f(x) Compared to its First Derivative f(x) Compared to its Second Derivative f(x) = x6 - 3x5 + 6x3 - 3x2 - 3x + 2 f(x) = x6 - 3x5 + 6x3 - 3x2 - 3x + 2 3 y local maximum 3 y 2 2 inflection point 1 -1 1 local minimum -1 inflection points (4) 1 2 x -1 local minimum concave up 1 -1 concave down 2 x concave concave down up concave up 6 f‛(x) 4 10 f‛‛(x) 2 -1 5 1 2 x -1 -2 -5 -4 -10 -6 -15 graph feature (L to R) slope > 0 falling (L to R) slope < 0 maximum slope = 0 minimum slope = 0 inflection pt. concave up concave down f‛(x) f(x) rising x 4 zeros in the second derivative graph f‛‛(x) + =0 + on L - on R =0 - on L + on R Curvature changes: ↔ 2 f‛‛(x) = 30x4 - 60x3 + 36x - 6 f‛(x) = 6x5 - 15x4 + 18x2 - 6x - 3 extrema 1 + =0 + + - at xmax at xmin potential inflection point + - Notes derivative may not exist at a max or min, e.g. or
© Copyright 2026 Paperzz