Find the x- and y-intercepts of the graph, if any exist. (If an answer

Answer on Question #54913 – Math – Algebra
Consider the following quadratic function.
𝑓(π‘₯) = π‘₯ 2 βˆ’ 6π‘₯ – 7
Find the x- and y-intercepts of the graph, if any exist. (If an answer does not exist, enter DNE.)
x-intercept (x, y) = (larger x value)
x-intercept (x,y)= (smaller x value)
Convert the function into standard form.
f(x) =
Graph the quadratic function.
Identify the vertex and the axis of symmetry.
vertex
(x, y) =
Solution
Find the x- and y-intercepts of the graph, if any exist. (If an answer does not exist, enter DNE.)
π‘₯ 2 βˆ’ 6π‘₯ βˆ’ 7 = 0 β†’ |𝐷 = 62 βˆ’ 4 βˆ™ (βˆ’7) = 82 | β†’ π‘₯1 =
6βˆ’8
6+8
= βˆ’1, π‘₯2 =
=7
2
2
𝑓(0) = 02 βˆ’ 6 βˆ™ 0 – 7 = βˆ’7
Thus,
𝑦 βˆ’ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘ 𝑖𝑠 (π‘₯, 𝑦) = (0 ; βˆ’7)
π‘₯ βˆ’ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘ (π‘₯, 𝑦) = (π‘™π‘Žπ‘Ÿπ‘”π‘’π‘Ÿ π‘₯ π‘£π‘Žπ‘™π‘’π‘’) = βˆ’1
π‘₯ βˆ’ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘ (π‘₯, 𝑦) = (π‘ π‘šπ‘Žπ‘™π‘™π‘’π‘Ÿ π‘₯ π‘£π‘Žπ‘™π‘’π‘’) = 7
Convert the function into standard form.
𝑓(π‘₯) = π‘₯ 2 βˆ’ 6π‘₯ + 9 βˆ’ 9 + 7 = (π‘₯ βˆ’ 3)2 βˆ’ 2
Graph the quadratic function.
Identify the vertex and the axis of symmetry.
vertex is
(π‘₯, 𝑦) = (3; βˆ’2)
axis of symmetry is
π‘₯=3
www.AssignmentExpert.com