PO.248 PitchandRollAngleCalibrationforScanningLiDARs toReduceUncertaintiesinMeasurementHeight Abstract TheapplicationofscanningLiDARsforthe measurementofwindspeedisarelativelynew technologyinthewindenergysectorandalsohas potentialrelevanceforvarioustopics,(e.g. measuringthewindspeedforpowerperformance testforoffshorewindturbines).ScanningLiDARs offeracustomizablescanninggeometryandare, therefore,abletomeasurewindspeedandwind directionatapositionthatisnotcenteredonits ownposition.Forsuchsituations,theknowledge oftheelevationangleiscrucial,asitdirectly influencesthemeasurementheight.Forinstance, forpowerperformancetestsofoffshorewind turbinesoftypicalsize,anaccuracyhigherthan 0.1° isnecessary.Independentfromthedisplayed elevationangleofthedevice,theinclinationofthe devicemustbeknown. Objectives UweLohbeck,KlausFranke,AiltWiardJanssen DeutscheWindGuardConsultingGmbH Blockageofthelaserbeamoccurswhenthe LiDAR’scarrier-to-noiseratio(CNR)decreases significantlyfortherangegateinapproximatelythe distanceofthescreenandrangegatesbehind.The CNRismonitoredinreal-timewithalaptop connectedtotheinstrument. Device Device1 Device2 Device3 Device4 δh α h δα RollAngle Slope Offset [-] [°] -0.97 0.18 -0.99 0.03 -1.00 0.27 -0.99 0.05 Table1:ResultsofcalibrationsperformedatDeutscheWindGuard thusfar,MethodAapplied.ApplyingMethodBisresultinginvery similarcorrectionfactors. L h0 PitchAngle Slope Offset [-] [°] 0.98 -0.13 1.02 -0.39 0.98 -0.07 1.03 -0.30 Detailedcalibrationresultsareshownforthepitch angleofdeviceno.2. Parameter MeasuredInclinationasgivenbyLiDAR ScanningDirection AzimuthAngle[°] ZenithAngle[°] TransversalInclination Name DisplayedValue[°] LDistanceLiDAR-Screen[m] DateofCalibration Variateleglengthtovariateα Figure1:Schematicsideviewofthemeasurementsetup. Calibrationtargetisthepitchangleα.Theinfraredlaser(red dashedline)canbedetectedwiththegapinthescreenatdistance LoftheLiDAR.Thevisiblelaser(greensolidline)isapproximately paralleltotheinfraredlaser,i.e.theangleδαandtheoffsetδhare fixedduringthemeasurements.Thedottedblacklineistheview directionofthetheodolitetothevisiblelaseronthescreen.The referenceheighth0 isdefinedbytheexitpointofthelaserbeam atthecentreofthelens. Value Pitch 0 90 Roll 0.000 83.85 2015-07-03 Table2:Measurementconfigurationofthepitchcalibration RotatingLaser Twobuilt-inelectronicinclinometersmeasureits ownorientationwithintheearth’sgravitational fieldduringoperation. Inordertoachieveahighaccuracyofthese measurands,thesesensorsmustbecalibrated priortothemeasurement.Acalibrationprocedure, includingdetaileduncertaintyassessment,has beendevelopedinthetestinglaboratoryof DeutscheWindGuard. Visable LiDAR Infrared δy δx Theodolite Screen Figure2:Topviewofmeasurementsetup.Therotatinglaser transfersthereferenceheighth0fromtheLiDARtothetheodolite (MethodA)andthescreen(MethodB) Figure4:CalibrationresultsofthepitchangleoftheLiDAR.The referenceinclinationwasmeasuredbyMethodA,i.e.directangle measurementswithatheodolite.Thebluemarkersarethe referencepitchasfunctionofthepitchgivenbytheLiDAR.The errorbarsdenotethestandarduncertaintyinpitch.Thered diamondsgivetheresiduals,i.e.thedeviationbetweentheshown calibrationlineandthemeasuredvalues.Thedottedlinesdenote thestandarduncertaintyofthecalibrationontheaxisofthe residuals MeasurementSetup Toassesstheaccuracyofthepitchandroll inclinometersoftheLiDAR,theelevationangleα ofthelaserbeaminagivenconfigurationofthe instrumentiscomparedtotheoutputofthe inclinometer.Figure1andFigure2show schematicoverviewsofthemeasurement configuration.Figure3showsaphotographofthe setup. Theelevationangleαcanbemeasuredbytwo independentmethods: • Directmeasurementoftheangleαwitha theodolite(MethodA) • Indirectmeasurementoftheangleαwith therelationtan α=h/L,withhbeingthe verticaldisplacementofthelaserbeamata horizontaldistanceLfromtheexitlens (MethodB) Bothmeasurementsareappliedduringthe calibration. Commontobothmethodsisthechallengeof findingtheinvisiblelaserbeam[1].The wavelengthofthelaserisapproximately 1550 nm,i.e.thelaseremitsintheinfrared. Thereforedirectdetectionoftheoutgoinglaser wasnotfeasible. Thelocationofthelaserbeamwasidentifiedby iterativelyblockingandunblockingthelaserbeam withthewoodenconstructionshowninFigure3. Conclusions Figure3:Pictureoftheexperimentalsetup.Theinsetshowsthe screen.Itisconstructedtoidentifythelocationoftheinfrared laserbeamoftheLiDAR.Thewhitepanelsaremoveduptothe pointatwhichtheyjustdonotblockthelaser.Therotatinglaser definesareferenceheightacrossthemeasurementsite Inordertoworkoutcalibrationfactorsintermsof slopeandoffset,bothmethodswereappliedforup tosixdifferentinclinationangleswhicharevaried byadjustingthelegsofthedevice.Procedurewas conductedforpitchandrollanglebyrotatingthe deviceby90°. Results Atthisstage,calibrationoffourscanningLidarshas beenperformedinthefacilitiesofDeutscheWind Guard.Itturnedout,thattheinclinometersare moreinfluencedbyanoffsetthantheslopefactor. ResultsofallcalibrationsarelistedinTable1. windeurope.org/summit2016 #windeuropesummit2016 Anewmethodofcalibratingpitchandrollanglefor scanningLiDARshasbeendeveloped.The challengeofidentifyingtheinvisiblelaserbeamis avoidedbytheapplicationofanadjustablevisible laserbeam.Redundantmeasurementprinciples verifythereliabilityoftheresults. Theresultsofdevicestestedthusfarleadtothe assumptionthatcalibrationofthebuilt-in inclinometersisrecommended,inordertoachieve ahighaccuracyinelevationangleand consequentlyinmeasurementheight.Foratypical measurementconfigurationforapowercurvetest ofanoffshorewindturbine,adeviationofthe elevationangleof0.1° willresultinanerrorof measurementheightofabout0.5m. References 1. Calibratingnacellelidars,DTUWindEnergyE-0020,January 2013 Download theposter
© Copyright 2026 Paperzz