movement,! with! one! sector! (agriculture)! more! sensitive! to! rainfall! than! the! other.! When! rainfall! is! good,! it! induces! non@agricultural! labor! to! turn! to! crime! against! agriculturalists,!and!when!rainfall!is!poor,!it!induces!farmer,!who!have!little!to!lose,! to!turn!to!crime.! ! Data' Data! on! crime! rates! was! obtained! from! India’s! National! Crime! Records! Bureau! (INCRB),! housed! under! the! Ministry! of! Home! Affairs.! INCRB! produces! annual! documents! on! national! and! sub@national! crime! trends,! and! including! detailed! statistics!on!the!incidence!of!various!crimes!at!the!district!levels,!beginning!in!1971.3! Most!major!classes!of!crimes!are!available!continuously!from!1971!onwards.!Of!the! crimes!included!in!the!data,!we!consider!burglary,!banditry,!theft,!and!robbery!to!be! property! crimes,! and! murder,! rape,! and! riots! to! be! “purely”! violent! crimes.! Other! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3!Crime!data!is!also!available!before!1971,!but!only!at!the!state!level.! ! 5! types!of!crime,!such!as!cheating!and!kidnapping,!fit!less!easily!into!this!classification! scheme.! Rainfall! figures! were! based! on! gridded! precipitation! and! temperature! data! produced!by!the!Indian!Meteorological!Department!(Rajeevan!et!al!2005,!Srivastava! et!al!2009)!and!converted!to!district@wise!figures!by!area@weighted!averaging!over! grid!points!falling!within!a!given!district.! Agricultural! district@wise! data! on! the! production! of! rice! and! wheat! were! obtained! from! the! Indian! Harvest! database! produced! by! the! Center! for! the! Monitoring! of! the! Indian! Economy.! While! these! figures! do! not! provide! a! complete! indication!of!rural!income,!they!are!likely!to!be!reasonable!proxies,!given!that!rice! and! wheat! are! the! largest! crops! (in! terms! of! cultivated! area)! in! India’s! two! main! agricultural!seasons.! Table!1!provides!summary!statistics!of!the!crimes!included!in!our!data!set.!The! crime! variables! are! measured! as! the! number! of! incidents! per! 100,000! people.! The! three!columns!tabulate!the!incidence!of!the!indicated!crime!across!the!three!decades! spanning! 1970@2000,! and! indicate! a! general! decline! in! the! incidence! of! most! property! crimes,! with! substantial! declines! in! burglary,! banditry,! thefts,! robbery,!4! and!contract!violations!(“breach!of!trust”).!Cheating!and!kidnapping,!however,!were! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4!Robbery!is!distinguished!from!theft!in!that!it!includes!violence!in!the!commission! of!the!crime.!Banditry!is!distinguished!from!robbery!by!its!involving!5!or!more! individuals!in!the!commission!of!the!crime.!! ! 6! relatively!stable!across!these!periods.!Murder!and!rape!increased!somewhat!during! this!period,!while!homicides5!!were!stable,!and!riots!decline!slightly.! ' ' Results' A.'Rain'Shocks' Our!primary!empirical!specification!is!the!Poisson!regression:! !!"# = exp!(! + !! !"#$%&'!" + !! !"#$%&'!" + !! + !! ×! !"#$%$"&'!" + !!" ).! The!incidence!of!each!crime!(per!100,000!people)!in!district!i,!state!s!and!year!t!is! regressed! on! dummy! variables! for! positive! and! negative! rainfall! shocks 6 !in! constituency! i! at! time! t,! which! take! the! value! of! 1! when! rainfall! is! one! standard! deviation!above!or!below!the!district!mean.!District!fixed!effects!are!included,!as!are! state@level!quadratic!time!trends.!! Estimated! coefficients! for! rainfall! shocks! (β1! and! β2)! are! reported! in! Table! 2.! Columns!(1)@(2)!report!estimates!that!include!only!the!rainfall!dummies;!in!columns! (3)@(4),!district!fixed!effects!are!added;!and!in!columns!(5)@(6)!the!state@level!time! trends!are!included!to!form!our!preferred!specification.!! Crime!rates!in!most!categories!respond!positively!to!deficient!rainfall!deviations! in! statistically! significant! ways.! For! example,! burglary! rates! increase! by! about! 5%! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 5!Homicides!are!definitionally!equivalent!to!“manslaughter”!in!British!common!law,! and!consist!of!non@culpable!deaths.!Included!amongst!these!are!deaths!caused!in! self@defense.! 6!We!use!fluctuations!in!Monsoon!rainfall.!Approximately!90%!of!annual!rainfall! occurs!during!the!monsoon!season,!and!it!is!upon!this!that!agriculture!is!principally! dependent.!As!such,!the!inclusion!of!rainfall!from!times!of!the!year!when!it!is!not! agriculturally!beneficial!adds!noise!to!the!rainfall!measure.!! ! 7! during! dry! years,! banditry! by! about! 10%,! thefts! by! 4%,! and! robberies! by! 12%.! Similarly,! kidnapping, 7 !riots,! rape,! murder! and! homicide! rates! increase! by! an! estimated!4%,!5%,!3%,!7%!and!22%!(but!the!latter!is!not!statistically!significant).!! During! rainier! than! normal! years,! however,! results! are! more! mixed.! Over! all,! it! seems!that!property!crime!rates!(including!burglary,!banditry,!thefts!and!robberies)! respond! positively! (with! statistically! significant! coefficients)! in! excessively! rainy! years,! whereas! violent! crimes! (riots,! murders,! rape,! and! kidnapping)! show! no! statistically!significant!response!to!abundant!rain.!!! The! one! exception! to! this! pattern! is! homicides,! where! both! negative! and! positive! rainfall! shocks! are! associated! with! increases! in! incidence,! though! the! former! is! statistically! insignificant! and! the! latter! significant! at! the! 10%! level.! This! finding! is! not! inconsistent! with! our! thesis,! as! murders! due! to! self@defense! are! classified! as! homicides,! and! therefore! might! be! expected! to! rise! with! increases! in! property! crime.! In! any! case,! the! homicide! variable! is! clearly! somewhat! noisy,! as! evidenced!by!the!large!coefficients!and!standard!errors,!which!is!unsurprising!given! that! it! includes! accidental! deaths,! which! are! unlikely! to! be! much! influenced! by! economic!factors.! As!a!robustness!check,!we!estimate!two!additional!specifications.!In!the!first,!we! replace! the! dummy! rainfall! measures! with! continuous! variables:! the! negative! (positive)! rainfall! shock! variable! takes! the! value! of! zero! when! monsoon! rainfall! is! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 7!Kidnapping,!it!should!be!noted,!is!ambiguous!as!to!its!economic!content.! Kidnappings!for!the!sake!of!extorting!ransoms!will!have!obvious!economic!content,! whereas!the!kidnappings!of!women!tend!to!have!non@economic!motivations.!The! data!indicates!that!the!preponderance!of!kidnappings!are!of!women!(74%),!though! this!disaggregation!is!only!reported!after!1987.! ! 8! above!(below)!the!district!mean,!and!takes!the!value!of!the!deviation!when!rainfall!is! below! (above)! the! district! mean.! In! the! second,! the! rainfall! variables! are! again! specified! as! dummies! indicating! shocks! 1! standard! deviation! above! and! below! the! mean,!but!the!regressions!are!now!specified!as!OLS.!To!account!for!the!problem!of! observations! for! which! the! crime! takes! the! value! of! zero,! we! specify! the! outcome! variable! as! ! ≡ ln!(1 + !"#$%) ,! and! then! include! dummies! equaling! 1! for! observations! in! which!!"#$% = 0.! The! results! from! these! two! specifications! are! given!in!appendix!tables!A1!and!A2!and!are!consistent!with!those!obtained!from!our! preferred!specification.!! ! B.'Mechanisms' To! examine! whether! the! impact! of! rainfall! shocks! on! crime! rates! is! mediated! through! income! channels,! we! estimated! parallel! regressions! for! the! production! of! rice! and! wheat,! India’s! most! prevalent! crops! (in! terms! of! cultivated! areas)! on! rainfall!shocks.!This!is!particularly!important!for!positive!rainfall!shocks,!since!these! could!be!suspected!of!actually!reducing!income!through!flooding!and!waterlogging,! for!example!8.!In!India,!however,!we!find!that!the!average!impact!of!positive!rainfall! shocks!on!the!production!of!rice!and!wheat!is!indeed!positive,!lending!support!to!the! income!channel!thesis.!! The! findings! are! reported! in! table! 3.! As! with! the! crime! regressions,! the! two! rainfall! variables! are! specified! as! dummies! taking! the! value! of! 1! for! positive! and! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 8!For!example,!Hidalgo,!Naidu,!Nichter!and!Richardson!(2010)!find!an!association! between!both!types!of!rainfall!shocks!and!land!invasions,!and!also!show!that!both! types!of!shocks!reduce!agricultural!incomes.!! ! ! 9! negative! rainfall! shocks,! respectively.! In! columns! (1)@(3),! the! outcome! used! is! (the! logarithm! of)! total! output;! in! columns! (4)@(6),! (log)! yield! per! hectare;! and! in! columns! (7)@(9),! the! (log)! area! of! cultivation.! The! successive! columns! add! district! fixed! effects! and! state! time! trends.! Panel! A! gives! the! results! for! rice! cultivation;! panel! B! for! wheat! cultivation.! As! expected,! negative! rainfall! shocks! are! associated! with! significant! declines! in! agricultural! output:! a! standard! deviation! decline! in! rainfall!leads!to!an!approximately!40!percentage!points!decline!in!rice!output,!and!a! 