SECTION 7.7 INDETERMINATE FORMS AND L’HOSPITAL’S RULE |||| 7.7 S Click here for solutions. Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, use it. If l’Hospital’s Rule doesn’t apply, explain why. |||| 23. lim x sin 3x x sin 3x 24. lim e 4x 1 cos x xl0 xl0 x2 1. lim 2 xl2 x 4 x 2 3x 4 2. lim xl1 x1 25. lim tan x sin x x3 26. lim x tan 2x x tan 2x x6 1 3. lim 4 x l 1 x 1 tan x 4. lim x l 0 x sin x 27. lim tan 2x tanh 3x 28. lim 2x sin1x 2x cos1x ex 1 5. lim x l 0 sin x x tan x 6. lim xl0 sin x 29. lim sin x 7. lim xl0 x3 tan x 8. lim xl x cos x 9. lim x l32 x 32 11. lim xla 3 3 xs a s xa 4 t2 s 10. lim t l16 t 16 12. lim xl0 6x 2x x ln x3 13. lim xl x2 sin x 14. lim xl0 ex tan x 15. lim xl0 x 2 sin x 16. lim 2 x l 0 tanx ln ln x 17. lim xl sx ln1 e x 18. lim xl 5x tan12x 19. lim xl0 3x x 20. lim 1 x l 0 sin 3x 21. lim xl0 1 Indeterminate Forms and L’Hospital’s Rule A Click here for answers. 1–45 ❙❙❙❙ sin mx sin nx xl0 xl0 xl0 xl0 1 xl0 2x sin x 2x tan1x 30. lim xe x x l 31. lim e x ln x 32. 33. lim sx sec x 34. lim x cot x 35. lim x 1 tan x2 36. lim xl xl xl0 xl0 xl1 xl0 sin10 x sinx 10 sec 7x cos 3x 1 1 2 x4 x 37. lim ( x sx 2 1 ) xl 38. lim (sx 2 x 1 sx 2 x ) xl 39. lim xl 40. lim xl 1 1 x x e 1 x3 x3 x2 1 x2 1 41. lim sin xtan x 42. lim 43. lim cot xsin x 44. lim xl xl0 22. lim lim x l 2 xl xl0 45. lim ln x 1 1 x2 1 1 x x x2 x xl0 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2 ❙❙❙❙ SECTION 7.7 INDETERMINATE FORMS AND L’HOSPITAL’S RULE Answers E Click here for exercises. 1 4 3 3. 2 1. S Click here for sol utions. 2. 5 4. 1 2 5. 1 6. 2 7. ∞ 8. 0 9. 1 10. 11. 1 3a2/3 12. ln 3 13. 0 14. 0 15. α 16. 1 17. 0 18. 2 3 m 21. n 19. 23. −2 1 2 2 27. 3 1 29. 3 25. 1 32 1 5 1 20. 3 22. 1 24. 0 26. −3 28. 0 30. 0 3 7 31. 0 32. 33. 0 34. 1 2 35. − π 36. ∞ 37. 0 38. 1 39. 0 40. 0 41. 1 42. 1 43. 1 44. ∞ 45. 1 SECTION 7.7 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ❙❙❙❙ Solutions E Click here for exercises. A Click here for answers. H =. 1 x−2 x−2 1 = lim = lim = 1. lim 2 x→2 x − 4 x→2 (x − 2) (x + 2) x→2 x + 2 4 The use of l’Hospital’s Rule is indicated by an H above the equal sign: 2. x2 + 3x − 4 (x − 1) (x + 4) = lim x→1 x→1 x−1 x−1 = lim (x + 4) = 5 lim 16. 17. x→1 6 3. −6 3 x −1 H 6x5 = lim = = x→−1 x4 − 1 x→−1 4x3 −4 2 4. 1 1 tan x H sec2 x = = = lim x→0 x + sin x x→0 1 + cos x 1+1 2 5. 