Aim #7: How do we complete proofs using the properties of real numbers? Homework: Handout Do Now: Fill in the following flow diagram with the correct properties. 3(y+x) + 2x (3y + 3x) + 2x 3(x+y) + 2x 2x + 3(x+y) 9-16-16 (2x + 3x) + 3y 2x + (3x + 3y) Fill in the blanks of this proof showing that (w + 5)(w + 2) is equivalent to w2 + 7w + 10. Write either commutative, associative, or distributive property in each black. Homework #6 Solutions: pgs. 18-19 (1-20) 1) D 2) D 3) C 4) A 5) B 6) A 7) Commutative 8) Multiplicative Identity 9) Commutative 10) Additive Identity 12) Associative 13) Commutative 14) Distributive 15) Additive inverse 16) Distributive Inverse 18) -1 19) 0 20) 0 11) Associative 17) Multiplicative 1) Show that 4y - 8(1 - y) = 12y - 8. Justify each step with a property. 4y - 8(1 - y) ______________________ 4y - 8 + 8y _______________________ 4y + 8y - 8 _______________________ (4y + 8y) - 8 ______________________ 12y - 8 2) Draw a flow diagram and use it to write a proof that (xy)z = (zy)x for all real numbers x, y, and z. 3) Justify each step with one of the properties of real numbers: a) 12 + 3(a + 2b) + (-3a) 12 + 3a + 6b + (-3a) 12 + 3a + (-3a) + 6b 12 + 0 + 6b 12 + 6b Given __________________________ __________________________ __________________________ __________________________ b) 3x + 5 + (-5) + 2x 3x + 0 + 2x 3x + 2x 5x Given __________________________ __________________________ 4) Using the Distributive Property, write an equivalent expression to 5(x - 6). 5) Using the Commutative Property, write an equivalent expression for 5(7x). 6) Does the Associative Property work over subtraction? Show an example to support your answer. 7) What is the additive inverse of -8x? ___________ 8) Justify each step with one of the properties of real numbers: 2 2 4 3a (2a + 3) - 2(a + 8) Given 4 2 4 6a + 9a - 2a - 16 _____________________________ 4 4 2 6a - 2a + 9a - 16 _____________________________ 4 2 4a + 9a - 16 _____________________________ 9) Justify each step with one of the properties of real numbers: 2 2x + (5 + 3x)6 - 30 Given 2 2x + 6(5 + 3x) - 30 ___________________________ 2 2x + 30 + 18x - 30 ___________________________ 2 2x + 18x + 30 - 30 ___________________________ 2 2x + 18x + 0 ___________________________ 2 2x + 18x _____________________________ 10) Write an equivalent expression for -4(5x + 9), a. Using the Commutative Property of addition. __________________ b. Using the Commutative Property of multiplication. _________________, 11) Using the Associative Property of addition, write an equivalent expression for 3 + [(x + 5) + (x - 6)]. 12) Using the Distributive Property, write two equivalent expressions for 3 2 4x - 8x + 4. Sum It Up! When writing proofs for solving equations, you must justify each step with a property.
© Copyright 2026 Paperzz