Durham E-Theses Nitrogen ligands in transition metal carbonyl systems Payling, Catherine A. How to cite: Payling, Catherine A. (1969) Nitrogen ligands in transition metal carbonyl systems, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8653/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk NITROGEN LIGANDS I N TRANSITION METAL CARBONYL SYSTEMS by C a t h e r i n e A. P a y l i n g , B . S c . ( S t . Mary's A thesis College) s u b m i t t e d t o t h e U n i v e r s i t y o f Durham f o r t h e d e g r e e of D o c t o r of Philosophy J u l y 1969 MEMORANDUM The work d e s c r i b e d i n t h i s t h e s i s was University of Durham between O c t o b e r 1966 h a s not been s u b m i t t e d work of t h e a u t h o r Part c a r r i e d out i n t h e and J u l y 1969. f o r any o t h e r d e g r e e and It i s the o r i g i n a l e x c e p t where acknowledged by r e f e r e n c e . o f t h i s work h a s been p u b l i s h e d i n t h e A b s t r a c t s of the 4 t h I n t e r n a t i o n a l Conference Bristol, July 1969. on O r g a n o m e t a l l i c Chemistry, ACKNOWLEDGEMENTS I should like to express my s i n c e r e g r a t i t u d e t o Dr. M. K i l n e r , under whose s u p e r v i s i o n t h i s r e s e a r c h was c a r r i e d out, for h i s continual advice and encouragement. My t h a n k s a r e a l s o due t o Dr. K. Wade f o r many h e l p f u l discussions. I am i n d e b t e d maintenance to the Science Research Council for a grant. C.A. Payling Durham, 1969. SUMMARY A t t e m p t s t o i n t r o d u c e some n i t r o g e n l i g a n d s i n t o t r a n s i t i o n c a r b o n y l and non-carbonyl systems R e a c t i o n of t h e l i t h i u m and metal are described. t r i m e t h y l s i l y l d e r i v a t i v e s of diphenyl- ketimine with b i s ( t r i p h e n y l p h o s p h i n e ) c o b a l t ( H ) d i c h l o r i d e gives (Ph C=NH) Co 2 i : C 2 the expected Cl 2 (Ph C=NH)(PPh ) C o 2 i : C 3 Cl 2 respectively, rather d e r i v a t i v e s c o n t a i n i n g the a n i o n i c k e t i m i n o I I (Ph C=NH) Co Cl 2 and 2 2 and I I (Ph C=NH) Ni Cl 2 2 2 than ligand. a r e formed by d i r e c t r e a c t i o n of the n e u t r a l l i g a n d w i t h the b i s ( t r i p h e n y l p h o s p h i n e ) m e t a l d i c h l o r i d e complexes. The c o b a l t complex h a s a t e t r a h e d r a l c o n f i g u r a t i o n , w h i l e n i c k e l d e r i v a t i v e has a polymeric I I complex, N i C l . 2 T H F 2 octahedral structure. The the octahedral i s s u r p r i s i n g l y formed from ( P h ^ j P ^ N i ^ C l g and THF. R e a c t i o n s of d i p h e n y l k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e and i t s Grignard d e r i v a t i v e with s e v e r a l metal carbonyl non-carbonyl The compounds a r e d e s c r i b e d . two systems new and some n i c k e l manganese c a r b o n y l c o m p l e x e s M n C c O ^ C P t ^ C N C P t ^ ) and B r M n ( C O ) ^ ( P h C N C P h ) a r e d i s c u s s e d i n 2 terms of p o s s i b l e t y p e s o f m e t a l - l i g a n d b o n d i n g , and related 2 a pseudo-allylic, s t r u c t u r e , i s p r o p o s e d f o r e a c h compound. D i f f e r e n c e s i n behaviour o f e t h y l e n e i m i n e t o w a r d s Group V I h e x a c a r b o n y l s and manganese p e n t a c a r b o n y l r i n g o p e n i n g and bromide a r e o b s e r v e d . MnCcOO^CAz^Br } metal Ready p o l y m e r i s a t i o n of t h e l i g a n d o c c u r s t o g i v e m e t a l d e r i v a t i v e s , but a manganese c a r b o n y l bromide d e r i v a t i v e , formed. or c o n t a i n i n g the l i g a n d w i t h the r i n g still carbonyl probably intact, i s also A v a r i e t y o f r e a c t i o n s between n i t r i t e systems but are described. the complex s a l t s and m e t a l carbonyl U n s t a b l e s p e c i e s a r e formed i n t h e s e r e a c t i o n s , rt-CpFeCCO^NC^ c a n be i d e n t i f i e d s p e c t r o s c o p i c a l l y , though i t i s n e v e r i s o l a t e d f r e e of i t s d e c o m p o s i t i o n products. e v i d e n c e of f o r m a t i o n o f n i t r o s y l c o m p l e x e s i n t h e s e r e a c t i o n s i s described. Some CONTENTS Page CHAPTER A, Nitrogen Ligands ONE G e n e r a l I n t r o d u c t i o n , 1; B, The 6; D, Carbonyl Systems 1 I n e r t Gas R u l e , 2; C, Syntheses, Survey G, C a r b o n y l Complexes i n O r g a n i c of Compounds: 1, T i t a n i u m and Vanadium, 19; Tungsten, 20; 2, 3 a , Manganese, 38; Rhenium and T e c h n e t i u m , 48; 4 a , I r o n , 50; 4b, Ruthenium Osmium, 68; 5, C o b a l t , Rhodium and P a l l a d i u m and CHAPTER TWO F, 16; Chromium, Molybdenum and A, Bonding, I n f r a r e d S p e c t r a , 8; E , Methods of P r e p a r a t i o n , 10; R e a c t i o n Mechanisms, 14; H, i n Metal Platinum, 3b, and I r i d i u m , 70; 6, N i c k e l , 78. Azomethine D e r i v a t i v e s of T r a n s i t i o n M e t a l s 83 I n t r o d u c t i o n , 83; B, N o n c a r b o n y l C o b a l t C o m p l e x e s , 87; C, N o n c a r b o n y l N i c k e l S y s t e m s , 100; Derivatives, CHAPTER THREE Carbonyl 106. R e a c t i o n s of D i p h e n y l k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e w i t h T r a n s i t i o n Metal CHAPTER FOUR D, C o b a l t 118 Complexes R e a c t i o n s of t h e G r i g n a r d D e r i v a t i v e of D i p h e n y l ketiminodiphenylmethylchloride with Transition 138 Complexes CHAPTER F I V E Some A z i r i d i n e D e r i v a t i v e s of T r a n s i t i o n Carbonyls Metal Metal 152 Page CHAPTER S I X R e a c t i o n s of N i t r i t e S a l t s w i t h T r a n s i t i o n M e t a l 167 Carbonyls Appendix 1 E x p e r i m e n t a l D e t a i l s and S t a r t i n g M a t e r i a l s Appendix 2 Instrumentation Appendix 3 A n a l y t i c a l Methods References i i i i v CHAPTER ONE Nitrogen Ligands i n Metal Carbonyl Systems -1- A. General The metal Introduction last decade h a s seen a r a p i d expansion carbonyl chemistry. The carbonyls i n the f i e l d themselves as have the a n i o n i c c a r b o n y l m e t a l l a t e s ^ , metal of transition 12 ' have been r e v i e w e d 3 , 5 o l e f i n e complexes**' ^, g p e r f l u o r o a l k y l metal complexes , i t - c y c l o p e n t a d i e n y l and d e r i v a t i v e s ^ ' ^ , Lewis base metal metal carbonyls 12 n-arene carbonyl complexes^, sulphur , s u b s t i t u t i o n products o f the Group V I B m e t a l metal containing carbonyls 13 , 14 photochemical s u b s t i t u t i o n s on m e t a l c a r b o n y l s and their derivatives the k i n e t i c s and mechanisms of s u b s t i t u t i o n r e a c t i o n s o f m e t a l complexes.^"* , The . or a book i n L In two u s e of m e t a l i 16 volumes. this chapter, carbonyls i n organic t r a n s i t i o n metal n i t r o g e n atom bonded d i r e c t l y carbonyl s y n t h e s e s i s the s u b j e c t carbonyl d e r i v a t i v e s containing a t o the m e t a l w i l l be reviewed. compounds c o n t a i n i n g s i m p l e o r g a n o n i t r o g e n m o l e c u l e s I n the such a s amines, n i t r o g e n atom d o n a t e s i t s l o n e p a i r of e l e c t r o n s to the m e t a l , a a-bond, b u t involving t h e r e c a n be no f i l l e d metal and s t r e n g t h e n i n g o f t h i s bond by thus the forming jt-bonding d - o r b i t a l s , a s t h e n i t r o g e n atom, b e i n g a first row e l e m e n t , l a c k s s u i t a b l e o r b i t a l s o f low enough e n e r g y to p a r t i c i p a t e i n this type of bonding. unsaturated system, However, i f t h e n i t r o g e n atom i s p a r t of f o r example an a r o m a t i c can a c t a s a j t - a c c e p t o r = available for overlap with i n t e r a c t i o n may be The ring, then an t h e l i g a n d a s a whole empty T t - o r b i t a l s o f the u n s a t u r a t e d the non-bonding m e t a l p o s s i b l e w h i c h would r e s u l t o r b i t a l s and system are so a s y n e r g i c i n a s t r e n g t h e n i n g of the -2- M-L bond. P a r t i c u l a r r e f e r e n c e w i l l be made to c o m p l e x e s where t h i s o f i n t e r a c t i o n i s p o s s i b l e , a s the work d e s c r i b e d i n t h i s these concerns t y p e s of l i g a n d s . No a t t e m p t h a s been made i n the r e v i e w metal n i t r o s y l h a s r e c e n t l y been r e v i e w e d . The I n e r t Gas One of chemistry transition 17 18 ' g e n e r a l l y a p p l i c a b l e concepts the m e t a l c a r b o n y l s and a t o m i c number" o r " r a r e g a s " r u l e . That the "effective i s , the c e n t r a l m e t a l atom a c h i e v e s a f o r m a l l y c l o s e d s h e l l , or " i n e r t " gas s i m p l e r u l e h a s been v e r y in t h e i r d e r i v a t i v e s i s the a number of a d d i t i o n a l e l e c t r o n s from i t s s u r r o u n d i n g accepts l i g a n d s so t h a t i t configuration. This s u c c e s s f u l i n p r e d i c t i n g the s t o i c h i o m e t r y of c o m p l e x e s , so much so t h a t the few compounds w h i c h do n o t conform to rule are s t i l l The considered as the "exceptions". r u l e c a n be a p p l i e d w h a t e v e r t y p e s of l i g a n d s a r e i n v o l v e d , many compounds can be r e g a r d e d counting procedure. i n at least four carbonyl groups ( 4 x 2 anions e l e c t r o n s ) and In either case two t h e r e i s no. two I* radicals e l e c t r o n s ) , or ( i i ) F e the four carbonyl n e t c h a r g e on but ways f o r t h i s e l e c t r o n T h u s , the compound F e C C O ) ^ ^ may composed o f ( i ) Fe° ( 8 e l e c t r o n s ) , ( 2 x 2 and Rule the most u s e f u l and of to i n c l u d e a l l the compounds, a s t h e s e form a s e p a r a t e c l a s s of compounds, their chemistry B. thesis type be considered ( 2 x 1 X i be e l e c t r o n s ) and (6 e l e c t r o n s ) , groups ( 4 x 2 the complex, and to two I ~ electrons). the t o t a l number -3- of e l e c t r o n s i s 18. The apparent d i f f e r e n c e i n formal the m e t a l atom h a s little r e a l meaning i n most c a s e s i n w h i c h s t r o n g l i g a n d bonding e x i s t s , although a c c o r d i n g state, the i o d i n e a n i o n o x i d a t i o n s t a t e of a c t s a s a two to the d e f i n i t i o n of e l e c t r o n donor. o x i d a t i o n s t a t e s to the m e t a l i s o f t e n o n l y The metal- oxidation assignment of f o r t h e p u r p o s e of " e l e c t r o n counting". The a s s i g n m e n t of o x i d a t i o n s t a t e s to m e t a l s complex, and polynuclear, f o r m i n g c l u s t e r s i s more e s p e c i a l l y binuclear species are common among the m e t a l c a r b o n y l s and carbonyl, M^CCO)^, exemplifies the s i m p l e s t t y p e of compound, i n w h i c h the two h a l v e s of i n o t h e r s , e.g. Bidentate 19 and bridges Dimanganese d e c a - the m o l e c u l e a r e j o i n e d o n l y by a m e t a l - m e t a l bond, C o ( C 0 ) , bonding a l s o i n v o l v e s b r i d g i n g c a r b o n y l o Q but groups. l i g a n d s , o f t e n found i n m o n o n u c l e a r c o m p l e x e s a s c h e l a t i n g l i g a n d s , can a l s o a c t a s b r i d g e s , W, their derivatives. particularly e.g. e t h y l e n e d i a m i n e ( e n ) i n M(CO)^en, M = C r , (CO) M(en) M(CO) , M = Cr, and 3 3 20 3 Mo. 21 a m e t a l - m e t a l bond a r e r e q u i r e d Mo, I n some c a s e s , b o t h l i g a n d to s a t i s f y the i n e r t gas rule. 22a The group of compounds [ F e C C O ^ S R ] , , c o u n t g i v e s a t o t a l o f o n l y 17 a r e d i a m a g n e t i c , but e l e c t r o n s per i r o n atom. m e t a l - m e t a l bond to c o m p l e t e the e l e c t r o n s h e l l and 22b The an e l e c t r o n postulated a c c o u n t f o r the d i a - magnetism, h a s been v e r i f i e d by X - r a y s t u d i e s . In the s i m p l e s t of m e t a l c a r b o n y l l i g a n d i s n e u t r a l and i n a zero o x i d a t i o n d o n a t e s two s t a t e , e.g. complexes with n i t r o g e n l i g a n d s , the e l e c t r o n s to the m e t a l , w h i c h i s f o r m a l l y 19 M(C0)^py (M = C r , Mo, W, py = p y r i d i n e ) . -4- A few a n i o n i c o r g a n o n i t r o g e n d e r i v a t i v e s a r e known, i n w h i c h t h e m e t a l i n a +1 o x i d a t i o n s t a t e , a c c e p t s 2 e l e c t r o n s from t h e a n i o n i c l i g a n d , o r alternatively, t h e m e t a l i n a z e r o o x i d a t i o n s t a t e , a c c e p t s one e l e c t r o n from 23 the n e u t r a l l i g a n d , e.g. t h e compound shown i n F i g . I . l . 