25!percentage!points!decline!in!wheat.!Positive!rainfall!shocks!are!associated!with! increases!in!agricultural!output:!a!standard!deviation!increase!in!rainfall!causes!an! approximately!10!percentage!points!increase!in!both!rice!and!wheat!production.!! These!agricultural!effects!are!consistent!with!the!mechanism!posited!by!which! rainfall! shocks! influence! criminal! conduct.! The! increases! in! crime! found! with! negative! rainfall! shocks! are! consistent! with! the! large! disruptions! in! agricultural! output!caused!by!a!lack!of!rain.!Similarly,!the!increases!in!property!crime!associated! with!positive!rainfall!shocks!are!consistent!with!the!substantial!increases!in!output! caused!by!high!levels!of!rainfall.!! ! Conclusion' We! provide! suggestive! evidence! for! the! operation! of! two! distinct! and! important! mechanisms! in! the! occurrence! of! property! crimes! in! India.! On! the! one! hand,! opportunity!cost!models!of!crime!are!validated,!with!most!types!of!crime!increasing! during! times! of! economic! duress.! On! the! other! side! of! the! ledger,! we! also! find! evidence! for! the! validity! of! models! emphasizing! the! returns! to! crime! as! a! driving! ! 10! mechanism.! A! host! of! property! crimes! are! found! to! increase! during! times! of! economic!prosperity,!with!non@property!crimes!showing!no!change.!! ! ! ! ! ! 11! References' Becker,! G.! S.! (1974).! Crime! and! punishment:! An! economic! approach.! Essays' in' the' Economics'of'Crime'and'Punishment.!UMI,!1974.!1@54.!! Bohlken,! A.! T.! and! Sergenti,! E.! J.! (2010).! Economic! growth! and! ethnic! violence:! An! empirical! investigation! of! hindu–muslim! riots! in! india.! Journal' of' Peace' Research,! 47(5):589–600.! Burke,! M.! and! Hsiang,! S.! M.! (2012).! Climate,! Conflict,! and! Social! Stability:! What! do! the!data!say?! Hidalgo,! F.,! Naidu,! S.,! Nichter,! S.,! and! Richardson,! N.! (2010).! Economic! deter@! minants!of!land!invasions.!The!Review!of!Economics!and!Statistics,!92(3):505–523.! Miguel,!E.!(2005).!Poverty!and!witch!killing.!Review'of'Economic'Studies!72.4:!1153@ 1172.! Miguel,!E.,!Shanker,!S.,!and!Sergenti,!E.!(2004).!Economic!shocks!and!civil!conflict:!An! instrumental!variables!approach.!Journal'of'political'Economy!112.4:!725@753.! Angrist,!J.!D.!and!Kugler,!!A.!D.!(2008).!Rural!windfall!or!a!new!resource!curse?!Coca,! income,! and! civil! conflict! in! Colombia.! The'Review'of'Economics'and'Statistics! 90.2! (2008):!191@215.! Dube,!O.!and!Vargas,!J.!(2008).!Commodity!price!shocks!and!civil!conflict:!Evidence! from!Colombia.!Unpublished'manuscript'Harvard'University.! Nunn,!N.!and!Qian,!N.!(2012)!Aiding'Conflict:'The'Impact'of'US'Food'Aid'on'Civil'War.! Working!Paper!No.!w17794.!National!Bureau!of!Economic!Research.! Lei,! Y.! and! Michaels,! G.! (2011).! "Do! giant! oilfield! discoveries! fuel! internal! armed! conflicts?".! ! 12! Rajeevan,!M.,!et!al.!(2005)!"Development!of!a!high!resolution!daily!gridded!rainfall! data!for!the!Indian!region."!Met.'Monograph'Climatology!22:!2005.! Sarsons, H. (2011). Rainfall and conflict. ! Sekhri,!S.!and!Storeygard,!A.!(2010).!The!Impact!of!Climate!Variability!on!Vulnerable! Populations:! Evidence! on! Crimes! against! Women! and! Disadvantaged! Minorities! in! India.! Srivastava,! A.! K.,! Rajeevan,! M.! and! Kshirsagar,! S.! R.(2009).! "Development! of! a! high! resolution! daily! gridded! temperature! data! set! (1969–2005)! for! the! Indian! region."