EINFÜHRUNG NANOMATERIALIEN Is it possible to fabricate nanostructures using simple physical methods? “Simple physical method“ : Sputtering Sputtering: - What is sputtering - What is a glow discharge - Magnetronsputtering, ion beam sputtering - Reactive and non-reactive sputtering PES: - The photoelectric effect - Light sources - Penetration depth - Application of ESCA and Valence band to nanoscience Examples of nanomaterials we can do/have done/are doing Examples of possible experiments to be done in the practicum Experimental set-up: The SPUTTERING CHAMBER 10-7 mbar 10-6 Thin film deposition Nanostructured films By SPUTTERING mbar 10-10 mbar In-situ characterization: By PHOTOELECTRON SPECTROSCOPY 1 What is Sputtering? Sputter: to spit particles von of food or saliva Sputtering: Zerstäubung Festkörpern noisily from the mouth durch Ionenbeschuss How do we produce the ions we need? Glow discharge Current emission area Abnormal glow V Cathode area A Current emission area = Cathode area 2 What happens inside the glow discharge? + + - Magnetron sputtering Higher efficiency at lower gas pressure Plasma is confined to cathode 3 Ion beam sputtering Ion source Extractor Ion beam Substrate target Non-reactive Sputtering Noble gas: Ar Substrate Thin film of target material 4 Reactive Sputtering Noble gas: Ar + reactive gas: O2, N2, CH4, usw… Substrate Thin film different than target material Example I: Reactive Sputtering with Al target in Ar/O2 mixture Control on parameters gives control on surface morphology -Temperature of substrate -Gas pressure, gas mixture -Biasing of substrate -relative position of substrate/magnetron -Continuos (DC) or pulsed (AC, RF...) discharge... 5 LOTTUS EFFECT Lotus plants have superhydrophobic surfaces. As a result, the surfaces stay dry even during a heavy shower. What's more, the droplets pick up small particles of dirt as they roll, so that the lotus leaves are self-cleaning. LOTTUS EFFECT 6 Example II: Co-Sputtering with Ti and Ag targets in Ar/N2 mixture Ti Ag Ti + N reacts to TiN Ag remains pure TiN and Ag are inmiscible Possible applications: 1. Thin films as substitution for liquid lubricants. Lubricity would be provided by the soft cluster phase, while the hard matrix would protect against wear. 2. Optical applications 7 Example III: growth of carbon nanotubes Hohe Temperatur: 500-1100°C Produkte M M-C substrate substrate M substrate (M= Fe, Co, Ni…) Si (a. i.) Buffer Layer Catalyst: Fe (TiN, TiO2, Al2O3) Annealing C2H2 Metal-substrate interaction Metal-C interaction Nanotube characteristics 8 Experimental set-up II: the PHOTOELECTRON SPECTROMETER 10-7 mbar 10-6 mbar 10-10 mbar Photoemissionspektroskopie: Grundlagen Ekinetisch= hω-Ebindung - φ 9 Photoemissionspektroskopie: Lichtquellen Röntgenstrahlen UV-Photon XPS: X-ray photoemission spectroscopy oder ESCA (Electron Spectroscopy for Chemical Analysis) Al (1486eV), Mg (1253eV) UPS: UV Photoemission Spectroscopy He (21.2 und 40.8 eV), Ne (16.8 und 26.9 eV) Synchrotron-Strahlung: Erlaubt eine kontinuierliche Variation der Lichtenergie Photoemissionspektroskopie: Oberflächenempfindlich Methode Nur Elektronen aus oberflachennahen Schichten treten aus (starke Wechselwirkung der Elektronen mit dem Festkörper) 1. Studium der elektronischen Eigenschaften von Festkörperoblerflächen 2. Oberflächen müssen rein sein: Präparation unter Ultrahochvakuumbedingungen 10 Beispiele Au: [Xe] 4f14 5d10 6s1 4f 4f5/2 Orbital Energie (eV) 1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2 4s 4p1/2 4p3/2 4d3/2 4d5/2 4f5/2 4f7/2 5s 5p1/2 5p3/2 80725 14353 13734 11919 3425 3148 2743 2291 2206 762.1 642.7 546.3 353.2 335.1 87.6 83.9 107.2 74.2 57.2 XPS hν=1253.6 eV 4f7/2 4d 4p 4s 4p1/2 4d5/2 4d3/2 4p3/2 5s 5p 800 600 400 200 0 Binding Energy (eV) F UPS (He I) hν=21.2 eV EF EF 10 8 6 4 2 0 -2 Binding Energy (eV) 10 8 6 4 2 0 -2 Binding Energy (eV) 11 ESCA Electron Spectroscopy for Chemical analysis XPS hν=1253.6 eV Fe 2p Fe 2p3/2 Fe 2p1/2 Fe Fe 730 725 720 2+ 3+ 715 710 705 Binding Energy (eV) Valenzband UPS 12 PAST AND FUTURE PRACTICUM EXPERIMENTS Why is there no CNT growth when we use Si covered with Al as substrates? Fe Al2O3 Si CVD IDENTISCH Gas, Temp, Zeit Fe TiO2 Si 13 Our next experiment… Coverage of CNTs with different materials is different. Why? CNT surface should be inert… or not? In-situ PES for the study of CNT/coating interfaces Al2O3 Elektronenstruktur von Kohlenstoff: 1s 2 2s 2 2p 2 s pz py -308.2 eV sp 3 sp 3 sp 3 px -11.8 eV -19.2 eV sp3 2p 2s 1s -13.9 eV sp3 Hybridisierung sp3 1s 14 Hybridisierung und Bindungen H sp3 H H σ C C H Ethan H sp2 1xp π H H H σ C H C H Ethylen sp 2xp π H σ C C π H Acetylen Allotrope Formen von Kohlenstoff Elektronen fest in Kovalente Verbindungen (σ-Bindungen) C C C C C C C C Diamant sp3 Isolator C C C C C C C C C C C C Elektronen fest in σ-Bindungen aber “frei” in πBindungen Graphit sp2 Leiter 15 Allotrope Formen von Kohlenstoff Fullerene 1985 Diamant sp3 Graphit sp2 Amorph sp2/sp3 Nanotubes - 1991 16
© Copyright 2026 Paperzz