23 Dicarbonyl-jt-cyclopentadienyl-N-pyrrolyliron. Fig.I.l The n i t r o g e n atom s t i l l p o s s e s s e s a lone p a i r of e l e c t r o n s which t h e o r e t i c a l l y donate to another bridged metal, c o m p l e x e s h a v e been r e p o r t e d thus forming a bridged dimer. No f o r p y r r o l e d e r i v a t i v e s , but a bridged amino complex shown i n F i g . I . 2 h a s been d e s c r i b e d , i n w h i c h e a c h d o n a t e s a t o t a l o f t h r e e e l e c t r o n s to the b o n d i n g . the -RC=NR system could 24a b ' a p p e a r a b l e to complex t o m e t a l s nitrogen Donors c o n t a i n i n g e i t h e r by d o n a t i o n of 25 t h e l o n e p a i r , a s i n t h e complex shown i n F i g . 1 . 3 o r by u s e o f t h e it-bond, 2 *~ a s i n t h e compound shown i n F i g . I . 4 . to t h o s e c o m p l e x e s c o n t a i n i n g u n u s u a l P a r t i c u l a r r e f e r e n c e w i l l be made types of c o - o r d i n a t i o n . H H ^<j \ OCT C C0 ^CO C 0 0 , . , . , ,. \ 24a,b Di-M-amino-bist t r i c a r b o n y l i r o n ; . Fig.I.2 CH Ph CH N N o Ph 0 c (Diacetylanil)irontricarbonyl Fig.I.3. .CH 25 CH i Ph—CH / Fe' I \ c' I >: o c o 0 (Cinnamaldehydeanil)irontricarbonyl Fig.I.4. 2 5 -6- C. Bonding The b o n d i n g between a t r a n s i t i o n m e t a l described q u a l i t a t i v e l y c a r b o n y l group. essentially The i n terms o f a-donor and l o n e p a i r of e l e c t r o n s on sp-hybrid o r b i t a l , with a vacant and and a c a r b o n y l group c a n i t - a c c e p t o r p r o p e r t i e s of the carbon forms a a - c o - o r d i n a t e bond by atom, t h u s f o r m i n g M-C jr-bonds i n two planes perpendicular is a s a w h o l e , and expected strengthens to be g r e a t e r than one, the M-C bond. w h i l e t h e C-0 energy. of s u i t a b l e non-bonding d - o r b i t a l s on s y n e r g i c i n t e r a c t i o n p r o v i d e s a means o f a v o i d i n g c h a r g e molecule overlap t r a n s i t i o n m e t a l h y b r i d o r b i t a l of s u i t a b l e symmetry and energy which can o v e r l a p w i t h f i l l e d the atom i s i n an I n a d d i t i o n , the c a r b o n y l group h a s i t - a n t i b o n d i n g o r b i t a l s and be to e a c h the symmetry metal other. A s e p a r a t i o n i n the T h u s , t h e M-C bond o r d e r bond i s less order than three. Many of c-donor and the l i g a n d s found i n s u b s t i t u t e d m e t a l it-acceptor p r o p e r t i e s . empty d - o r b i t a l s w h i c h a r e a v a i l a b l e l i g a n d s bonding v i a a f i r s t and, row The orbitals heterocyclic of the r i n g - s y s t e m , s t r e n g t h e n i n g of The systems the M-L and h e a v i e r donor atoms i n a group to a c c e p t e l e c t r o n s from the m e t a l atom l a c k s u i t a b l e l o w - l y i n g empty f u n c t i o n i n g only as a-donors they Unsaturated possess but orbitals t h u s form l e s s r o b u s t compounds. can a c t a s j t - a c c e p t o r s u s i n g the empty itthe s y n e r g i c i n t e r a c t i o n r e s u l t s bond and more s t a b l e in a complexes. e l e c t r o n d e n s i t y on t h e t r a n s i t i o n m e t a l s can p a r t i c i p a t e i n t h i s c a r b o n y l s p o s s e s s both i s u s u a l l y such type o f d o u b l e - b o n d i n g ; empty s , p and that they d orbitals are -7- available to a c c e p t partially filled is and o - d o n a t i o n , and can determined i n i t i a l l y s e r i e s , and by i t s valence bonds depends on be u s e d f o r it-back d o n a t i o n . The ability density the m e t a l to form s t r o n g i t - requires opposite e f f e c t s . between a m e t a l and six electrons The o r b i t a l s o c c u p i e d by Double bonding of i n d - o r b i t a l s of these this their state. the example, i n an s i x p a i r s of e l e c t r o n s a the c a r b o n y l s and valence a l s o h a v e an e f f e c t on l i g a n d s . ^ F o r complex, the m e t a l a c c e p t s the c e n t r a l atom formation of the m e t a l i n a low Symmetry c o n s i d e r a t i o n s after d e c r e a s e s i t s back-bonding a b i l i t y ; t y p e a p p e a r s e s s e n t i a l f o r the strength o f it-bonds octahedral Cr° t h r o u g h cr-bonds, and has s u i t a b l e symmetry a v a i l a b l e f o r b a c k b o n d i n g . e l e c t r o n s a r e d i r e c t e d i n between t h e towards u n o c c u p i e d l i g a n d o r b i t a l s o f Thus, o c t a h e d r a l of t h u s a p o s i t i v e c h a r g e on i t s a c c e p t o r a b i l i t y but d e r i v a t i v e s , and electron the number of e l e c t r o n s i n non-honding d - o r b i t a l s n e g a t i v e c h a r g e p r o d u c e s the synergic The least t h e p o s i t i o n of t h e m e t a l atom i n the t r a n s i t i o n state. a - e l e c t r o n a c c e p t a n c e and increases the non-bonding d o r b i t a l s a r e a t symmetry f o r a Cr° the c o r r e c t symmetry ( d or it complex a l l o w s ligands, orbitals). maximum b a c k b o n d i n g to occur. The ligands i n any one b o n d i n g p o t e n t i a l i t i e s of the bonding between one ligands bond, or present. the complex a r e i n e f f e c t c o m p e t i n g f o r t h e t h e c e n t r a l m e t a l atom, and l i g a n d and I n t h i s way, stability the t h e m e t a l w i l l be strength so t h e e x a c t influenced by of a p a r t i c u l a r m e t a l of a complex, depends on the i n t e r a c t i o n of limited nature the of other ligand the CT- -8- and it-bonding c a p a c i t i e s of a l l t h e l i g a n d s p r e s e n t , and atom. the m e t a l l i g a n d s w i t h l e s s j t - a c c e p t o r c a p a b i l i t y , more b a c k d o n a t i o n to the c a r b o n y l group o c c u r s and w h i l e t h e C-0 capacity, bond o r d e r d e c r e a s e s . extremely difficult. s t a b l e combination t o t h e i r a - and there tends of o t h e r l i g a n d s and Spectra Infrared s p e c t r o s c o p y h a s p r o v e d one c a r b o n y l s and s t r e t c h i n g f r e q u e n c i e s of m e t a l s t u d y of be v e r y The 1650 cm back-bonding o f CO t o be a groups would t h o s e of t h e be according metal, of the most u s e f u l t o o l s i n s t u d i e s their derivatives. The carbonyl c a r b o n y l compounds a r e found between about ^, a r e g i o n n o r m a l l y f r e e of any o t h e r a b s o r p t i o n s , and the h i g h r e s o l u t i o n s p e c t r u m o f a compound i n t h i s a r e a c a n a often informative. symmetry p r o p e r t i e s of a c a r b o n y l complex d e t e r m i n e t h e number t y p e o f i n f r a r e d a c t i v e v i b r a t i o n a l modes w h i c h a r e e x p e c t e d g r o u p s , and f o r the t h e a r r a n g e m e n t o f t h e groups i n a complex c a n o f t e n be from t h e a b s o r p t i o n p a t t e r n . ^ notably the particularly carbonyl groups, balanced it-bonding c a p a c i t i e s , and of t r a n s i t i o n m e t a l no bond o r d e r would r e a c h f u r t h e r displacement For each metal from bond o r d e r i n c r e a s e s , I f t h e l i g a n d L had Infrared and the M-C then i n t h e complex Cr(CO).jL.j t h e C r - C h y p o t h e t i c a l maximum of 2*0 and 2150 metal F o r example, a s t h e c a r b o n y l groups i n C r ( C O ) ^ a r e p r o g r e s s i v e l y r e p l a c e d by D. the c e n t r a l The method h a s c e r t a i n t h a t the l i g a n d s a r e u s u a l l y regarded and carbonyl deduced l i m i t a t i o n s however, as p o i n t s when c o n s i d e r i n g the -9- overall symmetry o f t h e m o l e c u l e observed, caused by t h e l o c a l The o f bands i s sometimes symmetry o f t h e l i g a n d and l o w e r i n g o f t h e symmetry t h r o u g h c r y s t a l p a c k i n g bands i s a l s o and s p l i t t i n g i n the s o l i d . A c c i d e n t a l coincidence of observed. CO s t r e t c h i n g f r e q u e n c i e s a r e a r e f l e c t i o n o f t h e bonding capabilities of o t h e r l i g a n d s p r e s e n t i n a complex, s i n c e they depend upon t h e C-0 bond order. This reflects ligands. t h e M-C bond o r d e r w h i c h i s d e t e r m i n e d by t h e o t h e r T h u s s t r o n g l y e l e c t r o n e g a t i v e groups s u c h a s h a l i d e i o n s o r p e r - f l u o r o a l k y l and p e r f l u o r o a c y l groups i n d u c t i v e l y w i t h d r a w c h a r g e metal, reducing i t s back-donating bond o r d e r , r e f l e c t e d from t h e a b i l i t y and r e s u l t i n g i n an i n c r e a s e d C-0 i n t h e CO s t r e t c h i n g f r e q u e n c i e s which a r e h i g h e r than 28 in the parent carbonyl w i t h no n - a c c e p t o r carbonyl complexes. Conversely, p r o p e r t i e s donate charge f r e q u e n c i e s w h i c h a r e much l o w e r l i g a n d s such a s amines, to the metal resulting i n than t h o s e o f t h e p a r e n t carbonyl. There have been numerous c o m p a r i s o n s o f t h e r e l a t i v e cr-donor and it11 13 acceptor a b i l i t i e s of d i f f e r e n t l i g a n d s ' , using carbonyl frequencies t h e m s e l v e s and t h e a p p l i c a t i o n o f s e m i - q u a l i t a t i v e f o r c e c o n s t a n t c a l c u l a t i o n s 11 13 has v e r i f i e d The t h e q u a l i t a t i v e c o n c l u s i o n s and y i e l d e d some new o n e s . donor-acceptor ' p r o p e r t i e s of l i g a n d s a r e not c o n s t a n t , but v a r y with the n a t u r e o f t h e c e n t r a l atom and i t s e n v i r o n m e n t . I n general, unsaturated n i t r o g e n - c o n t a i n i n g l i g a n d s a r e thought to p o s s e s s s m a l l a c c e p t o r abilities; p y r i d i n e , i n t h e d i s u b s t i t u t e d c o m p l e x e s [ M ( C O ) ^ ( p y > ] [M = C r , Mo,W] does 2 accept e l e c t r o n s , but in t h e [M(CO),.py] c o m p l e x e s , t h e 5 c a r b o n y l groups -10- accept a l l the e l e c t r o n d e n s i t y and comparison of p y r i d i n e i s p u r e l y a donor. the f o r c e c o n s t a n t - b o n d o r d e r (dien = diethylene t r i a m i n e ) and r e l a t i o n s h i p for A (dienjMoCCO)^ ( a c e t o n i t r i l e ^ M o ( C O ) ^ suggests that the 13 -C=N bond h a s a s m a l l , but real ability to a c c e p t e l e c t r o n s from t h e However, t h e r e i s some d i s c u s s i o n i n the l i t e r a t u r e a s to reliability abilities of c a r b o n y l of l i g a n d s . frequency 29 s h i f t s a s a measure of the Angelici has s t u d i e d the CO He assumed t h a t the aqueous pKa r e l a t i v e measure o f metal, and by stretching frequencies l i g a n d s ( p y r i d i n e and rationalised v a l u e s of the l i g a n d s a r e it-bonding l i g a n d s ( e . g . a m i n e s ) and i n terms o f CT-bonding o n l y , and i n terms of it-bonding between m e t a l and I n v i e w o f t h e l a r g e amount o f d a t a w h i c h s u g g e s t s p y r i d i n e s do n-bond to the m e t a l , carbonyl E. a b i l i t y of l i g a n d s and t h e CO frequency be phosphine. that phosphines A n g e l i c i questions the and the r e l a t i o n s h i p f r e q u e n c i e s of t h e i r metal complexes. Methods o f Preparation Most o f the o r g a n o n i t r o g e n t r a n s i t i o n m e t a l c a r b o n y l prepared a c o u l d not p y r i d i n e or the it-bonding p h o s p h i n e s ) he c o n c l u d e d t h a t the c a r b o n y l explained between it-bonding v a l u e s of the a b i l i t y o f L to d o n a t e cr-bonding e l e c t r o n s to comparing non s h i f t s c o u l d be the it-bonding of a number of s u b s t i t u t e d c o m p l e x e s , a s a f u n c t i o n o f the pKa ligands. metal. by one of three general involves d i r e c t displacement synthetic routes. of CO from t h e c a r b o n y l The by c o m p l e x e s h a v e been most common method the l i g a n d , and this -11- h a s been a c h i e v e d under a v a r i e t y of c o n d i t i o n s . ammonia r e a c t to g i v e [ N i ( C O ) N H ] and 3 p r o p o r t i o n a t e above -60°C ^ , Thus N i ( C O ) ^ and liquid [ N i ( C O > ( N H ) ^ , b o t h of w h i c h 3 2 dis- 3 w h e r e a s M(CO)g (M = C r , Mo) reacts with bipyridyl i n d i b u t y l e t h e r or l i g r o i n a t 130-150°C to p r o d u c e M ( C O ) ^ b i p y . ^ Refluxing s o l v e n t s a r e o f t e n employed, b u t h e a t i n g o n l y l i g a n d i n a s e a l e d tube or i n an a u t o c l a v e h a s Photochemical derivatives. controlled i n i t i a t i o n of r e a c t i o n s h a s p r o v e d a v e r s a t i l e r o u t e T h i s method h a s only with d i f f i c u l t y , the advantage t h a t the r e a c t i o n can i f at a l l , example, W(CO)g u n d e r g o e s d i r e c t o stability by thermal thermal o f CO, substitution reactions. applicability of t h e r m a l of t h e s t a r t i n g m a t e r i a l s and s u b s t i t u t i o n s o f t e n o c c u r a t much l o w e r photochemically. the f i n a l products. temperatures, I f the metal i n a s o l u t i o n of a weakly donating metal and prepared the Photochemical so relatively thermal r e a c t i o n s carbonyl alone i s i r r a d i a t e d s o l v e n t , s u c h a s THF, then the resulting c a r b o n y l - T H F complex c a n r e a c t w i t h a l i g a n d to p r o d u c e the r e q u i r e d complex under e x c e e d i n g l y m i l d c o n d i t i o n s . investigated and For r e a c t i o n s i s l i m i t e d by t h e r m a l l y u n s t a b l e s u b s t i t u t i o n c o m p l e x e s , i n a c c e s s i b l e by c a n be p r e p a r e d achieve r e a c t i o n w i t h CH^CN to g i v e c The to be w h i c h c a n be b u t W(CO) (CH_CN) and W(CO).(CH_CN)_ have been 5 3 4 3 2 13 photochemically. and effected reaction. to g i v e smooth, s t e p w i s e d i s p l a c e m e n t W(C0)_(CH„CN) 3 3 3 the c a r b o n y l these photochemical S t r o h m e i e r and h i s group h a v e reactions extensively, a m e c h a n i s t i c p o i n t of v i e w , and 14 work i n t h i s f i e l d . Strohmeier from a p r e p a r a t i v e has published a survey of -12- Th e d i s p l a c e m e n t o f s u b s t i t u e n t g r o u p s from mixed c o m p l e x e s , b y t h e d e s i r e d l i g a n d h a s proved a w i d e l y a p p l i c a b l e method, and i s a g a i n p a r t i c u l a r l y u s e f u l when d i r e c t d i s p l a c e m e n t o f CO from t h e c a r b o n y l too d r a s t i c direct conditions. displacement requires T h u s , f o r a c r y l o n i t r i l e w i t h t h e Group V I m e t a l s , o f CO was n o t f e a s i b l e , b u t t h e s e r i e s (CH CHCN) M(CO), 0 Z n ( n = 1, 2 o r 3, M = C r , Mo, W) were p r e p a r e d by l i g a n d d i s p l a c e m e n t b-n under 31 m i l d c o n d i t i o n s from t h e c o r r e s p o n d i n g a c e t o n i t r i l e c o m p l e x e s . d i s p l a c e m e n t o f an a r o m a t i c , pseudo-aromatic The o r a c h e l a t i n g l i g a n d from a complex o f t e n ( b u t n o t a l w a y s ) y i e l d s a s p e c i f i c isomer, or a h i g h e r s u b s t i t u t i o n p r o d u c t n o t o b t a i n a b l e through d i r e c t d i s p l a c e m e n t , e.g. P i p e r a z i n e + Mo(CO) > M o ( C O ) ( p i p ) + CO only product 6 5 Piperazine + Mo(CO) (C H CH ) 3 The 6 5 > (pip) Mo(CO) 3 3 3 + CgHgCEj 3 2 a t t a c k on c a r b o n y l m e t a l l a t e i o n s by v a r i o u s donor groups i s a method w h i c h h a s n o t been so w i d e l y u s e d , b u t h a s y i e l d e d s e v e r a l most o f w h i c h c a n be o b t a i n e d d i r e c t l y though e.g. 20° Na [W (CO) 2 The 2 1 ( ) ] + NH 3 33 > 2W(CO) NH three general p r e p a r a t i v e procedures complexes c o n t a i n i n g n e u t r a l required +2^0 complexes, 5 3 + 2NaOH + H J J 2 described y i e l d metal ligands, but d i f f e r e n t carbonyl types o f r e a c t i o n s a r e to i n t r o d u c e a n i o n i c l i g a n d s i n t o m e t a l c a r b o n y l s y s t e m s . The most common method o f p r e p a r i n g c o m p l e x e s c o n t a i n i n g a n i o n i c l i g a n d s i n v o l v e s -13- m e t a t h e t i c a l p r o c e s s e s o f the g e n e r a l M-X + Y-Z type > M-Z shown i n t h e + equation: XY I f M i s a m e t a l c a r b o n y l m o i e t y , t h e n X c a n be a h a l o g e n , i n w h i c h c a s e Y would p r o b a b l y a l k a l i metal, be an a l k a l i m e t a l , or h y d r o g e n . u s u a l l y sodium, and Y would be a h a l o g e n . u s u a l l y o c c u r under m i l d c o n d i t i o n s and product. A l t e r n a t i v e l y , X c a n be a l l o w ready I n a d d i t i o n m e t a l c a r b o n y l h a l i d e s , and a r e i n many c a s e s r e a d i l y a v a i l a b l e . procedure i s given i n the 5 2 These r e a c t i o n s i s o l a t i o n of the d e s i r e d sodium c a r b o n y l m e t a l l a t e s example of t h i s preparative equation: i t - C H F e ( C O ) I + C H NK 5 An an 4 4 > rt-C H Fe(CO) <r-NC H 5 5 2 4 4 + KI 2 3 A n o t h e r p r e p a r a t i v e method i n v o l v e s r e a c t i o n of p o l y n u c l e a r m e t a l c a r b o n y l s w i t h o r g a n o n i t r o g e n l i g a n d s , when, p a r t i c u l a r l y i n the c a s e o f i r o n c a r b o n y l s F e ( C O ) g and F e . j ( C O ) ^ , 2 carbonyl 2 t n e r e s u l t i n g compounds c o n t a i n m e t a l f r a g m e n t s l i n k e d by b r i d g i n g n i t r o g e n l i g a n d s . r e a r r a n g e m e n t of the l i g a n d o c c u r s , and y i e l d i n g a compound c o n t a i n i n g two Sometimes i f the l i g a n d i s d i m e r i c i t can bridging units. t y p e s o f r e a c t i o n a r e d e s c r i b e d i n S e c t i o n H, and S e v e r a l examples o f one example i s g i v e n equation: H CH=N-R + 2 36,182 Fe„(CO) 9 (C0„ R = P-CH C H 3 6 4 the (CO) split, these i n the -14- F. R e a c t i o n Mechanisms The number o f s t u d i e s o f r e a c t i o n mechanisms i s i n c r e a s i n g rapidly, 34 and A n g e l i c i The has r e c e n t l y p u b l i s h e d a c o m p r e h e n s i v e r e v i e w o f t h e work. two most common ways o f s t u d y i n g t h e k i n e t i c s o f t h e r e a c t i o n s use of i s o t o p i c l a b e l l i n g techniques and infrared For M(CO) ( A ) + L x y ( i i ) M(CO) ( A ) + L x y A n g e l i c i noted is that reactions: > M(CO) , ( A ) L + CO x-1 y > M(CO) ( A ) .L + A x y-1 the v a s t m a j o r i t y proceed according to t h e r a t e l a w w h i c h e i t h e r 1 s t o r d e r i n t h e complex and z e r o o r d e r i n t h e l i g a n d , o r d e r i n b o t h complex and l i g a n d . terms i s o b s e r v e d mechanisms reactions) spectroscopy. t h e two t y p e s o f s u b s t i t u t i o n (i) or ( e s p e c i a l l y f o r CO exchange are the Often a r a t e law involving but there i s k i n e t i c evidence to support or f i r s t both these rate S i . l and S'"2 N . N. respectively. 34 In reactions o f t y p e ( i ) i t h a s been found that i f A i s a ligand c o n t a i n i n g n i t r o g e n o r oxygen a s t h e donor atom, o r i f A i s hydrogen o r a halogen, carbonyl. then t h e c a r b o n y l groups a r e much more l a b i l e than i n t h e p a r e n t When A c o n t a i n s P, A s , Sb, S, Mn, Re, Au a s t h e donor atom, t h e l a b i l i t y o f t h e c a r b o n y l groups i s l i t t l e groups i n t h e p a r e n t c a r b o n y l . d i f f e r e n t from t h a t o f t h e CO The two t y p e s o f l i g a n d s h a v e been c l a s s e d a s 3 " h a r d " and " s o f t " b a s e s , r e s p e c t i v e l y , a c c o r d i n g t o P e a r s o n ' s classification a p a r t from h y d r o g e n , w h i c h i s a " s o f t " b a s e b u t y e t h a s a p o w e r f u l labilizing -15- e f f e c t on t h e CO groups. h y d r i d e s r e a c t by I t has been s u g g e s t e d 34 that metal a d i f f e r e n t mechanism from most o f the carbonyl o t h e r M(CO) A x y complexes. T h e r e has so f a r b e e n no convincing e x p l a n a t i o n of this labilizing 34 effect. jt-bonding arguments i n f a c t p r e d i c t " h a r d " b a s e s h a v e no the c h a r g e on n-bonding a b i l i t y and the m e t a l c a u s i n g g r e a t e r c a r b o n y l groups and the r e v e r s e would t h u s be effect, since e x p e c t e d to bond, i n r e l a t i o n to the I n f a c t jt-bonding arguments o n l y v e r y r a r e l y a c c o u n t f o r 34 r a t e s of s u b s t i t u t i o n i n the complexes. 