MEM202 Engineering Mechanics - Statics MEM Chapter 5 Distributed Forces: Centroids and Center of Gravity 1 MEM MEM202 Engineering Mechanics - Statics Centroid – An Introduction r F1 r r r R = F1 + F2 r r r C = M 1 + M 2 = F1 x1 + F2 x2 r F2 3 R Simplify x1 x2 x r r Critirion for determining x : Moment due to Fi = Moment due to R ∑M = ∑F x i M ∑ x= R i i i Fx ∑ = ∑F i i = Rx = (∑ F )x Sum of moment of forces = Sum of forces 2 MEM MEM202 Engineering Mechanics - Statics Centroid – An Introduction R = ∑ (dR ) = ∫ f ( x )dx L 0 C = ∑ (dM ) = ∑ ( x ⋅ dR ) = ∫ xf ( x )dx L 0 C = ∫ xf ( x )dx = d ⋅ ∫ f ( x )dx L 0 L 0 xf ( x )dx Moment of f ( x ) about O ∫ ⇒d = = ∫ f (x )dx Total amount (area) of f (x ) L 0 L 0 = controid of w( x ) C = d ⋅ R = d ⋅ ∫ f ( x )dx L 0 3 MEM MEM202 Engineering Mechanics - Statics 5.2 Center of Gravity and Center of Mass Center of Gravity z z V r r r dW V y z Χ V = ∫ dV dV r rG r zG W xG W = ∫ dW x V O O y x r r r dM = r × dW r r r r M = ∫ dM = ∫ r × dW V V r r r r rG × W = ∫ r × dW ( ) V dWx Wx NOTE : = dW W ( dWy dW = x yG r r r M = rG × W ) Wy W y dWz Wz = dW W 4 MEM MEM202 Engineering Mechanics - Statics 5.2 Center of Gravity and Center of Mass Center of Gravity r r r r r rG × W = ( yGWz − zGWy ) i + (zGWx − xGWz ) j + (xGWy − yGWx ) k r r r r r r × dW = ∫ ( ydWz − zdWy ) i + (zdWx − xdWz ) j + (xdW y − ydWx ) k ∫( V ) V [ ( ) ] yGWz − zGWy = ∫ ( ydWz − zdWy ) V r r r r rG × W = ∫ r × dW ⇒ zGWx − xGWz = ∫ (zdWx − xdWz ) V V xGWy − yGWx = ∫ (xdW y − ydWx ) V W ⎛W ⎞ y ⎜ z ⎟dW = z ∫ ydW , etc. W V ⎝W ⎠ W W yGWz − zGWy = ∫ ( ydWz − zdWy ) = z ∫ ydW − y ∫ zdW , etc V W V W V Recall 1 xG = ∫ xdW W V dWz Wz = ⇒ ∫ ydWz = ∫ V V dW W 1 yG = W ∫ V ydW 1 zG = ∫ zdW W V r 1 r rG = ∫ r dW W V 5 MEM MEM202 Engineering Mechanics - Statics 5.2 Center of Gravity and Center of Mass Center of Mass z z V r r m V y r rG m = ∫ dm x z Χ V = ∫ dV dm xG V O O y x xG y zG yG x xdm ∫ xdm ∫ = = m ∫ dm V V V yG ∫ = V ydm m ydm ∫ = ∫ dm V V zG zdm ∫ zdm ∫ = = m ∫ dm V V V 6 MEM MEM202 Engineering Mechanics - Statics 5.3 Centroids of Volumes, Areas, and Lines z z Volume V dA z y