Exam 2

Name _____Mr. Perfect_____________________________ Date ____Sp 17________
1. A 0.50 M solution of hydrazoic acid, HN3, is 99.3 % associated in water. Calculate the
acid ionization constant (Ka) for this acid. (10 pts)
I
C
E
Dissociation
0.7 % =
HN3
0.50
-x
0.50-x
π‘₯
× 100
0.50
⇄ H+ + N30
0
+x
+x
x
x
π‘ π‘œπ‘™π‘£π‘’ π‘“π‘œπ‘Ÿ π‘₯ =
0.7%
× 0.50 = 3.5π‘₯10βˆ’3 𝑀 = [𝐻 + ]
100
Plug in and solve for Ka
π‘₯2
(3.5π‘₯10βˆ’3 )2
πΎπ‘Ž =
=
= 𝟐. πŸ“π’™πŸπŸŽβˆ’πŸ“
βˆ’3
0.50 βˆ’ π‘₯ (0.50 βˆ’ 3.5π‘₯10 )
2. At 25 °C, the solubility of Lead(II) Chloride is 3.96 g/L. Calculate the solubility
product constant (Ksp) of Lead(II) Chloride at this temperature. (5 pts)
Mw = 277 g/mol
I
C
E
PbCl2(s) ⇄ Pb2+(aq) + 2Cl-(aq)
--0
0
--+s
+s
--s
2s
Solve for molar solubility
3.96
𝑔
π‘šπ‘œπ‘™
×
= 1.43π‘₯10βˆ’2 𝑀
𝐿
277 𝑔
Ksp = s(2s)2 = 4s3 = 4(1.43π‘₯10βˆ’2)3 = 1.17 x 10-5
3. Calculate the solubility in g per L of a solution of Barium Sulfate. (5 pts)
Ksp = 1.07 x 10-10
Mw = 233 g/mol
I
C
E
Ksp = s2
or
BaSO4(s) ⇄ Ba2+(aq) + SO42-(aq)
--0
0
--+s
+s
--s
s
1.07 x 10-10 = s2
2
(π‘šπ‘œπ‘™π‘Žπ‘Ÿ π‘ π‘œπ‘™π‘’π‘π‘–π‘™π‘–π‘‘π‘¦) 𝑠 = √1.07π‘₯10βˆ’10 = 1.03π‘₯10βˆ’5 𝑀
Solubility = 1.03x10-5 mol/L x 233 g/mol = 2.41x10-3 g/L
Chemistry 102 Exam 2
Name _____Mr. Perfect_____________________________ Date ____Sp 17________
4. Calculate the pH of 10.0 mL of a 0.25 M weak-base, nicotine (C10H14N2), solution
upon titration with the following increments of a 0.15 M strong-acid, HCl: (20 pts)
Ka = 1.0 x 10-8
Weak Base: 0.010 L x 0.25 mol/L = 0.0025 mol base
a) 0.00 mL of acid (before addition = ICE Box)
A- + H2O ⇄ HA + OHI 0.25
--0
0
C -x
--+x
+x
E 0.25-x
x
x
βˆ’14
𝐾𝑀 1π‘₯10
𝐾𝑏 =
=
= 1π‘₯10βˆ’6
πΎπ‘Ž
1π‘₯10βˆ’8
[𝐻𝐴][𝑂𝐻 βˆ’ ]
𝐾𝑏 =
[π΄βˆ’ ]
π‘œπ‘Ÿ
1π‘₯10
βˆ’6
π‘₯2
π‘₯2
=
β‰ˆ
0.25 βˆ’ π‘₯ 0.25
x = 5.0 x 10-4 = [OH-]
pH = 14 – 3.30 = 10.70
pOH = -log(5.0 x 10-4) = 3.30
b) 10.00 mL of acid (Before equivalence point)
0.010 L x 0.150 mol/L = 0.0015 mol acid = [HA]
0.0025 mol base – 0.0015 mol acid = 0.0010 mol base remains = [A-]
Use the Henderson-Hasselbach equation:
𝑝𝐻 = 8.00 + π‘™π‘œπ‘”
(0.0010)
= πŸ•. πŸ–πŸ
(0.0015)
b) 16.67 mL of acid (at equivalence point)
0.01667 L x 0.15 mol/L = 0.0025 mol acid ÷ 0.02667 L = 9.37 x 10-2 M = [HA]
I
C
E
HA
⇄
9.37x10-2
-x
9.37x10-2-x
H+ + A0
0
+x
+x
x
x
πΎπ‘Ž = 1.0π‘₯10βˆ’8 β‰ˆ
x = 3.06 x 10-5 M = [H+]
π‘₯2
9.37π‘₯10βˆ’2
pH = -log(3.06 x 10-5) = 4.51
Chemistry 102 Exam 2
Name _____Mr. Perfect_____________________________ Date ____Sp 17________
5. Calculate the pH of a solution containing 0.15 M HC2H3O2, acetic acid, and 0.25 M
NaC2H3O2, sodium acetate. Under these conditions, would this solution act as a buffer?