34 ligands r e s u l t s h a v e b e e n a c c o u n t e d f o r i n terms o f o-bonding observed ; the basic d o n a t e c h a r g e t o the m e t a l v i a a o"-bond t h u s making i t a p o o r e r c h a r g e a c c e p t o r from t h e possible that the c a r b o n y l groups. s t a b i l i z a t i o n of However, f o r S ^ l the a c t i v a t e d n i t r o g e n - l i g a n d s , f o r example, d e t e r m i n e s the For the parent carbonyls. The increase b a c k d o n a t i o n from the m e t a l to s t r e n g t h e n i n g t h e M-C the S^2 r e a c t i o n s , when A i s the c h e l a t i n g 34 d e r i v a t i v e s , i t has b e e n shown b a s i c i t y of the ligands a greater put nucleophilic ligand attack. that increases. c h a r g e on complex by reactions, t h e more b a s i c f a s t e r r a t e s o f CO ligand i t is dissociation. o - p h e n a n t h r o l i n e and its t h e r a t e of r e a c t i o n d e c r e a s e s a s I t can be argued the m e t a l and S t e r i c considerations that the t h e more b a s i c r e d u c e i t s s u s c e p t i b i l i t y to have a l s o been shown to be of 34 importance l o w e r the : bulky ligands r a t e of A hinder nucleophilic attack a t the metal, and reaction. Although these d i f f e r e n t l a b i l i z i n g e f f e c t s of l i g a n d s i n c a r b o n y l -16- complexes a r e not understood, they a r e u s e f u l synthetically. of r e a c t i o n mechanisms h a v e shown t h a t s e v e r a l determining observed G. f a c t o r s aire i m p o r t a n t t h e k i n e t i c s and mechanisms of r e a c t i o n s . e f f e c t s a r e not y e t f u l l y C a r b o n y l Complexes i n O r g a n i c The u s e o f t r a n s i t i o n m e t a l and h e t e r o g e n e o u s Thus, studies in However, some o f understood. Syntheses c a r b o n y l and r e l a t e d c o m p l e x e s a s homogeneous c a t a l y s t s i n c y c l i s a t i o n and p o l y m e r i s a t i o n r e a c t i o n s o r g a n i c compounds h a s become w i d e s p r e a d . ^ The polymerisation reactions s t e r e o s p e c i f i c , v e r y s l i g h t c h a n g e s i n the m e t a l c a t a l y s t causing d i f f e r e n t products Of p a r t i c u l a r of r e a c t i o n s o f t e n o c c u r under m i l d c o n d i t i o n s compared to u n c a t a l y s e d r e a c t i o n s and are u s u a l l y extremely the to form. i n t e r e s t h e r e a r e t h e r e a c t i o n s of u n s a t u r a t e d organo- n i t r o g e n m o l e c u l e s c o n t a i n i n g c a r b o n - n i t r o g e n and/or n i t r o g e n - n i t r o g e n m u l t i p l e bonds i n t h e p r e s e n c e of t r a n s i t i o n m e t a l c a r b o n y l complexes. A 36 r e v i e w of these r e a c t i o n s has r e c e n t l y appeared. S c h i f f b a s e s , a z o compounds oximes, phenylhydrazones, semicarbazones, a z i n e s , u n s a t u r a t e d i m i d e s , and n i t r i l e s a l l r e a c t w i t h c a r b o n monoxide i n t h e p r e s e n c e of a m e t a l carbonyl c a t a l y s t , u s u a l l y a t f a i r l y high temperature c y c l i s a t i o n products. all amides and p r e s s u r e to yield S c h i f f bases y i e l d only substituted phthalimidines other r e a c t i o n s lead to a m i x t u r e D i c o b a l t o c t a c a r b o n y l i s by but of p r o d u c t s . f a r the most commonly u s e d c a t a l y s t i n these 36 reactions. Other metal and R h ( C O ) „ but 9 c a r b o n y l s have been t r i e d , i n g e n e r a l they a r e l e s s e f f i c i e n t s u c h a s Fe(CO),., N i ( C O ) ^ than C o _ ( C O ) R or exhibit -17- no and catalytic elucidate activity the mechanism of compounds w i t h CO. R 1 and at a l l . The Some s t u d i e s h a v e been u n d e r t a k e n the c a t a l y s e d c y c l i s a t i o n o f 36 these to try unsaturated r e a c t i o n r a t e s of a s e r i e s of a n i l s i n w h i c h R, t h e n R" v a r i e d , were o b s e r v e d , and i t was c o n c l u d e d t h a t the m e t a l carbonyl R' o -6 / \ L / > R" became a t t a c h e d to the l o n e p a i r of e l e c t r o n s t h a n t h e i t - e l e c t r o n s of t h e i m i n o group. The on the n i t r o g e n atom, r a t h e r r i n g c l o s u r e of b e n z o n i t r i l e w i t h 36 c a r b o n monoxide i n t h e p r e s e n c e o f h y d r o g e n and d e u t e r i u m was and true c a t a l y s t i n r i n g the r e s u l t s s u p p o r t the h y p o t h e s i s t h a t r e a c t i o n s of n i t r o g e n the compounds i s c o b a l t h y d r o c a r b o n y l and also studied not closure dicobalt octacarbonyl. 36 A l t h o u g h R o s e n t h a l and Wender had insufficient experimental to s u p p o r t a r i g o r o u s mechanism o f r i n g c l o s u r e , s e q u e n c e of s t e p s the c y c l i s a t i o n of a r o m a t i c a l d e h y d e and for phenylhydrazones ( r i n g c l o s u r e b a s e s and azo compounds): of these they s u g g e s t e d a probably p a r a l l e l s , evidence possible ketone that of S c h i f f -18- R a HCo(CO) N NHPh HR N-NHPh Co(CO) R = H, C H . P h CO a HR HR ^N-CONHPh \ < IT HR \ -NHPh < N-NHPh CO H ACO(CO) 2H OQ N-Ph 4H a N N—Ph 0 + NH 3 R e c e n t l y , a number o f c o m p l e x e s o f some o f t h e s e u n s a t u r a t e d compounds w i t h i r o n c a r b o n y l s h a v e been i s o l a t e d , r e f e r e n c e s 3 6 , 2 4 b ) and t h e i r i n t e r e s t i n g i n themselves, structures nitrogen ( s e e , f o r example elucidated. These complexes a r e but they could w e l l prove u s e f u l i n attempts to -19- e l u c i d a t e t h e mechanisms of t h e c a t a l y s e d complexes w i l l be d i s c u s s e d l a t e r cyclisation reactions. The i n this chapter. Amongst o t h e r m e t a l c a r b o n y l c a t a l y s e d o r g a n i c s y n t h e s e s , the r e a c t i o n of 36 amines w i t h m e t a l c a r b o n y l s to y i e l d C o b a l t , ruthenium formamides and u r e a s , i s o f interest. and manganese c a r b o n y l s h a v e b e e n u s e d i n t h e s e r e a c t i o n s , w h i c h a r e n o r m a l l y c a r r i e d out a t h i g h t e m p e r a t u r e s and p r e s s u r e s . been l e a r n t m e c h a n i s t i c a l l y about these r e a c t i o n s from a s t u d y o f Much h a s low 36 t e m p e r a t u r e , s t o i c h i o m e t r i c r e a c t i o n s between amines and m e t a l c a r b o n y l s . The r e a c t i o n o f h y d r a z i n e w i t h c a r b o n monoxide i n t h e p r e s e n c e o f c o b a l t , or n i c k e l c a r b o n y l s a t e l e v a t e d t e m p e r a t u r e s and p r e s s u r e s y i e l d s s e m i c a r b a z i d e and h y d r a z o d i c a r b o n a m i d e , and 36 s t u d i e d a t low t e m p e r a t u r e s . H. iron, t h e s e r e a c t i o n s have a l s o been S u r v e y o f Compounds 1. T i t a n i u m and Vanadium The p a r a m a g n e t i c h e x a c a r b o n y l v a n a d i u m i s t h e o n l y u n s u b s t i t u t e d Group V c a r b o n y l known. B e i n g one e l e c t r o n s h o r t o f t h e k r y p t o n c o n f i g u r a t i o n , V(CO)g r e a d i l y d i s p r o p o r t i o n a t e s i n the p r e s e n c e of N-bases, r e a c t i o n of V(CO> 6 w i t h l i q u i d ammonia a t -30° _ I [ V ^ C C O ) , ] „ and N H . [ V ( C 0 ) , ] , b Z *\ b the CO produced y i e l d i n g V(CO)g t o 20°C y i e l d s [V I I . Thus (NH ) ] 3 6 being p a r t i a l l y evolved as a 37 gas and p a r t i a l l y u s e d to form u r e a . Mono- and p o l y d e n t a t e a r o m a t i c amines e.g. a n i l i n e , N , N ' - d i p h e n y l e t h y l e n e d i a m i n e and o- and react similarly, i n benzene, a t room t e m p e r a t u r e . p-phenylenediamine B e n z o n i t r i l e and a c e t o - -20- n i t r i l e react analogously c a t i o n s e.g. b u t a - and y - p i c o l i n g i v e t e t r a c o - o r d i n a t e [ V C a - N C ^ C ^ )^] [ V ( C 0 ) ] . 6 HV(C0) 2 6 and aqueous ammonia gave 38 eventually NH [V(C0) ]. 4 6 R e a c t i o n between d e r i v a t i v e s of V ( C 0 ) g and n i t r o g e n l i g a n d s has not 39 y i e l d e d any mixed c a r b o n y l b a s e c o m p l e x e s . (diphenylphosphine)ethane ( D P ) a t 120° V(C0)^ r e a c t s with to y i e l d V ( C 0 ) D P 1,2-bis- and V ( C O ) ( D P ) 4 2 2 , and w i t h 1 , 1 , l - t r i s ( d i p h e n y l p h o s p h i n e m e t h y l e n e ) e t h a n e ( T P ) to y i e l d 39 V(C0).jTP , but r e a c t i o n of t h e s e d e r i v a t i v e s w i t h b i p y , o-phen, and 1 (2,2 ,2"-tripyridyl) results and a l l t h e CO tripy i n e l i m i n a t i o n of b o t h the phosphorus l i g a n d s g r o u p s , g i v i n g V ° ( b i p y ) " ^ , V ° ( o - p h e n ) " ^ and 3 Cyclopentadienylvanadium 3 t e t r a c a r b o n y l and d i c a r b o n y l r e a c t w i t h b i p y , o-phen and 3 V°(tripy),,. ^ cyclopentadienyltitanium t r i p y w i t h l o s s of cyclopentadiene 41 and c a r b o n y l g r o u p s , y i e l d i n g M ( b i p y ) ^ , M(o-phen)^ and M ( t r i p y ) ^ (M = 2. Chromium, Molybdenum and Tungsten As T a b l e 1.1 shows, t h e m a j o r i t y of Group V I m e t a l d e r i v a t i v e s are simple s u b s t i t u t i o n products a l i p h a t i c and aromatic above h a v e been u s e d and amines. carbonyl nitrogen of the hexacarbonyls with A l l t h r e e methods of p r e p a r a t i o n m e n t i o n e d to o b t a i n t h e s e d e r i v a t i v e s , i n w h i c h one, o c c a s s i o n a l l y f o u r CO V,Ti). two, g r o u p s have been d i s p l a c e d from t h e p a r e n t three carbonyl. Some r e p r e s e n t a t i v e e x a m p l e s of t h e p r e p a r a t i v e methods a r e g i v e n i n t h e (i) a ) C r ( C 0 ) + l i q . NH^ C r ( C O ) N H + CO equations: 120° 42 80° M(C0) + liq.NH » M ( C O ) ( N H ) + 3C0 (M = C r , Mo, W). 6 6 v 3 5 3 3 3 3 -21- T a b l e 1.1. Group V I M e t a l C a r b o n y l Complexes Monodentate (i) Ligand ligands Metal M(CO) L Cr Mo W 42,45,47,52 33,46,48,52 33,52,54 C H N 3 5 Cr 19,65 44,64,65 (py) Mo 19,45,47,55, 56,57,59 19,46,48,50, 57,62,63,76 19,33,49,54, 57,76 19,33,46,48 50,57,63 19,33,57 65,93 31,61,77 31,61,77,80 31,61,77,80 NH_ C C W 5 cis-M(C0) L 4 _ _ - CHgCN Cr Mo W 31,61,79,80 31,62,80 31,61,78,80 81 31,61,80 31,61,78,80 31,61,78,80 81 CH =CHCN Cr Mo W 31,94 31 31,82,83,94 31 31 31 Cr Mo W 46,19,61 19,46,61,62 19,49,53,61 Cr Mo W 45,55,56,57 Cr Mo W 55 - 58 33 Cr Mo W 52,60 52,60,62 52,54.60 60 60 60 Mo 46 2 (cyclohexylamine) C H NH 6 5 2 p-NH C H NH 2 C H 5 1() 6 4 2 NH (piperidine) - 49,51,53,57 2 2 2 cis-M(C0) L 3 20,42,44 21,33,42 42,43 66,93 31 31,83 _ _ - 50 - _ _ - 50 - _ - _ - (pip) HN(CH CH ) NH 2 - 32 (piperazine) 2 6 4 (4-aminopyridine) Mo 58 58 -22- Metal Ligand C H N 5 6 2 (2-methylpiperazine) C HgNH 4 (pyrrolidine) 0(CH CH ) NH 2 2 2 (morpholine) o-NH C H NH 2 6 4 2 Et N 3 M(CO) L c Cr Mo 3 2 5 3 Cr Mo W 52 52,32 52,32 32 32 Cr Mo W 32 32 32,49,53,54 32 32 Cr 55 Cr Mo W 52,60 52 Cr 67 (2,6-lutidine) 4-C1C..H.N 5 4 Cr 67 C H N Cr Mo 67 30,67 Cr 67 a-picoline Cr 67 urotropin Mo 30 isotropin Cr 67 PhCN Cr 79 g ? quinoline (quin) C H N 9 ? cis-M(CO).,L '3 3 30 30 52,60 (CH ) C H N cis-M(CO),L_ 4 2 (isoquinoline) (hexamethylenetetramine) 32 -23- Ligand Metal M(CO) L Ligand CH NH Cr Mo W 45,85 86 54,85 PhNHNH C„H,NH 2 o I Cr Mo W 45,52,85 52,85 52,85 NH NH Mo 46 ethylenediamine (en) Mo 46 HC(CH CH ) N W 3 2 9 5 Me NH 2 n _ C 2 2 2 2 3 2 H N H 6 13 2 n-C H NH 5 n 2 49,53 Me.N J 4-BrC,H, NH„ 6 4 2 W 49,51,53 4-CH_0C,H. NH3 6 4 2 W 49,51,53 4-CH,C,H.NH 3 6 4 2 W 4-BrC H,N 5 4 W 0 c 51 Bidentate / (CH ) CHNH 3 c (ii) 4-CH-C H N 3 5 4 2 2 Metal M(C0) L Mo 46 Cr Mo W 52,85 52,85 49,52,53 54,85 Cr Mo W 52 52 52 Cr Mo W 52 52 52 Cr Mo W 52 52 52,53,54 W 49,53 W 49,53 5 49,53 ligands Ligand Metal M(CO) L Ligand Metal M(C0) L 8-aminoquinoline Cr 30 1,2-diamino-2methylpropane Cr 95 (C H N) CH Mo 30 (C H Mo 30 Mo 30 Cr Mo W 89 89 89 4 8 2 2 4 5 Cyclohexane-1,2diamine N.N N'.N'-tetrame t h y l e n e e t h y l e n e diamine ; Cr 55 88 N) CH 2 (Et N) CH 2 Cr 1 ( ) 2 2 2 1-propylenediamine 4 -24- Ligand Metal Phenanthroline (o-phen) Bipyridyl (Bipy) M(CO) L M(CO) L Cr Mo W 44,45,65,71,84,89 65,84,89 66,84,89 72 71 71 Cr 19,30,45,70,73,74, 76,84,89 19,30,68,73,75,76, 84,89 19,33,66,73,76,84, 89 72 Mo W H NC„H NH (e thylenediamine) (en) trimethylenediamine (iii) Tridentate Cr Mo W Cr Mo W 4 19,45,47,61,89 19,46,61,89 19,61,89 89 89 89 ligands Ligand Metal M(C0) L diethylenetriamine (dien) Cr Mo W 19,61,68,69,87 19,21,61,68,86 19,61,68 2,2',2"-tripyridyl Mo W 108 108 Cr 30 3 CH -N-RCH -N-RCH-NR 2 2 R = CH _ _ n 3 n n °2 5 2 71 71 2 -25- (iv) Polynuclear d e r i v a t i v e s containing n i t r o g e n bridges Compound Ref. m-Phenylenediamine [ C r ( C O ) ^ ] 2 55 p-Phenylenediamine [ C r ( C O ) ] 2 48,55,59 p-Phenylenediamine [ M o ( C O ) l 2 59 5 5 1,3,5-Triaminobenzene [Cr(CO),.] Piperazine [Mo(CO) ] Piperazine [W(CO) l 5 5 (CO) Cr(en) Cr(CO) 3 (CO) Mo(en) Mo(CO) 3 3 3 (v) 3 3 3 55 32 2 32 2 20 21,50 Mixed D e r i v a t i v e s M(C0) XY 3 X Y M Ref. bipy NH 3 Cr,Mo,W 42 o-phen NH 3 Cr,Mo,W 42 bipy py Mo o-phen py o-phen P(0Et) bipy 3 PPh J bipy SPh bipy P(0Et) o-phen 2 PPh 5 bipy SO, o-phen S0 (py) S0 2 93 Mo,W 93 Mo 91 W 2 2 3 90,91,93 Ref. 91 91,93 93 Mo 90,91 Mo 91 Mo W Mo W 2 90,91,93 W Mo M(CO) XY 91,93 93 93 93 Mo.W 93 Mo,W 93 91 91,93 93 2 -26- (vi) H e p t a - c o - o r d i n a t e and r e l a t e d d e r i v a t i v e s Ref. Compound 73,98 [Mo(bipy)(CO) Br ] 3 2 [W(bipy)(CO) Br ] 2 73 [W(bipy)(CO) I ] 73 3 3 2 [W(bipy)(CO) (HgCl) ] 73 Mo(py) (CO) Cl 98 2 2 3 2 2 Mo(bipy)(CO) Cl 3 98 2 Mo(o-phen)(C0) Br 2 Mo(o-phen)(CO) Cl 2 3 3 [Mo(CO) (bipy) I]I 2 2 98 98 99 3 [Mo(CO) (o-phen) I]I 2 2 3 99 [Mo(bipy) (CO) I]I 99 [W(o-phenl|:C0) I]I 99 [Mo(bipy)(CO) I ] 73 2 2 2 3 2 2 [Mo(o-phen) (CO) I]I 2 (vii) 2 99 jt-arene d e r i v a t i v e s (Mesi t y l e n e ) G r ( C O ) < q u i n ) 122 (Mesitylene)Cr(CO) (py) 121,122 (tere)Cr(CO) (NCPh) 120,122 (tere)Cr(CO) (NCMe) 120 (tere)Cr(CO) (quin) 120 (tere)Cr(CO) (aniline) 120 2 2 ? 