x y yc zc V V V V V V V V dL z y y x y x ∫ dV = ∫ xdV V = ∫ ydV ∫ dV = ∫ ydV V = ∫ zdV ∫ dV = ∫ zdV V V C C z xc = ∫ xdV Line L A dV C x z Area xc = ∫ xdA zc A A A y x ∫ dA = ∫ xdA A = ∫ ydA ∫ dA = ∫ ydA A = ∫ zdA ∫ dA = ∫ zdA A A yc x A A A A A xc = ∫ xdL ∫ dL = ∫ xdL L = ∫ ydL ∫ dL = ∫ ydL L = ∫ zdL ∫ dL = ∫ zdL L L yc zc L L L L L L L L 7 MEM MEM202 Engineering Mechanics - Statics 5.3 Centroids of Volumes, Areas, and Lines Example: Centroid of A Rectangular Area y b ⎛ A = ∫ dA = ∫ ⎜ ∫ dx ⎞⎟dy = bh 0 ⎝ 0` A ⎠ h b b2h b 1 1 h⎛ b 1 h b2 ⎞ xc = dy = = ∫ xdA = = ⎜ ∫0 xdx ⎟dy = ∫ ∫ A 0 0 ⎠ A A bh ⎝ bh 2 2bh 2 My x dA h y x bh 2 h Mx 1 1 h⎛ b 1 h ⎞ bydy = yc = = ∫ ydA = = ⎜ ydx ⎟dy = ⎠ A A A bh ∫0 ⎝ ∫0 bh ∫0 2bh 2 y y 1 ydA ∫ A A 1 h = y (bdy ) ∫ 0 bh h = 2 yc = b dA h y x x 1 xdA ∫ A A 1 b = x (hdx ) ∫ 0 bh b = 2 xc = b dA h x 8 MEM202 Engineering Mechanics - Statics MEM 5.3 Centroids of Volumes, Areas, and Lines Example: Centroid of A Quarter Circle - Double integral in rectangular coordinates ⎛ r2 − x2 ⎞ M x = ∫ ydA = ∫ ⎜ ∫ ydy ⎟dx A 0 ⎝ 0 ⎠ r x2 + y2 = r2 y x = r2 − y2 y = r2 − x2 A = ∫ dA = r dy A dA y x r2 − x2 ⎞ r ⎛ 2 2 2 r⎜⎡ y ⎤ r r −x ⎡ r2 x x3 ⎤ r3 ⎟ dx = ∫ dx = ⎢ = ∫ ⎜⎢ ⎥ − ⎥ = ⎟ 0 0 2 2 2 6 ⎦0 3 ⎜ ⎣ ⎦0 ⎟ ⎣ ⎝ ⎠ dx M yc = x = A x π r2 4 ∫ A ydA A r3 3 4r = = π r 2 4 3π M y ∫AxdA 4r = = xc = A A 3π 9 MEM MEM202 Engineering Mechanics - Statics 5.3 Centroids of Volumes, Areas, and Lines Example: Centroid of A Quarter Circle - Single integral using a horizontal strip x +y =r 2 y 2 2 2 32⎤ ⎡ r ( ) − r y r3 2 2 M x = ∫ ydA = ∫ y r − y dy = ⎢− ⎥ = A 0 3 ⎢⎣ ⎥⎦0 3 r 2 x = r2 − y2 y = r2 − x2 dy M yc = x = A r ∫ A ydA A ⎛ r2 − y2 x dM y = dA = ⎜ ⎜ 2 2 ⎝ dA y x = r2 − y2 r3 3 4r = = π r 2 4 3π x M y = ∫ dM y = ∫ A r 0 ( ) 2 2 ⎞ 2 r y − 2 ⎟ r − y dy = dy ⎟ 2 ⎠ r ⎡ r2 y y3 ⎤ r3 r −y dy = ⎢ − ⎥ = 2 6 ⎦0 3 ⎣ 2 2 2 M y 4r = xc = A 3π 10 MEM202 Engineering Mechanics - Statics MEM 5.3 Centroids of Volumes, Areas, and Lines Example: Centroid of A Quarter Circle - Double integral using polar coordinates M x = ∫ ydA = ∫ A r π 2 ∫ (ρ sinθ )(ρdθdρ ) 0 0 π 2 r r π 2 = ∫ ρ 2 ⎛⎜ ∫ sin θdθ ⎞⎟dρ = ∫ ρ 2 [− cosθ ]0 dρ 0 0 ⎠ ⎝ 0 y r ⎡ ρ 3 ⎤ r3 2 = ∫ ρ dρ = ⎢ ⎥ = 0 ⎣ 3 ⎦0 3 r dy y dθ dρ dA ρ Mx r3 3 4r = = yc = A π r 2 4 3π θ x x x = ρ cosθ M y 4r = xc = A 3π y = ρ sin θ 11 MEM MEM202 Engineering Mechanics - Statics 5.4 Centroids of Composite Bodies M y = A1 xc1 + A2 xc2 y A1 AC = A1 + A2 A2 xc = × C2 yc2 × C1 x xc1 xc2 A1 10 in 10 in A2 10 in xc1 = 6.67 in xc2 = 15.0 in yc1 = 3.33 in yc1 = 5.0 in Ac = A1 xc1 + A2 xc2 A1 + A2 ∑Ax ∑A = i ci i M x = A1 yc1 + A2 yc2 yc1 Example My yc = M x A1 yc1 + A2 yc2 = = Ac A1 + A2 ∑Ay ∑A i i Part Ai (in2) xci (in) My (in3) yci (in) Mx (in3) 1 50.0 6.67 333.3 3.33 166.7 2 100.0 15.0 1,500.0 5.0 500.0 Σ 150.0 xc = ∑M ∑A y = 1,833.3 = 12.22 in 150 1,833.3 yc = ci 666.7 ∑M ∑A x = 666.7 = 4.44 in 150 12 MEM MEM202 Engineering Mechanics - Statics 5.4 Centroids of Composite Bodies = + + + − Table 5-1, Page 212 13 MEM202 Engineering Mechanics - Statics MEM 5.6 Distributed Loads on Beams w = f (x ) Find a concentrated force R that is equivalent to the distributed load w. O dR = wdx O x dx R = ∫ dR = ∫ wdx = ∫ f ( x )dx M O = ∫ dM O = ∫ xdR = ∫ xwdx = ∫ x f ( x )dx R O M O = Rxc xc M O ∫ xf ( x )dx xc = = R ∫ f (x )dx 14 MEM202 Engineering Mechanics - Statics MEM 5.6 Distributed Loads on Beams 1 1 b1h1 = (6)(100) = 300 N 2 2 2 2 xc1 = b1 = (6) = 4 m 3 3 Example F1 = A1 = w = 100 N/m O 6m 300 N 15 m 1,500 N O 4m 13.5 m 24 m 2,250 N 9m 450 N F2 = A2 = b2h2 = (15)(100) = 1,500 N 1 1 xc2 = 6 + b2 = 6 + (15) = 13.5 m 2 2 1 1 F3 = A3 = b3h3 = (9 )(100) = 450 N 2 2 1 1 xc3 = 21 + b3 = 21 + (9 ) = 24 m 3 3 R = F1 + F2 + F3 = 2,250 N M O = F1 xc1 + F2 xc2 + F3 xc3 = (300)(4 ) + (1,500)(13.5) + (450)(24 ) = 32,250 N - m O 14.3 m xc = M O R = 14.3 m 15 MEM202 Engineering Mechanics - Statics MEM 5.7 Forces on Submerged Surfaces dR = pdA = dV ps R = ∫ dR = ∫ pdA = ∫ dV ps = V ps Rd x = ∫ xdR = ∫ xpdA = ∫ xdV ps = xc psV ps Rd y = ∫ ydR = ∫ ypdA = ∫ ydV ps = yc psV ps 16 MEM202 Engineering Mechanics - Statics MEM 5.7 Forces on Submerged Surfaces 17 MEM202 Engineering Mechanics - Statics MEM 5.7 Forces on Submerged Surfaces 18
© Copyright 2026 Paperzz