1 ex − 1 H ex = lim = =1 x→0 sin x x→0 cos x 1 lim lim lim 1 + 12 x + tan x H 1 + sec2 x = =2 = lim x→0 x→0 sin x cos x 1 sin x H cos x 7. lim = lim =∞ x→0 x3 x→0 3x2 tan π 0 tan x = = = 0. L’Hospital’s Rule does not 8. lim x→π x π π apply because the denominator doesn’t approach 0. 6. lim cos x H − sin x = − sin 3π = lim =1 2 x − 3π/2 x→3π/2 1 √ √ 4 4 t−2 t−2 √ 10. lim = lim √ t→16 t − 16 t→16 t+4 t−4 √ 4 t−2 = lim √ √ √ 4 t→16 t+4 t+2 4t−2 9. 11. 12. 15. 19. 20. 1 1√ 1 − 9x2 = 3 3 m sin mx H m cos mx = 21. lim = lim x→0 sin nx x→0 n cos nx n = lim x→0 22. lim lim x→0 x→3π/2 lim x→a 23. 24. 1 1 = = (4 + 4) (2 + 2) 32 25. lim 1+3 x + sin 3x H 1 + 3 cos 3x = = −2 = lim x − sin 3x x→0 1 − 3 cos 3x 1−3 lim 0 e4x − 1 = =0 cos x 1 x→0 x→0 lim x→0 1 x1/3 − a1/3 H (1/3) x−2/3 = lim = 2/3 x→a x−a 1 3a 6x − 2x H 6x (ln 6) − 2x (ln 2) = lim x→0 x→0 x 1 = ln 6 − ln 2 = ln 62 = ln 3 lim lim tan αx H α sec2 αx =α = lim x→0 x→0 x 1 lim sin10 x H 10 sin9 x cos x = lim x→0 10x9 cos (x10 ) sin (x10 ) 9 sin x cos x = lim lim x→0 x→0 cos (x10 ) x = 19 · 1 = 1 1 √ = lim √ t→16 t+4 4t+2 (ln x)3 H 3 (ln x)2 (1/x) 3 (ln x)2 = lim = lim 2 x→∞ x→∞ x→∞ x 2x 2x2 6 (ln x) (1/x) 3 ln x H = lim = lim x→∞ x→∞ 2x2 4x 3/x 3 H = lim = lim =0 x→∞ 4x x→∞ 4x2 0 sin x 14. lim = = 0. L’Hospital’s Rule does not apply. x→0 ex 1 13. 18. sin2 x H 2 sin x cos x = lim x→0 tan (x2 ) x→0 2x sec2 (x2 ) sin x cos x = lim lim =1·1= 1 x→0 x x→0 sec2 (x2 ) 1 (x ln x) ln ln x H 2 lim √ = lim √ =0 = lim √ x→∞ x→∞ 1 (2 x) x→∞ x x ln x ex (1 + ex ) ln (1 + ex ) H lim = lim x→∞ x→∞ 5x 5 1 ex ex H = lim = = lim x→∞ 5 (1 + ex ) x→∞ 5ex 5 2 2 1 + 4x 2 tan−1 (2x) H lim = lim = x→0 x→0 3x 3 3 x 1 H lim = lim x→0 sin−1 (3x) x→0 3 1 − (3x)2 lim 26. lim x→0 tan x − sin x H sec2 x − cos x = lim x→0 x3 3x2 2 2 sec x tan x + sin x H = lim x→0 6x 4 sec2 x tan2 x + 2 sec4 x + cos x H = lim x→0 6 0+2+1 1 = = 6 2 x + tan 2x H 1 + 2 sec2 2x = lim x − tan 2x x→0 1 − 2 sec2 2x = 27. 28. lim x→0 1 + 2 (1)2 = −3 1 − 2 (1)2 tan 2x H 2 sec2 2x 2 = lim = tanh 3x x→0 3 sech2 3x 3 2 (0) − 0 2x − sin−1 x = = 0. L’Hospital’s Rule x→0 2x + cos−1 x 2 (0) + π/2 does not apply. lim 3 4 ❙❙❙❙ SECTION 7.7 INDETERMINATE FORMS AND L’HOSPITAL’S RULE 29. 