2 2 2 -27- Compound Ref. (tere)Cr(CO) (py) 121,122 (tere)Cr(CO) (pip) 121,122 (Benzene)Cr(CO) py 121,122 (Benzene)Cr(CO) (quin) 122 [(CH ) C ]Cr(CO) (quin) 122 2 2 2 2 3 6 6 2 (Benzene)Cr(CO) (CH =CH-CN) 94 (Me s i ty1ene)Cr(CO > (CH =CH-CN) 94 (tere)Cr(CO) (CH =CH-CN) 94 2 2 2 2 2 2 [ t e r e = t e r e p h t h a l i c a c i d d i m e t h y l e s t e r (CH^C0 ) C^H^]. 2 (viii) C y c l o p e n t a d i e n y l and R e l a t e d jtCpMo(CO) (PhN=N-) Derivatives 102,103 2 jtCpMo(C0) (p-CH C H N=tO 102 jrCpMo ( CO ) ( p-CH OC H N=N^ 101,102 «CpMo(CO) (p-N0 -C H N=N-) 102 jtC pMo ( CO ) ( an t h r a q u i none - N=N-) 102 irCpW(CO) (PhN=N-) 103 2 3 2 6 4 3 2 6 2 6 4 4 2 2 [ i t C p M ( N H ) ( C O ) ] r e i n e c k a t e " (Mo and W) + 3 3 + [ ifCpM(NH ) (CO ) ] B P h " 106 (Moand W) 106 [ jrCpM(N H )(C0 > ] r e i n e c k a t e ( M o and W) 106 3 3 4 + 2 4 3 + [itCpM(N H )(C0) ] BPh " 2 4 3 4 + t«CpM(CO) (bipy)] PF " 2 6 + [itCpM(CO) (o-phen)] PF " 2 6 + [jtCpM(CO) (CH CN) ] PF " 2 3 2 6 (Mo and W) 106 (Mo and W) 107 (Mo and W) 107 (Mo and W) 107 2 -28- Compound Ref. + [ JtCpMo(CO ) ( C H C N ) ( P P h ) ] P F " 107 irCpMo(CO) (COCH C H N) 105 2 3 3 2 (ix) 2 5 6 4 T h i o c y a n a t e and r e l a t e d d e r i v a t i v e s Compound Metal Cr Mo W + <CH ) N [M(CO) NCS]" 3 4 5 + [AsPh ] [W(CO) NCO]" 4 2 + [Ni(phen) ] [Cr(CO) NCO] " 5 45 2 * [(CO) Cr-NCS-Cr(CO) ] 5 111,119 5 2+ [Ni(phen) ] [(CO) Cr-NCS-Cr(CO) ] 3 5 5 - 112,119 + [N(CH ) ] [(CO) Cr-NC-Cr(CO) ] 3 K 4 109,111,119 109 109 110 5 3 Ref. 5 112,119 5 Cr(CO) NCS 113,119 5 + [Et N] [Cr(CO) NC(CN) ]" 4 5 114 2 + [AsPh ] [Mo(CO) NC(CN) ]" 2 114 [Et N] [W(CO) NC(CN) ]~ 114 4 5 + 4 5 2 [M(CO)„NCH] Cr,W 115 Cr,Mo,W 116 Cr,W 117 Cr.W 117 Cr,W 117 D [(CO) M-NCCN-M(CO) ] 5 5 + (Ph P) N [M(CO) NCS] 3 2 _ 5 + (Ph,P) N [(CO),M-SCN-M(CO) ]" 0 c J - i t - J + (Ph P) N [fcO) M-CN-M(CO) ]~ 3 2 5 itCpMo(CO) NCS x paramagnetic 5 118 -29- b) ( U — Twn-, T^VX Nfi^F^ or i . H . r . Cr(CO), + quinoline o ) (MeO-C H Cr(CO) 6 (iii) 5 6 6 1 1 5 + py 3 Na [Cr(CO) ] + aq.o-C H (NH ) 2 B i - and 5 6 4 2 " 1 2 Cr(CO),(quin) + J ° ° > Cr(CO) py 3 6 CO 4 3 5 » Cr(CO) [o-C H (NH > ] 2 5 6 4 2 5 2 p o l y - d e n t a t e l i g a n d s have a l s o y i e l d e d many d e r i v a t i v e s . monodentate N-donors do n o t r e p l a c e more t h a n 3 CO groups from the h e x a c a r b o n y l , o - p h e n a n t h r o l i n e and b i p y r i d y l , u n d e r d r a s t i c Whereas parent conditions give 71 72 M(CO) (p-phen) 2 5 or M ( C O ) ( b i p y ) . 2 2 potential chelating ligands prefer monodentate l i g a n d s . I t i s interesting 2 2 2 2 32 W , 5 b u t a l s o C r ( C O ) g ( o - or p - C g H ( N H ) ) . 4 2 tetramine) has 4 p o t e n t i a l 30 2 (M = C r , ^ Mo ^"'"^). donor s i t e s , metal Presumably s t e r i c through d o u b l e bond. 4 6 2 4 2 2 chelate on Urotropin(hexamethylene- i n determining ligand. the l i g a n d may bond t o t h e the n i t r o g e n , o r from t h e In addition, acrylonitrile the o l e f i n i c 2 p-CgH (NH ) )Cr(CO)^, e f f e c t s are important c o m p l e x e s o f the Gp.VI m e t a l s v i a a cr-bond from t h e l o n e p a i r m u l t i p l e bond. 2 b u t a c t s a s a monodentate l i g a n d i n the t y p e s o f d e r i v a t i v e s formed w i t h e a c h I n the n i t r i l e 5 ) , but 3 m o l e c u l e s b r i d g e i n t h e 2 3 Mo(CO) (HN(CH CH ) NH). Ethylenediamine a c t s as a 2 4 3 2 ( C O ) ^ C r ( o - or i n M ( C 0 ) e n c o m p l e x e s (M = C r , Mo, complexes ( C O ) M ( e n ) M ( C O ) 2 but a l s o S i m i l a r l y m- and p - p h e n y l e n e d i a m i n e y i e l d Mo(CO),_(urotropin). some Thus p i p e r a z i n e ( H N ( C H C H ) N H ) y i e l d s 2 3 that to form b r i d g e d compounds, o r t o a c t a s [ ( C O ) M H N ( C H C H ) N H M ( C O ) J , M = Mo, 5 to n o t e CN (CH =CHCN) c a n form a n-complex 2 I n f r a r e d and n.m.r. s p e c t r o s c o p i c 5 5 -30- t e c h n i q u e s have been used t o show t h a t bonding i s through t h e n i t r o g e n l o n e pair i n a l l t h e complexes shown i n T a b l e I . l . ( i ) except M(CO) (CH =CHCN) 3 2 3 31 31 83 (M = Mo, W, ' ) when jt-bonding from t h e o l e f i n i c double bond occurs. Mixed complexes o f t h e t y p e MCCOX^XY (where X = o-phen o r b i p y , Y = a monodentate l i g a n d ) a r e r e a d i l y p r e p a r e d by d i r e c t displacement o f one CO g r o u p , and i n some cases d i s p l a c e m e n t o f a 2nd CO has been achieved t o g i v e MCCO^XY^ complexes. Some o f t h e complexes a r e l i s t e d i n T a b l e I . l . ( v ) . 92 In a d d i t i o n , Houk and Dobson have prepared complexes w i t h Y = py, PPh , 3 P ( 0 E t ) , (C H ^NH , CH CN, ( C g H ^ ^ P , ( n - C ^ ^ P , Pt^As, 3 6 1 2 3 (i-C^O^P, ( n - C H 0 ) P , ( C H 0 ) P , (CjH 0) HOP, Pb^Sb, P ^ B i , Pt^Se, DMF, CI^CONH^ 92 4 9 3 3 3 5 2 CH CSNH , ( N H ) C S , (PhO^P, and s t u d i e d t h e i r i . r . s p e c t r a . 3 2 2 2 Angelici 95 and Graham have s t u d i e d t h e r a t e o f r e a c t i o n o f Cr(C0)^(X-o-phen) w i t h P ( 0 C H ) C C H ( L ) t o g i v e Cr(CO> L(X-o-phen), where X = 5 , 6 - d i c h l o r o - , 5 - n i t r o 2 3 3 3 4 , 7 - d i p h e n y l - , 3-methyl-, 3 , 5 , 7 - t r i m e t h y l - , 3 , 4 , 7 , 8 - t e t r a m e t h y l - and 95 96 3,4,6,7-tetramethyl-. The analogous Mo(C0)^(X-o-phen) and W(C0)^(X-o96 phen) also react w i t h various ligands (L = P(OC H ) PPh , P ( 0 P h ) 96 2 P ( n - C H ) , P(OCH ) CCH 4 all 9 3 2 3 3 5 3 > 3 and P 0 C H ) , t o g i v e M ( C 0 ) L (X-o-phen). 3 6 g 3 3 > For the Cr(CO) (X-o-phen) complexes, t h e r e a c t i o n s were found t o proceed 4 a c c o r d i n g t o a f i r s t o r d e r r a t e l a w , and were independent o f t h e 95 c o n c e n t r a t i o n o f L. But the r e a c t i o n r a t e increases w i t h increasing b a s i c i t y o f X-o-phen, c o n t r a r y t o jr-bonding arguments, and i t i s suggested t h a t t h e more b a s i c c h e l a t e s s t a b i l i z e t h e t r a n s i t i o n s t a t e t o a g r e a t e r e x t e n t than weaker bases. observed.^ F o r t h e Mo and W complexes a two-term r a t e law i s -31- The s e v e n - c o - o r d i n a t e complexes l i s t e d i n Table I . l . ( v i ) a r e a l l d i a m a g n e t i c , u n s t a b l e complexes. They have been prepared e i t h e r by the o x i d a t i o n o f M(CO) (bipy) or M ( C 0 ) ( o - p h e n ) w i t h h a l o g e n , 4 4 73 99 ' or by the a d d i t i o n o f py, o-phen, or b i p y t o a s o l u t i o n o f t h e dihalogeno-compounds 98 [M(CO)^^]2' ^ n a d d i t i o n , s t a b l e n o n i o n i c h e p t a c o - o r d i n a t e compounds o f the t y p e b i p y C c O ^ X M M ' X ^ 00 (where M = Mo, W, and M'X = G e C l , GeBr , 3 3 3 G e l , S n C l , S n B r , S n l , SnCl CH , S n C l ^ H g , S n C l C H , S n C l C H , 3 3 3 3 2 3 2 2 3 2 SnCKCgH,.^, GeCljCgH^), have been prepared by an " o x i d a t i v e 6 5 elimination" r e a c t i o n o f t h e type: X (CO) M + XY n > (CO) M n-1 \ n v between M(CO) bipy and compounds o f t h e type M'X^. 4 A few analogous compounds w i t h o-phen^"^ i n s t e a d o f b i p y have a l s o been prepared. The i . r . and n.m.r. data on these complexes suggest t h a t they e x i s t i n 2 i s o m e r i c forms i n solution. S e v e r a l arene m e t a l c a r b o n y l d e r i v a t i v e s o f t h e type (X-CgH^CrCcO^I' are l i s t e d i n Table I . l . ( v i i ) . Complexes w i t h s u b s t i t u e n t s i n the benzene r i n g have been prepared t o s t u d y the e f f e c t o f X groups on the s t a b i l i t y o f 94 120 121 the complexes. ' ' 122 ' E l e c t r o n - w i t h d r a w i n g groups reduce the charge on t h e m e t a l and encourage L — * Cr d o n a t i o n , b u t e l e c t r o n r e l e a s i n g f a v o u r Cr —*• L back bonding. As expected from these arguments, groups terephthalic a c i d forms more s t a b l e mixed complexes w i t h poor j t - a c c e p t o r l i g a n d s t h a n 120 94 does m e s i t y l e n e . I n the complexes w i t h L = Ct^CH-CsN , the type o f -32- bonding between a c r y l o n i t r i l e and t h e m e t a l was o f p a r t i c u l a r i n t e r e s t . I.R. and n.m.r. t e c h n i q u e s showed t h a t t h e compounds a l l c o n t a i n e d CTN } M bonds, except f o r (CH )g(^Cr(CO ) (CH =CHCN), which c o n t a i n e d a j t - o l e f i n i c - m e t a l bond. 3 2 2 T h i s can be r e a d i l y u n d e r s t o o d , s i n c e t h e s i x m e t h y l groups i n t h e benzene r i n g w i l l donate charge t o t h e m e t a l , thus d i s c o u r a g i n g d o n a t i o n o f t h e nitrogen lone p a i r s t o the metal. Of t h e j t - c y c l o p e n t a d i e n y l d e r i v a t i v e s l i s t e d i n Table I . l . ( v i i i ) , o f t h e t y p e irCpM(CO) (RN -) a r e o f s p e c i a l i n t e r e s t . 2 They a r e prepared by 2 + the r e a c t i o n o f NafjtCpMoCCO)^] w i t h t h e diazonium s a l t s R N B F 2 + RN PF ~ 2 6 1 0 2 those or 4 , o r i n t h e case o f (itCpM(CO) PhN ^, by t h e r e a c t i o n o f 2 jtCpM(CO).jH w i t h p h e n y l h y d r a z i n e . T h e w i t h the N 0 + 2 ligand RN + 2 i s formerly l i g a n d i n t h e same way t h a t RNC i s r e l a t e d t o CO. isoelectronic The complexes a r e somewhat a i r - s e n s i t i v e , b u t a r e n o n - i o n i c and d i a m a g n e t i c , h a v i n g t h e expected n.m.r. spectrum. Thus, i n these c o v a l e n t a r y l a z o d e r i v a t i v e s t h e n e u t r a l RNg-group must be d o n a t i n g 3 e l e c t r o n s t o the m e t a l , so t h a t i t has t h e i n e r t gas c o n f i g u r a t i o n ( c . f . NO i n n i t r o s y l complexes). The t h i o c y a n a t e and r e l a t e d compounds shown i n Table I . l . ( i x ) form an i n t e r e s t i n g c l a s s o f compounds, as t h e p o s s i b i l i t y o f l i n k a g e isomerism exists. I.R. s t u d i e s o f these complexes have been i n t e r p r e t e d as showing t h e 109-119 types o f bonding i n d i c a t e d i n t h e t a b l e . + complexes a r e s t a b l e , b u t Me N [Mo(C0),.NCS] ~ 4 111,113,119 compounds a r e u n s t a b l e . ' ' fc The a n i o n i c Cr and W and t h e n e u t r a l paramagnetic .. .. . , . ., . The b m u c l e a r anions have no b r i d g i n g c a r b o n y l groups and t h e two m e t a l atoms a r e j o i n e d by a l i n e a r -NCS-^H-2,117,119 -33- -NC-, (SCN) 1 1 2 2 ' 1 1 7, L 1 9 o r -NCCN- 1 1 6 bridge. y i e l d s b o t h jT-CpMo(CO) SCN a n d 3 chromatography. The S-bonded i s o m e r , R e a c t i o n between jt-CpMo(CO> H and 3 rt-CpMo(CO) NCS, i n a c e t o n i t r i l e or chloroform s o l u t i o n a t 35°C i s o m e r i s e s t o t h e N-bonded i s o m e r . (SCN) , only t h e S-bonded i s o m e r was f o r t h i s compound. 