Name: solutions Discussion Section Number: all Homework 4 — Due 10/4/2010 in class This cover sheet must be attached as the top page of your homework. 1. Solve for x: log3 x + log3 (2x + 1) = 1 2. Evaluate the following limits: (a) = lim e−x 3 x→0 lim x2 e−x (b) x→1 3. Show using the limit definition of the derivative that d (cos x) = − sin x dx 4. Find the derivatives of the following functions: f (x) = x3 sec x √ s2 − s g(s) = 3s x2 + 3 h(x) = x3 + 7 F (x) = ln x G(t) = et tan t + cos t 5. For f (x) = x4 − 3x3 + 5x2 − x + 1, find f 0 (x), f 00 (x), f 000 (x), f (4) (x), and f (5) (x). 6. For g(α) = cos α, find g 0 (α), g 00 (α), g 000 (α), and g (4) (α). 1 1. Solve for x: log3 x + log3 (2x + 1) = 1 log3 x + log3 (2x + 1) = log3 3 log3 [x(2x + 1)] = log3 3 x(2x + 1) = 3 2x2 + x − 3 = 0 (2x + 3)(x − 1) = 0 3 x = − , 1 2 2. Evaluate the following limits: (a) = lim e−x 3 x→0 lim x2 e−x (b) x→1 (a) 1 1 =1 3 = x x→0 e e0 3 lim e−x = lim x→0 (b) x2 1 1 = 1 = x x→1 e e e lim x2 e−x = lim x→1 3. Show using the limit definition of the derivative that d (cos x) = − sin x dx d cos(x + ∆x) − cos x (cos x) = lim ∆x→0 dx ∆x cos(x) cos(∆x) − sin(x) sin(∆x) − cos x = lim ∆x→0 ∆x cos(x) (cos(∆x) − 1) sin(x) sin(∆x) = lim − lim ∆x→0 ∆x→0 ∆x ∆x cos(∆x) − 1 sin(∆x) = cos(x) lim − sin(x) lim ∆x→0 ∆x→0 ∆x ∆x = 0 − sin(x) = − sin(x) 2 4. Find the derivatives of the following functions: f (x) = x3 sec x f 0 (x) = 3x2 sec x + x3 sec x tan x g(s) = g 0 (s) = = h(x) = h0 (x) = = √ s2 − s 3s (3s) 2s − 12 s−1/2 − 3 s2 − s1/2 s2 √ + 12 s 3s2 9s2 x2 + 3 x3 + 7 x3 + 7 (2x) − x2 + 3 3x2 (x3 + 7)2 −x4 − 9x2 + 14x (x3 + 7)2 F (x) = ln x 1 F 0 (x) = x G(t) = et tan t + cos t G0 (t) = et sec2 t + et tan t − sin t 5. For f (x) = x4 − 3x3 + 5x2 − x + 1, find f 0 (x), f 00 (x), f 000 (x), f (4) (x), and f (5) (x). f (x) = x4 − 3x3 + 5x2 − x + 1 f 0 (x) = 4x3 − 9x2 + 10x − 1 f 00 (x) = 12x2 − 18x + 10 f 000 (x) = 24x − 18 f (4) (x) = 24 f (5) (x) = 0 6. For g(α) = cos α, find g 0 (α), g 00 (α), g 000 (α), and g (4) (α). g(α) = cos α g 0 (α) = − sin α g 00 (α) = − cos α g 000 (α) = sin α g (4) (α) = cos α = g(α) 3
© Copyright 2026 Paperzz