理工 A 1 國立聯合大學九十九學年度第一學期 理工學院微積分第二次會考試題 A 卷 姓名: 學號: 一 .單 選 題 (1—15 每 題 4 分 ) 5x − 2x . x→0 x (A) ln 5 (B) ln 5 − ln 2 1. Find lim (D) 5x ln 5 − 2x ln 2 (C) ln 3 (E) 1 2. If f (x) = x, g(x) = ln x, which of the following limits is an indeterminate form ? g(x) (C) lim f (x)g(x) (D) lim [f (x) + g(x)] (A) lim+ f (x)g(x) (B) lim+ x→∞ x→∞ x→0 x→0 f (x) √ 3. If y = ln 3 1 + 2x, find y ′ . (A) √ 3 1 1 + 2x (B) 3 (1 + 2x) (C) √ 3 2 1 + 2x (D) 2 3(1 + 2x) (E) g(x) x→1 f (x) (E) lim 2 3( 1 + 2x)2 √ 3 4. If y = x ln 3, find y ′. (A) ln 3 (B) ln 3 + x 3 (C) 0 (D) x 3 (E) ln x 5. If y = xx , find y ′. (A) x · xx−1 (B) 1 (C) xx ln x (E) xx (1 + ln x) (D) 1 + ln x 6. If f (x) = e2x , find f (10) (x). (A) 2x(2x − 1) · · · (2x − 9)e2x−10 Z 7. Find tan x dx. (C) 210 e2x (B) 2x10 e2x (E) 2e2x (D) 0 (A) sec2 x + C (B) ln | sec x| + C (C) cot x + C (D) ln | cos x| + C (E) tan x sec x + C 8. If f (x) = x|x| , which of the following statements is NOT correct? (A) f ′′ (0) does not exist. (B) (0, 0) is the infletion point of the curve y = f (x). (C) f has no local extreme value. (D) f has a critical number x = 0. (E) f ′ (0) does not exist. 9. For the function f ′′ whose graph is given, find the x- coordinates (x-座標 ) of the inflection points. (A) 1,4,7 (B) 3,5 (C) 1, 7 (D) 2,4,6 (E) 2,6 √ 10. Evaluate the Riemann sum for f (x) = x3 + 1, −1 ≤ x ≤ 3 with four equal subintervals, taking the sample points to be left endpoints. √ √ √ √ √ (A) 4 + 2 + 28 (B) 4 2 (C) 4 (D) 4 + 2 (E) 2 Z 5 Z 5 11. For the function f whose graph is given, let A = f (x) dx, and B = |f (x)| dx, then 1 第 11 題未完,下頁繼續 1 理工 A 2 繼續上頁第 11 題 (A) A = 3, B = 7 (B) A = 7, B = 3 (C) A = 2, B = 12 (D) A = 12, B = 2 Z 3√ 9 − x2 dx. (Hint: By interpreting it in terms of areas) 12. Evaluate the integral (E) A = 7, B = 7 −3 (A) 18 (B) 9π (C) 9 (D) 3 (E) 9 π 2 1 x+1 dx. 2 0 x +1 1 1 π π 1 (A) ln 2 (B) ln 2 (C) ln 2 − (D) ln 2 + 2 2 4 2 4 Z 3 14. Let F (x) = t2 sin t dt, the derivative of F (x) is 13. Evaluate the integral Z (E) π 4 0 2 (A) x sin x (B) 9 sin 3 (C) 0 (D) 3 (E) 2x cos x 15. Find the equation of the tangent line to the curve x − x3 y + 5 = y 2 at point (1, 2). (A) y = 2 (B) x + y = 3 (C) 5x + 3y = 11 (D) x − 7y = −13 (E) x + 7y = 15 二 .複 選 題 (16—19 每 題 5 分 ) 16. For the function f whose graph is given. Let g(x) = Z x f (t) dt, which of the following statements are correct? 0 (A) g(1) < g(3) (B) g(x) has a local maximum at x = 5. (C) g(3) < g(5) (D) g(x) has the abosolute maximum at x = 9. (E) g(7) = g(3) n X i3 as a definite integral and find the value, which of the following statements are correct? 4 n→∞ n i=1 17. Express A = lim 1 4 1 (B) A = 5 Z 1 (C) A = x3 dx 0 Z n (D) A = x4 dx (A) A = 1 第 17 題未完,下頁繼續 理工 A 3 繼續上頁第 17 題 (E) A is the limit of Riemann sum for f (x) = x3 , 0 ≤ x ≤ 1, with n equal subintervals, taking the sample points to be right endpoints. 18. For the function f whose graph is given, which of the following statements are NOT correct? (A) f is concave upward on the interval (0, 3). (B) f has local minimum values at x = 1 and x = 4. (C) f has two critical numbers. (D) f has a local maximum value f (6). (E) x = 2 is an inflection point of the curve y = f (x). x2 , which of the following statements are correct? x2 + 3 (A) The domain of f is (−∞, ∞). 19. If f (x) = (B) f has three critical numbers. (C) f has a local maximun value at x = 0. (D) There are two inflection points to the curve y = f (x). (E) f is concave upward on the interval (−1, 1). 三 .單 選 題 (20—25 每 題 5 分 ) 1 20. Find lim+ xe x . x→0 (A) 0 (B) 1 (A) π (B) ∞ (C) ∞ sin x −1 . 21. Find lim sin x→0 x (C) 0 (D) e (E) 2 (D) does not exist (E) √ 22. If f (x) = (tan−1 x)3 , find f ′ (x). √ 1 √ (A) 3(tan−1 x)2 · 2(1 + x) x √ 1 (B) 3(tan−1 x)2 · (1 + x2 ) √ 1 √ (C) 3(tan−1 x) · 2(1 + x) x √ 1 (D) 3(tan−1 x)2 · (1 + x) √ 1 (E) 3(tan−1 x)2 · √ 2 x Z Z e2x x dx = f (u) du, then 23. Let u = e , e2x + 3ex + 2 (A) dx = du u (B) f (u) = 2 u + 3u + 2 2u (C) f (u) = 5u + 2 u2 (D) f (u) = 2 u + 3u + 2 x (E) dx = e du π 2 理工 A 4 24. Find Z (e−x + ex )2 dx. 2 2 (A) e−x + ex + 2x + C (B) e−2x + e2x + 2x + C (e−x + ex )3 +C 3 (e−x + ex )3 +C (D) 3ex 1 1 (E) − e−2x + e2x + 2x + C 2 2 Z 1 √ 25. Find x 1 − x dx. (C) 0 (A) − 4 15 (B) − 2 3 (C) 2 3 (D) 4 15 (E) 16 15
© Copyright 2026 Paperzz