2 observed s e p a r a b l e by column 3 was o b t a i n e d With n-CpW(CO) H and 3 and no i s o m e r i s m A f e w m i s c e l l a n e o u s compounds n o t l i s t e d i nsolution i n t h e t a b l e s n e e d t o be 123 mentioned. Bock and D i e c k have p r e p a r e d an i n t e r e s t i n g s e r i e s of metal carbonyl d e r i v a t i v e s with non-aromatic nitrogen-it systems. dialkyl c y a n a m i d e s R N-CN w i t h C r and Mo h e x a c a r b o n y l s yielded i n hydrocarbon s o l v e n t s 2 g i v e s mono-, d i - and t r i - s u b s t i t u t e d (R N-CN)M(CO) 2 (R2JV-CN) M(C0) 2 4 derivatives. and ( R N - C N ) M ( C O ) 2 5 2 and ( R N - C N ) M ( C O ) . 2 GC 3 4 Reaction of I r r a d i a t i o n a t 20-30°C w h e r e a s h e a t i n g a t 50-60°C gave The l i g a n d s u s e d were 3 [^^NCN ^ e / NCN , 0 C \ NCN 6 H H \ , ^NCN . V__/ C ^ 6 11 ^ I . R . s t u d i e s i n d i c a t e d t h a t t h e m e t a l - l i g a n d bonding i s v i a t h e lone p a i r o f e l e c t r o n s on t h e t e r m i n a l n i t r o g e n , and t h a t t h e l i g a n d s h a v e l i t t l e jt- 123 acceptor ability. R e a c t i o n o f e.g. c i s - { j i s ( c y a n o - p i p e r i d i n e ) - m o l y b d e n u m t e t r a c a r b o n y l with other l i g a n d s such a s d i a c e t y l h y d r a z o n e , o s p h i n i m i d e s and 1 , 4 - d i a z a b u t a d i e n e gave / CH -C=N-NH \ " V/ \CHV-C=N-NH 3 2 Mo(C0) , 4 : (Ph,P=NH) Mo(C0), 9 l and NH CH--C-NC^ I >o(C0). CH.-C-N^ NH 2 2 5 triphenylph- 0 respectively. 1 2 3 -34- I n t h e r e a c t i o n between Mo(CO)g and d i a l l y l - c y a n a m i d e f CH =CH-CH >^ \124 ^^N-CN J , 4 moles o f CO are evolved per mole o f Mo(CO), and ^ CH =CH-CH * ' 2 2 2 2 a d i m e r i c complex i s formed, which from i . r . and n.m.r. e v i d e n c e , i s assigned spectroscopic t h e s t r u c t u r e shown i n F i g . I . 5 . C_H N CN HC N CO CO CO I II CO N CN N R Mo R C_H CH CH R = CH 3 Fig.1.5. The analogous compound was prepared (R = C H ) . from m e t h y l - a l l y l - c y a n a m i d e 1 2 4 3 The non-bonding o r b i t a l s o f c i s - a n t i - 1 , 4 - d i a z a - l , 3 - b u t a d i e n e s a r e i n p o s i t i o n s which a r e g e o m e t r i c a l l y f a v o u r a b l e f o r f o r m a t i o n o f b i d e n t a t e donor bonds. 125 126 ' I n a d d i t i o n , t h e l o w e s t unoccupied it* o r b i t a l has s u i t a b l e -35- symmetry and energy f o r jt-back d o n a t i o n , from m e t a l d - o r b i t a l s . molybdenum Several t e t r a c a r b o n y l d e r i v a t i v e s have been prepared by a v a r i e t y o f r o u t e s , i n c l u d i n g d i r e c t r e a c t i o n , displacement ( a s above) and " c o n d e n s a t i o n " j i.e. + 2RNH, + Mo(CO), > """T^^ ^Mo(CO), R [For R 1 aryl]. = C H ; R = OH. 6 5 For R 1 = CH ; R = OH, 0CH , NH 3 3 2> N(CH ) 3 2 > alkyl, The complexes a r e a i r s t a b l e and i n r e a c t i o n w i t h o t h e r l i g a n d s e.g. PPh , and I , 3 2 CO i s d i s p l a c e d and t h e d i a z a b u t a d i e n e l i g a n d i s r e t a i n e d . 125 Analogous chromium and t u n g s t e n d e r i v a t i v e s have been prepared by i r r a d i a t i o n . The i . r . , n.m.r. and e l e c t r o n i c s p e c t r a o f t h e molybdenum studied complexes have been i n d e t a i l , and the bonding i s d e s c r i b e d i n a q u a l i t a t i v e M.O. scheme as a c-bond between t h e N-lone p a i r and the m e t a l , b u t i n a d d i t i o n t h e r e i s b a c k - d o n a t i o n from t h e f i l l e d m e t a l d - o r b i t a l s i n t o i r - a n t i b o n d i n g 126 o r b i t a l s on t h e l i g a n d . 127 T r i p h e n y l p h o s p h i n i m i d e r e a c t s w i t h M(CO)^ (M = Mo, V?) t o give either (Ph P=NH) Mo(CO) 3 2 4 o r a t a h i g h e r temperature [ ( P h P = N H ) M o ( C O ) l compound h a v i n g b r i d g i n g c a r b o n y l groups. 3 2 3 2 the l a t t e r S p e c t r o s c o p i c techniques a r e a g a i n used t o show t h a t oN — - } M bonding o c c u r s , b u t a l s o t h a t added 127 s t a b i l i t y o f t h e complexes comes from d e l o c a l i s a t i o n o f the charge: -36- H —P=N- -> — P - "N. 5M R e a c t i o n between methylmethoxycarbene-pentacarbonylchromium and h y d r o x y l amine ( d r y ) proceeds as shown i n t h e e q u a t i o n : ^>OCH H 3 (CO) Cr— + 5 ^CH 128 129 ' a b s H NOH 2 - e t h e r > OCH 3 N / = = C (CO) Cr 3 CH 5 (CO) Cr / 5 + 0 C H ^CH 3 3 ^ N = C ^ H \ + H 0 2 3 The two i s o m e r i c forms o f t h e ( m e t h y l a c e t i m i d a t o ) pentacarbonylchromium were separated by f r a c t i o n a l c r y s t a l l i s a t i o n and were shown by v a r i a b l e temperature n.m.r. t o be i n t e r c o n v e r t i b l e . Reaction o f t h e carbene w i t h u n s y m m e t r i c a l l y s u b s t i t u t e d h y d r a z i n e s , f o r example N,N-dimethyl g i v e s known n i t r i l e chromium p e n t a c a r b o n y l hydrazine d e r i v a t i v e s , perhaps by t h e . . . 128,129 mechanism shown: ' ^OCH (CO) Cr^C^ 5 \ GII_ 3 3 c +H N-N(CH_)„ " 2 " ' 3'2 0 [ \?*-*^h • (CO) Cr^C^ + CH^OH 5 \ 3 i CI1 I ""3 s y c X 1 (CO) CrNCCH + H N ( C H ) 5 3 3 2 -37- A pseudo a l l y l i c s t r u c t u r e has been proposed f o r the complex 130 jr-CpMo(CO) (Ph CNCPh ) , prepared by r e a c t i o n o f ic-CpMo(C0) Cl w i t h 2 moles 130 2 2 2 3 of Ph C=NLi, i n which t h e l i g a n d must a c t as a 3 e l e c t r o n donor. 2 K i n g a n d B i s n e t t e ^ " * have prepared a n o v e l molybdenum compound by r e a c t i o n of [jr-CpMo(C0) ] 3 heterocyclic 2 with 2-chloromethylpyridine. The p r o d u c t c o n t a i n s a r i n g w i t h t h e m e t a l atom as p a r t o f t h e r i n g , as shown i n F i g . 1.6. CO — Mo — CO N ^ C I L , — C=0 Fig.I.6, The analogous W compound c o u l d n o t be prepared. 105 The compound N - n - b u t y l t h i o p i c o l i n a m i d e ( b t p ) r e a c t s w i t h n-CH Fig.I.7. [Mo(C0) X l 4 2 2 -38- (X = C I , B r ) t o g i v e M o C c O ^ b t p ^ behave as u n i - n e g a t i v e bidentate ( F i g . I . 7). Thiopicolinamides usually l i g a n d s by l o s s o f a p r o t o n , b u t i n these complexes, t h e l i g a n d appears t o be a c t i n g as a monodentate n e u t r a l l i g a n d , 131 co-ordinating t o t h e m e t a l v i a t h e p y r i d i n e N-atom. (C H )Ti(NMe ) M(CO) 5 5 2 3 3 (M = Cr, Mo, W ) 1 3 2 The are reported compounds t o form when rt-CpTi(NMe„)_ and M(CO), a r e i r r a d i a t e d i n cyclohexane s o l u t i o n . 15 b s p e c t r a s u p p o r t t h e assignment o f NMe b r i d g e s , 2 The i . r . b u t the n.m.r. s p e c t r a 132 cannot be i n t e r p r e t e d on t h i s 3a. basis. Manganese In contrast t o the Gp.VI m e t a l c a r b o n y l s , dimanganese decacarbonyl disproportionates w i t h most n i t r o g e n bases w i t h l i t t l e o r no n-acceptor p r o p e r t i e s , e.g. M n ( C O ) 2 1 + piperidine 1 0 2 0 ) [Mn + I I ( p i p ) ] [Mn'^CO),.] • 6 1 3 3 , 1 3 2 ^ However, some s t r o n g bases e.g. p y r i d i n e , a n i l i n e and o-phenylenediamine 134 g i v e m o n o s u b s t i t u t e d d e r i v a t i v e s Mn(CO) L. 4 n-Butylamine seems unique i n t h a t i t r e a c t s a t room temperature t o g i v e + I _ I 1 3 [ M n ( C O ) ( n - C H N H ) ] [ M n ( C O ) ] . ^ W i t h bases h a v i n g i t - a c c e p t o r p r o p e r t i e s , Jo - f s o l133,134,137 , ^ . . by i n n o n - up no sl ya mr m esto rl iv•ec natlnsl.y s Iu rbu rs at di•it au t ei doJ n dimers u t i o n s o f these e.g.r e ba ic pt iy o, n o-phen, a r e o dimers btained 5 4 g 2 5 paramagr y i e l d s paramagnetic monomers 133,134 dimers: Mn„(CO) + bipy ^ -"-w 133 , which r e a d i l y combine t o g i v e n o 1n [bipyMn(CO) ] + Mn (CO) 3 2 2 1 Q < o l a r "-P , solvent symmetrical [bipyCcO.Mh-MnCCO),.] Jj 3 (bipy)Mn(CO) 3 + Mn(CO) 5 -39- I n p o l a r s o l v e n t s , b i p y and o-phen cause d i s p r o p o r t i o n a t i o n ' ' " " ^ ' t o g i v e , f o r example [ M n ^ ^ C o - p h e n ^ ] [Mn'^CcO)^] . The c a r b o n y l h a l i d e d e r i v a t i v e s i n Table I . 2 ( i i ) are i n almost a l l cases prepared by the a c t i o n o f the l i g a n d on Mn(CO)^X o r [MnCcO^X^Monodentate, and most b i d e n t a t e amines r e p l a c e carbonyl two CO groups t o g i v e s p e c i e s , b u t some o f the p y r i d i n e - 2 - a l d i m i n e s complexes. give bridged tribinuclear M n ( C O ) ( d i e n ) l was prepared from [ ( m e s i t y l e n e ) M n ( C O ) . j ] l . 3 Mn(CO),_X complexes r e a c t i n a s l i g h t l y d i f f e r e n t manner w i t h l i q u i d ammonia or e t h y l e n e d i a m i n e , t o g i v e i o n i c compounds. 135 138 ' The k i n e t i c s o f t h e 141 r e a c t i o n s between Mn(CO),-X compounds and l i g a n d s have been s t u d i e d . For a l l n i t r o g e n l i g a n d s s t u d i e d , the r e a c t i o n s proceed d i r e c t l y t o the c i s d i s u b s t i t u t e d complexes, a t a r a t e which i s independent o f the l i g a n d concentration. The r a t e s o f r e a c t i o n decrease i n the o r d e r C l . ^ B r > I . d i s s o c i a t i v e (SN^) mechanism accounts f o r the e x p e r i m e n t a l Reaction of methylprimary observations.''"