A "Converse" of the Banach Contraction Mapping Theorem

!
""" " !
# #
#$##
½ ½ ¾ %& !
'
" ( !
( & )*+, -
( " ½ " & ( " "( ( )*., &( - £ Ý ! "# $
%$& & & $ '())
½ # *
*
- " & ' ( &!
/ " & ( &!
(
& 0
! 0
( - 1(
-
" ( 2
( " ( ( & )3( .( *4, ( " %&!
-
( )4( 5( 6( *7( *8( *5(
*6, ( ( "( - ( )7,
2
" !
9 & ( 2
-
( 9
: :;; ( : -" 2
; !
" &
& & ( " : ; &- - "
:
; 9 & ( -
- - - (
( " " " " - ( ( " 7( 2
( - <= " 9
- " - 2
" " - -
" ' ( ( $
>
3 8 & )*3, " - 2
?
2 ( " - ( $
" 9 9 & ( - " 9 @"( " " A %
- @
"
)*3,
' - & -"
" )*B( *7,C 9
2
!
( - "
" & "
7
& & )*7, 2 2!
( " - - " &( "
)*7, > - "C " - -
>
7( " " >
3( " " " -
" 7
% -
( 2
!
( " )7B, ( C ( ( ( " ¼ :; D ·½ :; D : :;; ? :;
E ½:; D :; D - %
( " 9
- : ; ¾ -
: ;
E C " "
:; :; E :;( " :; :;
:; :
; D B D :; :
; D B
:; :
; D :
;
:; :
; :
; F :
;
:; :
; &:
;
:
;
%
( " 2
"
G :
; - C - & B * " : :;
:;; :
; ( ( 9
: :;; 9 & " "
7 " G :
; - ½ C - " 9 & ( ( 9
: :;;
& C :
; " : :;
:;; ½
¾ :
;
3
( - ( " :; - - " "
:*; :;
:7; :; :; D ( :; :;
:3; :; D ( ½ :; :;
( ( :; ! 1" D :; -
"
C
:; :; D ( " :*;( :7; :3; ( - " :; D :; D ( :; :; :; D @
( :; :; 9 /
( D :3; ( "
½:; " :; D D " ( :7; :3; " :;
( - ( / - :;
:; :; D :; :; D :;( :; :; 9 /
( :; :; :*;( :7; :3; " :; D :;
( E & C :*; E :; D ( D :; D :;( " -
:; D B : ( D ; "C
:7; % " :; D :; D ( : :;; D F *
:3; % " :; D ( :; D * ½:;
E " "!
:
; ½ ¾ %( 9
:; (
" 9
- 9
- ( ½ ( " 9
:; C -
B D (
7 "
%( C -
:
; D &::;;
:: ;;
:; D
¾
+ ,
- ½ -& . $&
! - .
C -
:
; D
:
; D (
B
D E " :
; :; G :
; D B D :
; D :
; D B( &::;;
::;; D B( ::;; D ::;; D B @
:; D :; D D D - ( " :; - :; - ( :; G " ::;; ::;; :
; D ::;; ::;; ::;;( :
; D ::;; ::;; :: ;;( :
; D :: ;; :: ;; - " :
; :
; 9
:
; " ( : ; - 9
: ; ( > : ; E " ( " Æ
" ::: ;;; ¾ B G B & ¼ ¼ " : ; ( " : ¼ ; ¼ ( ( : ; ( " -
:: ¼ ;; ( :: ;; ¼ >
" -( " ::: ;;; ¾
B
E :; D ( " : :;; D :; F * - ( ½
:: :;;; D ¾ ::;;
% ( " : :;
:;; ½¾ :
; " (
" D G :
; D 7 ( (
&::;;
::;; D 7 : :;
:;; D &:: :;;;
:: :;;; D
½
½
¾ &::;;
:: ;; D ¾ :
;( 9
E -
7( D " ( ( - G D ::;; D 7 ( (
( " :
; 7 ( D ( " :
; 7 ( :
; 7 D
" 9
4
: ; 9
" D ( 9
: ; ( Æ " " D ( " - ( - : :;; - " " ( - 2 2
( : :;; " " " 7
( ( -
& ( &
)8( +( *4, C ·¼ ( " ·¼
- ( :;( :; :; * & "
C
:; :
; ( ( -
:; C ( :; :;
:; % : ; ( " : ; D :;
:; :; E - :*; ( :7; :; : ; :;
:; 1 : ; ( :: ;; : ; ( "( : ; - :: ;; ( -
:: ;;
:; :; :;( : :;; D :; F * :; F * D : :;;
:; : ; ( " '"( " : : ;; D :; D : : ;;( 9
:; - ( E -"
0
( )*( .,
E 7 )**,( " " 8
)*, 2
( C A
A 0
H %&!A
( :*++*;( 54I5+
)7, 2( @ ( ( % ( J( E ( K( J >
( C !
G A( C ( 0 K ( ( L E ( M
(
E
( > :? ;( G A
AC 74!N A!
( >
( 2
( *+++( 73*I744
)3, 2
( ( 2( % K
( J J C &
$ >
>( C ( > :? ;( A C ?
> >
( 1" N >
( L 6B8( *++8( .+I86
)., ?( @
( K C >( !
>
:*++6;( 43I53
)4, %
( C C ?& ( J
G
A
:3; :*++.;( **3I*75
)8, @
( K C &
> - A >( > :*+++;( 5*I63
)5, @( A C G A
>
(
A ( 1
( ( 7BB*
)6, @( A >( 0 C %&!A
A! K-
!
- G A
( C A
E L
( >"
>
( (
J *+++ % >( >!
( A
( K ( *5 ( )+, @( A >( 0 C ( C A
> 7BBB(
2( ( 7BBB J
? ?
4* :*7#; :7BBB;( 3I5
)*B, @( A >( 0 C 1 K
-"
G A
1 1"( C -
( A >
( :? ;( A
% E % :E%HBB;( J 7BBB( ?
E!
:E;( 2 >( *!+( )**, @O-( > 0
( N C " A G A
( C A
? +. E -
>!
- A
( ? ( *++.( 86I55
)*7, @O-( > ( >O( @ 0
( N C &
>
G
A - K
1 1"( :*+++;( .4I46
)*3, PQ( L C %& A
I ( !
( L 5( K A-
( ( @
( *+6*
)*., G( J E C %
G A
( >
?
( >
!L(
2
( *+66
5
)*4, "( > C A ( C ( > :? ;( A
? > ( 1" N >
( L 576( *++.( *63I*+5
)*8, A!( > K-
-( A C > G A
(
J
G A
:7BBB;( 4+I5B
)*5, >( 0 C R! >
G A( %
!
:*; :*++5;( +5I**5
)*6, >( 0 @( A C > G!
G A( C 2!
( %
( > :? ;( A
>
E %!
:E%H+6;( J *+++( ?
E :E;(
2 >( *+++( *!*6
)*+, >
-!@
( L ( G
O( $( ? K C ( - >
1 77( -
A( -( *++.
)7B, E( > C ( !E( K
( ( *+5B
!" : ! ;( -
*+5* ( !
O-
- *++6 " !
A 0 > - J
7BB*
@ " 2 ( ! #
$ % &' : ( ( % ; >
G ( ( @ "
( - " " ( ( !
@ - 1" N
>
?
>
:? >;( <1" = 2
? >
6