Simpson’s Rule is a three point formula (at A, B and the midpoint). Replace y(x) by a Lagrange interpolating quadratic: A+B 2 )(x − B) y(A) + A−B 2 (A − B) (x − A)(x − A+B 2 ) + y(B) B−A (B − A) 2 (x − (x − A)(x − B) A+B y( 2 ) B−A A−B · 2 2 Integrate (individually) from A to B: Z B (x − A = (x − Z ¯B (A−B)3 6 + x=A = − B A (B−A)3 12 (x − A)(x − B) dx ¯ 2 ¯B (x − A) (x−B) ¯ 2 x=A − 1 2 3 = − (B−A) 6 Z = Z 1 2 (x − B)2 dx B A = − B) dx 2 A+B (x−B) ¯ ¯ 2 ) 2 (B−A)3 4 = A+B 2 )(x 2 (x−A) 2 Z B A (x − B)2 dx B A (x − A)(x − (x − ¯B A+B ¯ ) ¯ 2 x=A 3 A+B 2 ) dx − 3 1 2 Z B A (x − A)2 dx 3 − (B−A) = (B−A) = (B−A) 4 6 12 and combine, to get the following formula (Simpson’s): Z B A y(x) dx ≈ y(A) + 4y( A+B 2 ) + y(B) · (B − A) 6 The first term is a weighted average of the three y-values, the mid point contributing 4 times as much as the other two. The formula must be exact for polynomials of degree 2 or less, due to symmetry, it is also correct for all cubics (due to its symmetry): 1 y(x): 1 x x2 x3 x4 Simpson: 1+4+1 =1 6 0+4· 12 +1 = 12 61 0+4· 4 +1 = 13 6 0+4· 18 +1 = 14 61 0+4· 16 +1 5 = 24 6 Exact: R1 dx = 1 R 10 x dx = 12 R 01 2 x dx = 13 R01 3 x dx = 14 R01 4 x dx = 15 0 (off by about 4%). Idea as to how to derive the Simpson-rule coefficients more efficiently: The formula must be exact for all quadratics, and it has the form: ¤ £ cl y(A) + cc y( A+B 2 ) + cr y(B) (B − A) Apply it to y(x) = 1, x and x2 , using A = −1 and B = 1 (the most convenient choice now), and get: y(x): Formula: Exact: 1 2(cl + cc + cr ) 2 x 2(cr − cl ) 0 2 x2 2(cr + cl ) 3 1 2 which is solved by cl = cr = 6 , cc = 3 (same as before). Note the symmetry of cl and cr . Error Analysis: Applying the Simpson rule to Taylor expanded y(x) yields µ h y 00 (xc ) h2 y 000 (xc ) h3 y iv (xc ) h4 1 y(xc ) + y 0 (xc ) + + + 6 2 2 4 6 8 24 16 +4y(xc ) ¶ h y 00 (xc ) h2 y 000 (xc ) h3 y iv (xc ) h4 +y(xc ) − y 0 (xc ) + − + ·h= 2 2 4 6 8 24 16 y(xc ) h + The error is thus y 00 (xc ) 3 y iv (xc ) 5 h + h + ... 24 1152 y iv (xc ) 5 h + ... 2880 (a substantial improvement over the trapezoidal rule). R π/2 And, true enough, applying Simpson to the old 0 sin x dx yields 1.002279877, a fairly respectable answer. Composite Rule: Divide (A, B) into n2 subintervals (n must be even). Apply Simpson to each subinterval, add the answers: 2 y0 + 4y1 + y2 y2 + 4y3 + y4 h+ h+ 6 6 yn−2 + 4yn−1 + yn .... + h= 6 y0 + 4y1 + 2y2 + 4y3 + ... + 4yn−1 + yn · (B − A) 3n where h = B−A n 2 = 2 n (B − A). The corresponding error is: n/2 h5 X iv y (x2i−1 ) + ... ' 2800 i=1 = h5 n iv · y + ... 2800 2 av h4 iv + ... (B − A) yav 2800 (next terms proportional to h6 , h8 ,...). This gives us a clear idea as to how to apply Romberg’s algorithm. Example: R1 Apply the Simpson composite rule to 0 sin x dx: n 2 4 8 16 −Ii Ki = 16Ii+1 Ii 15 1. 00227 9878 0.99999 15654 1. 00013 4585 0.99999 98774 1. 00000 8296 0.99999 9998 1. 00000 0517 where n 1+4 Ii = 2 P j=1 sin π (2j−1) +2 2n 3n 3 n 2 −1 P j=1 −Ki Li = 64Ki+1 63 1. 00000 0009 0.99999 99997 sin π2(2j) n · π 2
© Copyright 2026 Paperzz