^ o r phenyl-manganese p e n t a c a r b o n y l s [RMn(CO)^] w i t h o r secondary amines l e a d s t o a c y l d e r i v a t i v e s o f t h e 142 MnCCO^CcORXNHR'R" ). A type K i n e t i c s t u d i e s on the r e a c t i o n o f MeMn(CO),. w i t h c y c l o h e x y l a m i n e and N-methylcyclohexylamine i n v a r i o u s s o l v e n t s s u p p o r t a mechanism o f s o l v e n t a s s i s t e d m i g r a t i o n , p r o b a b l y 143 than a c a r b o n y l techniques. group. Kraihanzel o f the m e t h y l group, r a t h e r Through the use o f i . r . and n.m.r. s p e c t r a l and Maples''"^ s t u d i e d the r e a c t i o n s o f MeMn(CO), w i t h a l k y l a m i n e s and a n i l i n e t o g i v e o n l y c i s - a c e t y l d e r i v a t i v e s . r e a c t i o n s do n o t go t o c o m p l e t i o n These and the p r o d u c t s are u n s t a b l e i n solution. -40- T a b l e 1.2. Manganese Carbonyl Complexes (i) Derivatives o f Mn (C0) . o lr Type o f Compound L or L Mn(C0) L 4 [L Mn(CO) -Mn(CO) ] 2 3 5 tMn(CO) L ] 3 2 2 + I _ I [Mn (C0) L][Mn (C0) ] 5 5 Mn(C0) L 3 2 Mn (C0) L 2 9 [Mn^CO^L^V - (X 2 Ref. o-phenylenediamine 134 aniline 134 pyridine 134 bipy 134 o-phen 133,134,13 7 bipy 134 o-phen 134 n-butylamine 134 o-phen 133 NH 3 133 NH 3 135 - I = M n ( C 0 ) ; BPh ) 5 + [Mn(C0) L ] X 4 2 4 2 _ 2 o-phen 136 o-phen 13 7 o-phen 137 2 (X - = [ Z n C l D 2 [Mn(C0) L ]X 4 (X - _ 2 = Co(C0) ) 4 (C0) CoMn(C0)„L 4 (ii) (a) 6 9 D e r i v a t i v e s o f manganese c a r b o n y l h a l i d e s Mn(C0) L X 3 2 Ref. X I NH (C H ) 142 CI aniline 145 2 6 1 1 -41- X L Ref • Br aniline 29,138,141 Cl pyridine 138,141 Br pyridine 29,138,141 I pyridine 138,139,141 NO.j pyridine 140 Br o-C1C H NH Br p-CH OC H NH Br (CH ) CHNH Br 3-BrC H.N 5 4 4-CH_C-H,N 3 5 4 p-CH_C,H.NH 3 6 4 2 o-CH,C,H.NH. 3 6 4 2 6 3 3 4 6 29,141 2 4 2 29 2 29 2 29 c Br 29 1 Br 141 0 Br 141 C'l NH 3 11 Br NH 3 11 I Mn(C0) L'X NH 11 3 3 X 1/ Ref. Cl (C H N-CH=N-CH ) 138 Cl (C H.N-CH=N-C,H ) 5 4 65 138 Cl o-phen Br o-phen I o-phen Cl bipy 138 Br blpy 138 I bipy N0 I 5 4 C 3 3 C 133,138 138 133,138 138,139 bipy 140 diethylenetriamine(dien) 154 -42- (c) [Mn(CO) X] L" 3 2 X (d) L" CI (C H N-CH=N-N=CH-NC H ) Gl (C H N-CH=N-(CH ) -N=CH-NC H ) 138 CI (C H N-CH=N-C H -N=CH-NC H ) 138 Ionic 5 4 5 5 4 5 2 4 6 4 2 5 5 4 4 Ref. [Mn(CO) (NH ) ]Br 135,138 [Mn(CO) (NH ) ]Cl 135 [Mn(C0) (en)]Br 138 4 3 3 3 2 3 4 [Mn(CO) (bipy)(py)]N0 3 [Mn(CO) (bipy)P0 ]N0 3 3 140 3 140 3 [Mn(CO) (bipy)(P0 ) ]N0 2 3 2 3 - 140 Na[Mn(CO) (NH C H )] 142 [Mn(CO) (NH Me)]Cl 145 4 5 2 6 11 2 [Mn(CO) (NH Me)]PF 5 2 145 6 [Mn(CO) (NH Et)]Cl 5 145 2 [Mn(CO) (NH Et)]PF 5 (a) 138 4 derivatives Compound (iii) Ref. 2 145 6 Organo-manganese d e r i v a t i v e s Mn(CO). — — — 4 (CORXNHR'R") R NHR'R" Me C H NH 6 11 Ref. 142,143,144 2 Me NH_ Me NH(CH )(C H ) Me Ph Ph Me 142 3 N H C H 2 6 5 NH C H 2 N H C 6 H 6 142,143,144 n 1 1;L 2 6 5 quinoline 4 2 142 1 4 2 194 -43- (b) Mn(CO) (CONHR)(NH R) /| 2 R Ref. Me 145 Et 145 CH(CH ) 3 145 2 i t - c y c l o p e n t a d i e n y l and r e l a t e d compounds it-CpMn(C0) L o L Ref. Aniline 146 Piperidine 146,150,151 Benzonitrile 147 Acetonitrile 147,150 Pyridine 148,150,152 Piperazine 149,150 Triethylenediamine 149 Urotropin 149,150 NH 150,151 3 NMe 150,151 n-Propylamine 150,151 n-Hexylamine 150,151 Me NH 150,151,152 Pyrolidine 150,151 2,5-Dimethylpyrolidine 150 V-Picolin 150 Ethylamine 151 3 2 -44- (b) (v) [rt-CpMn(CO)J L (c) 2 ( i t - C H ^ H ^ )Mn(CO) L 2 L Ref. L Ref• Piperazine 149 Pyridine 148 Triethylenediamine 149 Piperidine 153 T h i o c y a n a t e and r e l a t e d d e r i v a t i v e s (a) Mn(CO) L NCS 3 2 L Ref. (CO) 156 Pyridine 155,156,157 (p-CH C H NH ) 157 (4-CH C H N) 155,157 p-ClC H NH ) 157 (p-FC H NH ) 157 PPh 155,157 3 3 6 6 5 4 6 4 4 2 4 2 2 3 AsPh 157 3 SbPh„ (b) 157 Mn(CO) L'NCS 3 hL Ref. bipy 155,157 1,2-bis(diphenylphosphino)ethane 157 -45- B o t h i n d u c t i v e and s t e r i c e f f e c t s o f t h e group bonded t o n i t r o g e n a r e i n f l u e n t i a l i n determining the p o s i t i o n of e q u i l i b r i u m . A methyl-migration mechanism i s a g a i n supported.'''^ The by carbonamido c a r b o n y l complexes Mn(CO)^(CONHR)(NH R) a r e prepared 2 t h e a c t i o n o f a l a r g e excess o f an amine (MeNH , EtNH 2 on Mn(CO)^Br. 2 o r (CH^^CHNH,,) An X-ray a n a l y s i s has v e r i f i e d t h e s t r u c t u r e shown i n Fig.I.8. NH CH 2 3 Fig.I.8. The complexes decompose i n s o l u t i o n t o g i v e Mn (CO)^Q and t h e N - a l k y l f o r m a m i d e 2 + R e a c t i o n w i t h HC1 y i e l d s RNH Cl and [Mn(CO),-NH R]CI, i s o l a t e d as t h e PFg" 3 salt. 2 The c a r b o n y l a t e c a t i o n r e a c t s w i t h more amine t o form t h e carbonamido complex again: CH C1 2 + [ M n ( C O ) N H R l C l " + 2RNH5 2 2 » MnfCOV (CONHR)(NH R) + RN&j CI 2 - Strohmeier and h i s co-workers^*' '''"'^ have prepared s e v e r a l d i e n y l manganese d i c a r b o n y l jt-cyclopenta- d e r i v a t i v e s by u.v. i r r a d i a t i o n o f a s o l u t i o n o f -46- it-CpMn(CO) 3 and t h e l i g a n d . R e l a t i v e l y weak bases gave i s o l a b l e products, b u t s t r o n g e r bases e.g. Et^N gave u n s t a b l e d e r i v a t i v e s which c o u l d n o t be . . _ 146-151 isolated. The t h i o c y a n a t e manganese c a r b o n y l d e r i v a t i v e s a r e o f i n t e r e s t because of t h e ambident n a t u r e o f t h e l i g a n d . S o l i d Mn(CO),.(CNS) i t s e l f c o n t a i n s a Mn-S bond^*' ( i n c o n t r a s t t o t h e Gp.VI m e t a l c a r b o n y l d e r i v a t i v e s ^ ^ ) . s p e c t r a o f t h e compound i n s o l v e n t s such as CHCl^, 0^^012, I.R. CHC^ and e t h y l a c e t a t e a r e c o n s i s t e n t w i t h an e q u i l i b r i u m between Mn-S and Mn-N bonded isomers. I n CH^CN, however, t h e i . r . i n d i c a t e s t h a t t h e compound e x i s t s s o l e l y as t h e N-bonded isomer, b u t on e v a p o r a t i o n o f t h e s o l v e n t , t h e Sbonded isomer i s r e c o v e r e d . S u b s t i t u t i o n by N - l i g a n d s leads i n a l l cases t o cis-Mr^CO^I^NCS complexes where t h e t h i o c y a n a t e group i s bonded t o t h e m e t a l v i a t h e n i t r o g e n atom. Other l i g a n d s , such as PPh^, AsPh^ and SbPh^ g i v e S-bonded t e t r a c a r b o n y l d e r i v a t i v e s e.g. Mn(C0) (PPh )SCN, S-bonded 4 3 c i s - t r i c a r b o n y l d e r i v a t i v e s ( f o r AsPh^ and SbPh^) and N-bonded t r a n s t r i c a r b o n y l d e r i v a t i v e s e.g. trans-[Mn(C0).j(SbPh.j)2NCS] . Several o f these compounds can be prepared b o t h by d i r e c t r e a c t i o n o f Mn(C0),.(CNS) w i t h t h e l i g a n d , and by metatheses i n v o l v i n g t h e c o r r e s p o n d i n g complex and potassium t h i o c y a n a t e . I t i s thought c h l o r o - o r bromo t h a t t h e e x t e n t o f M-CO jT-bonding i n a t h i o c y a n a t e c a r b o n y l complex may p l a y an i m p o r t a n t r o l e i n s t a b i l i z i n g a g i v e n mode o f m e t a l - t h i o c y a n a t e attachment. When jr-bonding i s r e l a t i v e l y weak, as i n Mn(C0),.(CNS), t h e more p o l a r i s a b l e s u l p h u r end i s p r e f e r r e d by t h e m e t a l . The s u l p h u r bonding i n c r e a s e s n e g a t i v e charge on t h e -47- m e t a l and enhances M-CO ir-bonding. On s u b s t i t u t i o n by l i g a n d s w i t h l e s s rt- bonding a b i l i t y than t h e CO groups, e.g. amines, t h e n e g a t i v e charge on t h e metal increases, thus i n c r e a s i n g t h e M-CO jr-bonding, and t h e m e t a l p r e f e r s the n i t r o g e n r a t h e r than the sulphur atom. Thus t h e e x t e n t o f M-CO rt- bonding c o n t r o l s t h e p o l a r i s a b i l i t y o f the m e t a l , and a t some unknown, c r i t i c a l stage, changes t h e p r e f e r e n c e the t h i o c y a n a t e s t a b i l i z i n g Mn-S AsPh„ and SbPh. t o the other. o f t h e l a t t e r f o r one donor atom o f S t e r i c f a c t o r s may a l s o p l a y a r o l e i n l i n k a g e i n the c i s - t r i c a r b o n y l s c o n t a i n i n g the b u l k y ligands 157 Two compounds o f i n t e r e s t n o t i n c l u d e d i n t h e T a b l e s , have been prepared by r e a c t i o n o f NaMn(CO),. w i t h 2-chlorofi}ethyldimethylamine and w i t h 2o- c v,i h l o r o m e -u t h yil p y r-ai d m e : 36,105 0 0 I OC (i) NaMn(C0) + ClCH CH N(CH ) 5 2 2 3 THF CH Mn 2 OC CH 0 CH,r 3 \'CH. 3 0 IIC 0 OC (ii) THF NaMn(CO),. + N CH„C1 CH Mn OC c \ 6 5^ -48- The s t r u c t u r e s o f t h e complexes were deduced m a i n l y from i . r . e v i d e n c e , and are analogous t o t h e Mo compound mentioned e a r l i e r . P r e s u m a b l y the f i r s t s t e p i n the r e a c t i o n i s s i m p l e halogen d i s p l a c e m e n t t o g i v e e.g. (CH^ ^NCCl^^MnCCO),. which can then undergo i n t r a m o l e c u l a r rearrangement the n i t r o g e n l o n e p a i r a t t a c k i n g the m e t a l , and a c a r b o n y l group between the m e t a l and t h e a l k y l group, t o g i v e t h e c y c l i c with inserting acylheterocycle.'"^ T h i s i s a s i m i l a r pathway t o t h a t envisaged f o r the p r e p a r a t i o n o f Mn(CO) (COR)(NHR'R") c o m p o u n d s . 1 4 2 4 3b. Rhenium and ' 1 4 3 , 1 4 4 Technetium The few r e p o r t e d d e r i v a t i v e s o f rhenium c a r b o n y l , c o n t a i n i n g N - l i g a n d s , seem t o i n d i c a t e t h a t t h e Mn and Re c a r b o n y l systems behave f a i r l y similarly. There i s o n l y one r e p o r t e d d e r i v a t i v e o f t e c h n e t i u m c a r b o n y l c o n t a i n i n g a n i t r o g e n l i g a n d , presumably because o f the u n a v a i l a b i l i t y o f the c a r b o n y l . The f i r s t d e r i v a t i v e s o f rhenium c a r b o n y l i t s e l f were R e ( C O ) p y 3 Re(C0),jO-phen, which were r e p o r t e d i n 1941, and were t h o u g h t t o be 2 and 1 dimers. ^ 162 The carbomethoxycarbonyl compound was p r e p a r e d by the a c t i o n o f MeO on + [ R e ( C O ) ( o - p h e n ) ] , (see Table 1 . 3 ( D ) : [ R e ( C O ) ( o - p h e n ) ] Z n C l * ( C H ) C O + K OMe~ 4 + 4 + 2 2 2 3 2 M e 0 H > Re(CO) (o-phen)C0 CH 3 2 3 The a c t i o n o f HCl on t h i s complex r e v e r s e s t h e r e a c t i o n and t h e c a t i o n i s o b t a i n e d as + [Re(CO) o-phen] Cl*HCl. Mononuclear 4 and b i n u c l e a r rhenium c a r b o n y l h a l i d e s r e a c t r e a d i l y w i t h donors t o g i v e u s u a l l y , d i s u b s t i t u t e d rhenium t r i c a r b o n y l h a l i d e d e r i v a t i v e s . -49- The d i m e r i c h a l i d e s o f t e n r e a c t under m i l d e r c o n d i t i o n s than the monomers. For example, p y r i d i n e r e a c t s w i t h Re(CO)^I d u r i n g 5 hours r e f l u x t o g i v e 139 py Re(CO) I 2 , whereas t h e dimer [ R e ( C O ) ^ I ] 3 2 w i t h p y r i d i n e g i v e s t h e same 1 139 p r o d u c t a f t e r •§• hour. However, l i q u i d NH^ r e a c t s w i t h Re(CO),.Cl t o g i v e Re(CO)^(NH )Cl and [ R e ( C O ) ^ ( N H ) ^ ] C l , t h e l a t t e r b e i n g i s o l a t e d as t h e 158 3 3 tetraphenylborate s a l t . has been i d e n t i f i e d l i q u i d NH . No CO i s evolved d u r i n g t h e r e a c t i o n ; formamide i n t h e p r o d u c t s , so t h e d i s p l a c e d CO must r e a c t w i t h R e a c t i o n o f (o-phen) w i t h [ R e ( C 0 ) ^ ( N H ) C l ] d i s p l a c e s NH and 3 3 CO t o g i v e Re(C0) (o-phen)C1. 158 3 3 [ R e ( C 0 ) ^ ( N H ) ] C l r e a c t s w i t h excess p y r i d i n e 3 2 to g i v e R e ( C O ) p y C l . 3 2 I n d i r e c t s y n t h e t i c methods have a l s o been used. [ReCCOXjEPhgX] , 2 3 where E = S i , X C l o r E = Se, X = B r , r e a c t w i t h donors e.g. p y r r o l i d i n e t o g i v e Re(CO) (HNC^H ) X , (X = C l , B r ) compounds. 