! Atmospheric'Science'Letters!10.4:!249@254.! ! ! ! ! ! 13! Table 1: Summary Statistics: Crime (per 100k) 1970s 1980s 1990s property crimes burglary 38.393 21.616 14.215 banditry 2.372 1.695 1.019 thefts 75.900 45.874 30.387 robbery 4.821 3.703 2.688 breach of trust 4.359 2.515 1.724 counterfeiting 0.099 0.286 0.225 cheating 3.183 2.591 3.370 non-property crimes kidnapping 2.309 2.096 2.398 riots 13.709 13.771 11.340 rape 0.791 1.178 1.764 murder 3.724 4.036 4.593 homicide 0.511 0.585 0.495 dowry death . . 0.774 grievous hurt . . 24.486 agriculture irrigation 0.514 0.580 0.610 wheat product 95.044 148.719 185.284 wheat yield 1.224 1.565 2.007 wheat area 69.389 77.476 73.879 rice product 131.768 165.486 214.185 rice yield 1.194 1.739 2.037 rice area 109.840 102.934 106.929 cotton product 0.061 23.030 45.546 cotton yield 0.167 0.221 0.256 cotton area 0.293 92.442 188.143 sugarcane product 0.081 54.674 442.360 sugarcane yield 30.438 40.612 56.543 sugarcane area 0.002 1.337 6.486 14 Table 2: Monsoon Rainfall Shocks and Crime monsoon shocks > 1sd outcome: neg (1) pos (2) neg (3) pos (4) neg (5) pos (6) 0.083*** (0.026) 0.005 (0.026) 0.089*** (0.020) 0.073*** (0.022) 0.049*** (0.018) 0.086*** (0.018) banditry 0.079** (0.038) 0.005 (0.037) 0.115*** (0.029) 0.113*** (0.025) 0.101*** (0.029) 0.122*** (0.024) thefts 0.060* (0.032) -0.037 (0.033) 0.089*** (0.024) 0.044* (0.026) 0.040** (0.020) 0.063*** (0.023) robbery 0.132*** (0.038) -0.020 (0.032) 0.144*** (0.034) 0.038* (0.020) 0.115*** (0.033) 0.038** (0.019) breach of trust 0.081** (0.032) 0.024 (0.044) 0.074*** (0.028) 0.084** (0.042) 0.025 (0.027) 0.084** (0.041) -0.171*** (0.033) -0.028 (0.031) -0.028 (0.026) 0.018 (0.022) 0.008 (0.023) 0.025 (0.019) -0.082** (0.032) -0.022 (0.030) 0.020 (0.020) 0.019 (0.017) 0.039** (0.020) 0.017 (0.017) riots -0.059** (0.026) -0.081*** (0.026) 0.054*** (0.018) -0.038** (0.016) 0.048*** (0.016) -0.006 (0.014) rape -0.123*** (0.029) -0.004 (0.028) -0.057*** (0.020) 0.017 (0.020) 0.032** (0.015) 0.003 (0.014) murder -0.017 (0.020) -0.044** (0.022) 0.056*** (0.012) 0.005 (0.015) 0.071*** (0.011) 0.005 (0.014) homicide 0.272** (0.135) 0.061 (0.068) 0.224 (0.168) 0.076* (0.044) 0.227 (0.169) 0.079* (0.044) no no no no yes no yes no yes yes yes yes property crimes burglary cheating non-property crimes kidnapping district FEs state time trends 15 Table 3: Monsoon Rainfall, Temperature Shocks, and Agricultural Output (1) total output (2) (3) (4) yield per hectare (5) (6) (7) area (8) (9) rainfall neg -0.166** (0.073) -0.453*** (0.025) -0.400*** (0.023) -0.239*** (0.019) -0.297*** (0.015) -0.249*** (0.012) 0.139** (0.069) -0.091*** (0.020) -0.089*** (0.019) rainfall pos 0.110 (0.067) 0.116*** (0.022) 0.092*** (0.021) 0.079*** (0.017) 0.047*** (0.013) 0.049*** (0.011) 0.020 (0.062) 0.071*** (0.018) 0.045*** (0.017) R-squared N 0.0010 7257 0.9279 7082 0.9400 7082 0.0233 7226 0.6419 7052 0.7585 7052 0.0006 7226 0.9476 7052 0.9551 7052 rainfall neg -0.275*** (0.066) -0.267*** (0.024) -0.228*** (0.021) -0.079*** (0.016) -0.123*** (0.010) -0.083*** (0.008) -0.203*** (0.058) -0.145*** (0.020) -0.147*** (0.018) rainfall pos 0.151** (0.062) 0.093*** (0.021) 