30. √ 2x − sin−1 x H 2 − 1/ 1 − x2 = lim x→0 2x + tan−1 x x→0 2 + 1/ (1 + x2 ) 2−1 1 = = 2+1 3 lim = lim x→−∞ =0 lim e−x ln x = lim lim x→(π/2)− x→0+ lim (x − π) cot x = lim x→π x→π = x−π H 1 = lim x→π sec2 x tan x 1 =1 (−1)2 x−1 cot (πx/2) 2 1 H = lim π =− π x→1+ − csc2 (πx/2) 2 lim (x − 1) tan (πx/2) = lim x→1+ x→1+ 1 1 1 − x2 − 2 = lim =∞ 4 x→0 x→0 x x x4 √ 37. lim x − x2 − 1 36. 41. y = (sin x)tan x ⇒ ln y = tan x ln (sin x), so ln (sin x) lim ln y = lim tan x ln (sin x) = lim cot x x→0 + x→0+ x→0 + (cos x) / sin x H = lim − csc2 x x→0+ = lim (− sin x cos x) = 0 ⇒ x→0+ tan x = lim eln y = e0 = 1. lim (sin x) x→0 + x→0 + x 1 1 ⇒ 42. Let y = 1 + 2 . Then ln y = x ln 1 + 2 x x 1 ln 1 + 2 x 1 lim ln y = lim x ln 1 + 2 = lim x→∞ x→∞ x→∞ x 1/x 2 1 − 3 1+ 2 x x H = lim x→∞ −1/x2 2/x = 0, 1 + 1/x2 x so lim 1 + 1/x2 = lim eln y = e0 = 1. = lim x→∞ lim x→∞ 43. x→∞ √ √ x + x2 − 1 2 √ = lim x − x − 1 x→∞ x + x2 − 1 2 2 x − x −1 √ = lim x→∞ x + x2 − 1 1 √ =0 = lim x→∞ x + x2 − 1 √ √ 38. lim x2 + x + 1 − x2 − x x→∞ √ √ √ x2 + x + 1 + x2 − x √ 2 2 √ x +x+1− x −x √ = lim x→∞ x2 + x + 1 + x2 − x 2 2 x +x+1 − x −x = lim √ √ x→∞ x2 + x + 1 + x2 − x 2x + 1 √ = lim √ 2 x→∞ x + x + 1 + x2 − x 2 + 1/x = lim x→∞ 1 + 1/x + 1/x2 + 1 − 1/x 2 =1 = 1+1 1 1 1 1 39. lim − x = lim − lim x (since x→∞ x→∞ x x→∞ e − 1 x e −1 both limits exist) = 0 − 0 = 0 2x3 2/x = lim − 1 x→∞ 1 − 1/x4 x→∞ x4 3 (−1) 3 −3 sin 3x = = −7 sin 7x 7 (−1) 7 √ 33. lim x sec x = 0 · 1 = 0 x3 x2 + 1 − x3 x2 − 1 = lim x→∞ (x2 − 1) (x2 + 1) x H 1 = lim x→−∞ −e−x e−x = lim −ex = 0 H 35. x→∞ x3 x3 − x2 − 1 x2 + 1 x→−∞ = 34. lim lim xex = lim x→−∞ ln x H 1/x = lim x x→∞ x→∞ ex x→∞ e 1 = lim =0 x→∞ xex cos 3x 32. lim sec 7x cos 3x = lim x→(π/2)− x→(π/2)− cos 7x 31. 40. x→∞ sin x y = (cot x) ⇒ ln y = sin x ln (cot x) ⇒ − csc2 x cot x ln (cot x) H = lim lim ln y = lim csc x − csc x cot x x→0 + x→0+ x→0 + csc x sin x = lim = lim =0 2 x→0+ cot x x→0 + cos2 x so lim (cot x)sin x = lim eln y = e0 = 1. x→0+ 44. x→0+ x2 Let y = (1 + 1/x) . Then ln y = x2 ln (1 + 1/x) ⇒ ln (1 + 1/x) lim ln y = lim x2 ln (1 + 1/x) = lim x→∞ x→∞ x→∞ 1/x2 −1/x2 / (1 + 1/x) H = lim x→∞ −2/x3 x =∞ ⇒ = lim x→∞ 2 (1 + 1/x) 2 lim (1 + 1/x)x = lim eln y = ∞. x→∞ 45. x→∞ x y = (− ln x) ⇒ ln y = x ln (− ln x), so ln (− ln x) lim ln y = lim x ln (− ln x) = lim 1/x x→0 + x→0+ x→0+ (1/ − ln x) (−1/x) −1/x2 −x =0 ⇒ = lim x→0+ ln x lim (− ln x)x = e0 = 1. H = lim x→0+ x→0 +
© Copyright 2026 Paperzz