Clearly state the buffer zone for this weak acid. (10 pts)
Ka = 1.8 x 10-5
pKa = -log(1.8 x 10-5) = 4.74
Buffer zone = 3.74 – 5.74
𝑝𝐻 = π‘πΎπ‘Ž + π‘™π‘œπ‘”
[π΄βˆ’ ]
(0.25)
= 4.74 + log
= πŸ’. πŸ—πŸ”
[𝐻𝐴]
(0.15)
Yes, this mixture would result in a buffer solution.
6. Calculate the pH of a 0.25 M NaIO solution. (10 pts)
Ka = 2.3 x 10-11
I
C
E
IO- + H2O ⇄ HIO + OH0.25
--0
0
-x
--+x
+x
0.25 – x
x
x
𝐾𝑀
1.0π‘₯10βˆ’14
π‘₯2
π‘₯2
βˆ’4
=
=
4.34π‘₯10
𝐾
=
β‰ˆ
𝑏
πΎπ‘Ž
2.3π‘₯10βˆ’11
0.25 βˆ’ π‘₯ 0.25
check
x = 1.04x10-2 M = [OH-]
(1.04x10-2/0.25) x 100 = 4.17% assumption is valid
𝐾𝑏 =
pOH = -log(1.04x10-2) = 1.98 pH = 14 – 1.98 = 12.02
7. A solution containing the following indicator, with a Ka of 0.02, turns orange at the
equivalence point of a titration. Determine the range of pH values this indicator would be
useful. Could this indicator be useful for a weak base-strong acid titration? Clearly state
why or why not? (10 pts)
HIn ⇄ H+ + In(Red)
(Yellow)
pKa = -log(0.02) =1.7
Appropriate Indicator range = 0.7 -2.7 = buffer zone for the indicator
For a weak base:
HA ⇄ H+ + A-
at the equivalence point
The equivalence point would be below 7, thus this is an appropriate indicator for a weak
base-strong acid titration.
Chemistry 102 Exam 2
Name _____Mr. Perfect_____________________________ Date ____Sp 17________
8. For the following reactions, predict whether a decrease in temperature would be
favorable or unfavorable. (10 pts)
βˆ†G = βˆ†H - Tβˆ†S
(βˆ†G < 0 is favorable)
a) 2H2O2(aq) β†’ 2H2O(l) + O2(g)
+βˆ†S unfavorable
b) PCl3(l) + Cl2(g) β†’ PCl5(s)
-βˆ†S
favorable
c) CO2(s) β†’ CO2(g)
+βˆ†S
unfavorable
d) H2O(g) β†’ H2O(l)
-βˆ†S
favorable
9. Complete the following table. (10 pts)
[H+]
[OH-]
1.91 x 10-5
5.25 x 10-10
pH
4.72
Acid or Base?
Acid
6.7 x 10-3
1.49 x 10-12
2.17
acid
6.3 x 10-9
1.59 x 10-6
8.2
base
3.1 x 10-8
3.2 x 10-7
7.51
base
10. Predict if a precipitate will form from when 125 mL of 0.375 M Ca(NO3)2 is mixed
with 245 mL of 0.255 M NaF. Show all work to receive full credit. The Ksp for CaF2 is
3.2 x 10-11 (10 pts)
Ca(NO3)2(aq) + 2NaF(aq) β†’ CaF2(s) + 2NaNO3(aq)
CaF2(s) ⇄ Ca+2(aq) + 2F-(aq)
[πΆπ‘Ž+2 ] =
[𝐹 βˆ’ ] =
(0.125 𝐿)(0.375 𝑀)
= 1.27 π‘₯10βˆ’1 𝑀
(0.125 𝐿 + 0.245 𝐿)
(0.245 𝐿)(0.255 𝑀)
= 1.62 π‘₯10βˆ’1 𝑀
(0.125 𝐿 + 0.245 𝐿)
Qsp = [Ca+2][F-]2 = (1.27 x 10-1)(1.62 x 10-1)2 = 3.33 x 10-3
Qsp (3.33 x 10-3) > Ksp (3.2 x 10-11) ; therefore a precipitation will form.
Supersaturated
11. (Extra Credit) Predict the effect on the solubility (if any) for the following reaction
upon addition of a base. (5 pts)
Ca(OH)2(s) ⇄ Ca2+(aq) + 2OH-(aq)
Addition of a base would add excess hydroxide to the products. The system will shift the
equilibrium towards the reactants (shift to the left) in order to accommodate this change.
β€œLe Châtlier’s Principle”
Chemistry 102 Exam 2