0.099*** (0.019) 0.057*** (0.015) 0.025*** (0.010) 0.028*** (0.007) 0.100* (0.055) 0.070*** (0.018) 0.074*** (0.017) R-squared N 0.0025 9076 0.9210 8334 0.9406 8334 0.0042 9058 0.7224 8319 0.8341 8319 0.0016 9058 0.9300 8319 0.9408 8319 no no yes no yes yes no no yes no yes yes no no yes no yes yes Panel A: Rice Panel B: Wheat 16 district FEs state time trends Appendix Tables Table 1: Monsoon Rainfall Shocks and Crime: Continuous Measure monsoon shocks outcome: neg (1) pos (2) neg (3) pos (4) neg (5) pos (6) 0.108*** (0.026) 0.056*** (0.021) 0.086*** (0.016) 0.072*** (0.015) 0.045*** (0.014) 0.057*** (0.013) banditry 0.189*** (0.034) 0.108*** (0.027) 0.125*** (0.022) 0.102*** (0.017) 0.109*** (0.021) 0.100*** (0.016) thefts 0.113*** (0.034) 0.046* (0.025) 0.088*** (0.021) 0.053*** (0.018) 0.042** (0.017) 0.041*** (0.015) robbery 0.144*** (0.031) 0.055*** (0.020) 0.102*** (0.022) 0.055*** (0.013) 0.076*** (0.021) 0.047*** (0.012) breach of trust 0.092*** (0.027) 0.049 (0.036) 0.060*** (0.021) 0.049 (0.031) 0.018 (0.020) 0.035 (0.031) -0.056* (0.029) -0.006 (0.021) -0.015 (0.019) -0.007 (0.014) -0.001 (0.016) 0.003 (0.012) -0.011 (0.029) 0.004 (0.020) 0.019 (0.019) 0.008 (0.011) 0.027 (0.019) 0.009 (0.011) riots -0.006 (0.024) -0.026 (0.018) 0.041*** (0.015) -0.017 (0.011) 0.034** (0.014) 0.001 (0.010) rape -0.055** (0.025) -0.019 (0.021) -0.039*** (0.015) -0.017 (0.014) 0.019 (0.012) -0.004 (0.009) murder 0.028 (0.017) 0.004 (0.014) 0.035*** (0.009) 0.003 (0.008) 0.039*** (0.009) 0.001 (0.008) homicide 0.175 (0.136) 0.039 (0.039) 0.143 (0.112) 0.046 (0.030) 0.150 (0.113) 0.051* (0.030) no no no no yes no yes no yes yes yes yes property crimes burglary cheating non-property crimes kidnapping district FEs state time trends 17 Table 2: Monsoon Rainfall Shocks and Crime: OLS monsoon shocks > 1sd outcome: neg (1) pos (2) neg (3) pos (4) neg (5) pos (6) 0.088*** (0.022) -0.036* (0.021) 0.101*** (0.017) 0.021 (0.015) 0.072*** (0.015) 0.034** (0.014) banditry 0.036** (0.017) -0.011 (0.016) 0.053*** (0.011) 0.035*** (0.010) 0.047*** (0.011) 0.039*** (0.010) thefts 0.047** (0.022) -0.059*** (0.021) 0.067*** (0.016) 0.012 (0.014) 0.029** (0.014) 0.034*** (0.012) robbery 0.035* (0.019) -0.030* (0.018) 0.066*** (0.013) 0.019* (0.012) 0.056*** (0.012) 0.019* (0.011) breach of trust 0.068*** (0.015) -0.020 (0.014) 0.066*** (0.013) 0.015 (0.012) 0.031*** (0.011) 0.016 (0.010) cheating -0.103*** (0.016) -0.022 (0.015) -0.027** (0.012) 0.011 (0.011) -0.006 (0.011) 0.021** (0.010) -0.061*** (0.014) -0.025* (0.013) 0.007 (0.009) 0.007 (0.008) 0.022** (0.009) 0.007 (0.008) riots -0.013 (0.024) -0.065*** (0.022) 0.065*** (0.014) -0.040*** (0.013) 0.063*** (0.014) -0.008 (0.012) rape -0.057*** (0.013) -0.005 (0.012) -0.030*** (0.009) -0.003 (0.008) 0.010 (0.007) 0.003 (0.006) murder -0.034*** (0.013) -0.037*** (0.012) 0.025*** (0.008) -0.006 (0.007) 0.040*** (0.008) -0.001 (0.007) homicide 0.043*** (0.010) 0.023** (0.010) 0.009 (0.007) 0.010 (0.006) 0.012* (0.007) 0.012* (0.006) no no no no yes no yes no yes yes yes yes property crimes burglary non-property crimes kidnapping district FEs state time trends 18
© Copyright 2026 Paperzz