3 g 2 But [ R e ( C O ) S e P h I ] 3 2 2 reacts w i t h p y r r o l i d i n e t o g i v e t h e i o n i c complex [Re(CO)_(HNC.H_)„]I, i s o l a t e d as J H O J the t e t r a p h e n y l b o r a t e s a l t . ^ ^ K i n e t i c s t u d i e s o f t h e r e a c t i o n o f t h e t e t r a c a r b o n y l h a l i d e dimers o f rhenium w i t h t h e l i g a n d s p y r i d i n e , y - p i c o l i n and a - c h l o r o p y r i d i n e have been 164 reported. For t h e f i r s t two l i g a n d s , m o n o s u b s t i t u t e d complexes o f t h e type Re(CO)^LX (X = C l , B r , I ) were c h a r a c t e r i s e d . The r e a c t i o n s a r e f i r s t o r d e r i n b o t h m e t a l c a r b o n y l and l i g a n d , and f o r t h e same reagent t h e r a t e s decrease w i t h changes i n the halogen C l > Br y I . This can be e x p l a i n e d on the b a s i s o f d i f f e r e n t e l e c t r o n e g a t i v i t i e s o f t h e h a l i d e i o n s ; the more e l e c t r o n e g a t i v e h a l i d e i o n w i l l reduce e l e c t r o n d e n s i t y on the m e t a l , making -50- i t more s u s c e p t i b l e to nucleophilic attack. The mechanism o f the reaction c o u l d i n v o l v e e i t h e r a r a p i d p r e - e q u i l i b r i u m i n s o l u t i o n between a d i b r i d g e d form and a s i n g l e b r i d g e d species and vacant c o - o r d i n a t i o n s i t e , or the f o r m a t i o n nucleophilic attack at the of a 7 co-ordinate a c t i v a t e d 164 complex. M o n o s u b s t i t u t e d rhenium p e n t a c a r b o n y l h a l i d e s Re(C0) LX have been found 4 t o r e a c t w i t h a second l i g a n d L' a c c o r d i n g t o a f i r s t o r d e r r a t e e q u a t i o n , 165 1 the r a t e b e i n g independent o f L , even a t h i g h c o n c e n t r a t i o n s . The rate d e t e r m i n i n g s t e p appears t o be d i s s o c i a t i o n o f a CO group from the complex. The N-ligands are found t o l i g a n d , L, i n f l u e n c e s the r a t e o f r e a c t i o n , and have a l a b i l i z i n g e f f e c t on the CO i s contrary groups. t o what would be p r e d i c t e d As e x p l a i n e d i n S e c t i o n F, on jt-bonding arguments and e x p l a i n e d i n terms o f s t a b i l i z a t i o n o f the t r a n s i t i o n s t a t e . this is Rhenium pentacarbonyl h a l i d e s also react according to a 1st order r a t e equation, the r a t e - d e t e r m i n i n g a second CO 4a. step b e i n g d i s s o c i a t i o n o f a CO Iron 2 u s u a l l y causes d i s p r o p o r t i o n a t i o n unsubstituted J - p CO-OlaiLidLC [Fe (C0)g] 2 Replacement o f 163 group t o g i v e the d i s u b s t i t u t e d complex i s v e r y r a p i d . D i r e c t r e a c t i o n o f Fe(CO),., F e ( C 0 ) .,_ group. 2- g leading or F e . j ( C 0 ) UUL L L i e ctm-Ono v-au , or [FeCCO)^] 2-4 . De w i t h N-donor t o complex i r o n c a t i o n s c a r b o n y l f e r r a t e a n i o n s . The c a t i o n s _~^"H 1 i _ ».i j __, x. _ m. / *ir\ \ re 12 i r e ^ v w / ^ l ligands and u s u a l l y c o n t a i n 4- or 1 2r-n- / rtr\ \ 1 2— , Lr j , A few examples are g i v e n i n the e q u a t i o n s : 6- -51- T a b l e 1.3. Rhenium and Technetium c a r b o n y l complexes (i) Rhenium c a r b o n y l d e r i v a t i v e s Compound Ref. [Re(CO) py ] 3 2 2 [Re(C0) o-phen] 3 ? 160 ? 160 Re(C0) (o-phen)C0 CH 3 (ii) (a) 2 162 3 Carbonyl h a l i d e d e r i v a t i v e s Re(C0) LX ( b ) Re^CO^L^X 4 X L Ref. X 1/ Ref. Cl NH 158 Cl py 139,158,160,161,163 Cl py 164 Br py 160,163 Br py 164 I py 139,159,160,165 I py 164 Cl (H NC H ) Cl y-pic 164 Cl (HNC^Hg) 161 Br y-pic 164 Br HNC^Hg 161 I y-pic 164 Br y-pic 165 3 ( c ) Re(C0)_L"X 2 6 158,161 5 ( d ) Ionic Derivatives Ref Ref. Compound o-phen 158 [Re(CO) (NH ) ]Cl Br o-phen 160 [Re(CO) (NH ) ]BPh I o-phen 160 [Re(CO) (o-phen)] Zn Cl Cl bipy 163 [Re(C0) (o-phen)]Cl•HCl 162 Br bipy 163 [Re(CO) (HNC H ) ]I 161 I bipy 139 [Re(C0) (HNC H ) ]BPh X Cl 4 3 4 158 2 3 2 4 158 4 2 2 4 3 3 4 4 g g 3 3 4 6 136 161 -52- (iii) (iv) Mixed c a r b o n y l h a l i d e derivatives Compound Ref. ReCcoXjCpphjXpyX:! 165 Technetium Compound Ref. Tc(CO) (HNC Hg) Cl 3 4 2 161 -53- gas.NH„ Fe(CO),. i n p y r i d i n e -» [ F e ( N H ) ] [ F e ( C O ) g ] 3 fi 2 liq.NH, Fe (CO) 3 -» [ F e ( N H ) ] [ F e ( C O ) ] 1 2 3 6 3 1 1 1 [Fe(NH ) HFe (CO) ] + [Fe(NH ) ][Fe (CO) ] 3 _ , \ Fe (CO) 3 6 2 g & 4 1 3 ethylenediamine^ „ , ,,_ /„_\ , . * > [ F e ( e n ) ] [ F e ( C O ) ] + CO 40 en r 1 2 3 x 3 3 1;L 90^ 4 [Fe(en) ][Fe(C0) ] < 6 e n 4 [ F e ( e n ) ] [ F e ( C 0 ) g ] + CO p 3 2 145 + CO Me Fe(C0) 5 + 2,4-lutidine > [Fe(N^ ^-Me) ] [Fe (C0) ] 4 4 1 6 7 1 3 O f t e n t h e p r i m a r y o r secondary base r e a c t s w i t h e v o l u t i o n o f CO e.g. i n t h e 167 system F e ( C O ) / p i p e r i d i n e , [Fe(C H N-CHO) ] [ F e ( C 0 ) 5 5 1() 6 4 1 ; } ] i s the product. I n some cases, i n t e n s e l y c o l o u r e d adducts o f an amine w i t h Fe(CO),. have been i s o l a t e d : 65° Fe(CO),. or F e ( C+O )o-phen 3 1 2 » Fe(C0 )j^80° ^ 'o-phen i n soln. 166 h i g h temp. py s o l n . [Fe(o-phen) ][Fe (C0) ] 3 4 1 3 [Fe(o-phen) ][Fe (C0) ] 3 2 8 • 54- Fe(CO) + p i p e r i d i n e • 5 > Fe(CO),.'3piperidine I [Fe(piperidine) ] [Fe (CO) 6 Fe(CO) + p y r r o l i d i n e 4 1;} ] 167 » Fe(CO) * 2 p y r r o l i d i n e I [ F e ( p y r r o l i d i n e ) ] [Fe^CCO)^] 167 6 80^ Fe(CO),. + p y r i d i n e - a l d e h y d e - ( 2 ) - a n i l -> [Fe(CO),] 5 2 J C H 6 6 168 I n d i r e c t s y n t h e t i c methods must be employed t o prepare i r o n c a r b o n y l N9 donor d e r i v a t i v e s . 2 Fe(CO) -/N0 -, 4 1 6 9 2 7 2 have s t u d i e d t h e systems 1 7 2 and F e C C O ^ V N ^ O S C ^ . H i e b e r and B e u t n e r ^ " ^ ' 1 7 2 2 Fe(CO) -/NH OH 4 2 1 6 9 ' - 170 > 1 7 1 These systems a r e q u i t e complex, and a v a r i e t y o f p r o d u c t s can be o b t a i n e d depending upon t h e exact c o n d i t i o n s . a small amount o f a complex f o r m u l a t e d However, under c e r t a i n m i l d as [Fe(C0).jNH] aqueous a l k a l i n e s o l u t i o n s as a red-orange s o l i d . 2 conditions p r e c i p i t a t e s from 7 [FeCCO^NH^] * ^ has been p r e p a r e d by t h e slow a d d i t i o n o f an a l k a l i m e t a l s a l t o f hydroxylamine-Osulphonic a c i d t o an aqueous a l k a l i n e s o l u t i o n o f Fe(CO),. ( e x i s t s as H F e ( C 0 ) ~ ) a t 0°C. 5 The y e l l o w c r y s t a l s , o f e m p i r i c a l f o r m u l a [FeCCO^NH^ 7 separate i m m e d i a t e l y and a r e s t a b l e o n l y below 0°C.^"''" -55- The complex [ F e ( C O ) N H ] 3 2 has been r e - i n v e s t i g a t e d r e c e n t l y and i s now thought t o be a b r i d g e d amino-complex r a t h e r than a b r i d g e d imino-complex, 24a on t h e b a s i s o f i . r . , n.m.r. and e s p e c i a l l y mass s p e c t r a l evidence. 24b T h i s s t r u c t u r e has r e c e n t l y been confirmed by X-ray c r y s t a l l o g r a p h i c s t u d i e s . A new p r e p a r a t i v e method i n v o l v e s i r r a d i a t i n g a s o l u t i o n o f Fe(CO),. i n e aqueous KOH t o which NaNC^ has been added. ^ 2^3 * s r P °duced, t o g e t h e r w i t h 24 a 9*2% o f t h e amine. R e a c t i o n o f t r i e t h y l p h o s p h i n e r e p l a c e s one CO group, w i t h o u t d i s r u p t i n g t h e -NH b r i d g e s , t o g i v e [ ( C O ) F e ( N H > F e ( C O ) ( P E t ) ] . 2 The 3 s y m m e t r i c a l l y d i s u b s t i t u t e d PPh 3 2 2 2 3 complex, [ ( P P h ) ( C O ) F e ( N H ) ] , i s 3 2 2 2 o x i d i s e d by i o d i n e t o g i v e v i o l e t c r y s t a l s o f t h e s a l t [(PPh )(CO) Fe(NH )] 3 2 2 2 + 2 2l". 2 4 a 173 Compounds o f t h e type F e ( C O ) L X 2 2 (L 2 = py , bipy; X = I , 2 2 have been prepared, as shown i n t h e e q u a t i o n s : C F F e ( C O ) I + excess py ' ¥ R , T 3 7 C H -—> fi C F Fe(CO) 3 ? (C F ) Fe(CO) 3 7 2 3 + bipy 4 7 4 6 90° + excess py = 4 (C F JFe(CO) Heating (C^^Tei^^py)^ 4 (C F )Fe(CO) (bipy)l 3 2 » (C F ) Fe(C0) py 3 + b i p y ^ - Z ^ 7 7 2 2 2 (C F ) Fe(CO) bi y 3 7 2 2 P the complex ( C F ) F e ( C O ) ( p y ) I causes decomposition t o 3 [Fe(py) ] 6 2 + 2r. 1 7 3 7 2 2 C^Fy) -56- n-CpFe(CO) Br r e a c t s w i t h A l B r 2 conditions to give 3 i n l i q u i d S0 2 under r i g o r o u s l y dry + O-CpFe(C0) -Br-(C0) Fejt-Cp] , i s o l a t e d as the PF 2 2 & 174 salt. R e a c t i o n s o f t h i s s a l t w i t h N - l i g a n d s , L g i v e s the complexes 174 [n-CpFe(CO) L]PFg, where L = p y r i d i n e , b e n z o n i t r i l e and 2 aniline , which cannot be prepared by d i r e c t r e a c t i o n o f L w i t h [jt-CpFe(CO) Br] . 2 jt-bonded p y r r o l y l d e r i v a t i v e s o f manganese have been prepared by a c t i o n o f p y r r o l e i t s e l f on Mn (CO)^Q 175,176 2 ^ r e a c t i o n of the the potassium s a l t o f p y r r o l e w i t h M n ( C O ) , . B r . T h e second method was extended '2 t o jt-CpFe(CO)_I, w h i c h r e a c t s w i t h p y r r o l y l p o t a s s i u m t o g i v e a z a f e r r o c e n e ( i t - C ^ H ^ F e j t - C ^ H ^ N ) . o - b o n d e d i n t e r m e d i a t e s may be p o s t u l a t e d i n each case, 23 and by the d e r i v a t i v e s i n Fig.I.'9 have s i n c e been i s o l a t e d f o r the i r o n system the r e a c t i o n o f mild rt-CpFe(CO) I 2 w i t h the a p p r o p r i a t e potassium s a l t under conditions. OC R = H, Fe CO OC—— Fe (pyrrolyl) indole R = COCH (2-acetylpyrrol-l-yl) 3 CO OC Fe CO carbazole Also 1,2,3,4,-tetrahydro d e r i v a t i v e Fig.I.9. -57- Heating the cr-pyrrolyl and indole compounds causes l o s s of CO and formation of the corresponding jt-bonded complexes, though the ir-indoles a r e unstable 23 and have not been f u l l y c h a r a c t e r i s e d . King and Bisnette''"^"' have prepared an a c y l h e t e r o c y c l i c compound of [ n - C p F e C C O ^ ^ j analogous to the manganese carbonyl 105and c y c l o p e n t a d i e n y l molybdenum carbonyl d e r i v a t i v e s described e a r l i e r Reaction of NaFe(CO) ir-Cp and ClCH CH NMe 2 2 only as a minor 2 2 gave the c y c l i c a c y l d e r i v a t i v e product. ^CH -N' CH„ 0 c 3 •Fe< (Fig.I.10a) ^_ J F CH 3 c _ i _ H — C H — I -We e < C c 0 2 2 4H„ C H 3 C1'H 0 2 g (b) (a) Fig.I.10. The major product was an i o n i c d e r i v a t i v e , given the formulation shown i n Fig.I.lOb. However, r e a c t i o n of NaFe(CO) jt-Cp with 2 - c h l o r o e t h y l p i p e r i d i n e , 2 and 2-chloromethylpyridine gave C,.H NCH CH Fe(CO) Jt-Cp and 10 2 2 2 NC^H^CH Fe(CO) Jt-Cp, r e s p e c t i v e l y , which c o n t a i n only o-C-Fe bonds, i n c o n t r a s t 2 2 to the jt-CpMo and Mn d e r i v a t i v e s . ^ ^ The thiocyanate i r o n carbonyl d e r i v a t i v e [Fe(C0)^NCS] ~ has been i s o l a t e d as i t s (Ph.jP) N 2 + salt.''"'^ The thiocyanate group i s nitrogen bonded and no -58- i s o m e r i s a t i o n was observed. Both the S-bonded and N-bonded isomers of jt-CpFe(CO)_(CNS) were prepared by the a c t i o n of HPF, and KSCN on z o 118 [jr-CpFeCCO^] ^- N o r e a c t i o n occurred with the h a l i d e s rt-CpFeCCO^X. The S-bonded isomer, when warmed gently e i t h e r i n the s o l i d s t a t e or i n suspension i n e.g. Nujol, isomerises to the N-bonded isomer, but i n s o l u t i o n , . „ 118 i t decomposes. Recently, there has been much i n t e r e s t i n r e a c t i o n s between i r o n carbonylsand compounds containing nitrogen atoms i n unsaturated systems. Many of the products have unusual s t r u c t u r e s , which have been e l u c i d a t e d by X-ray methods. Manuel^isolated a complex from the r e a c t i o n between phenyl isocyanate and Fe^CCO).^ which he formulated as [Fe(CO) CgH^NCO]^. 3 The same complex was prepared by the treatment of Fe^CCO).^ with azido benzene CgH^N^, and the analogous b u t y l i s o c y a n a t e complex was a l s o prepared.^'' The s t r u c t u r e of the complex was thought to be: R \ / 0 <p Fe—-CO / N o \ <r 11 \ / 0C - — F e x 177 \ / o r P h N F ~ / e c \ 0 \ F / e / N P h \ R Pauson e t a l have r e c e n t l y re-examined the Fe^(C0) /PhNC0 r e a c t i o n , and have 1? a l s o made the e t h y l i s o c y a n a t e d e r i v a t i v e . They formulate the complexes as (RN)2Fe2(CO)^ from a n a l y t i c a l and mass s p e c t r a l data. 178 shows that the i r o n atoms are e q u i v a l e n t , Mossbauer spectroscopy and an X-ray study has -59- confirmed the s t r u c t u r e I.11a for the complex, /j-diphenylureylene-bis( t r i c a r b o n y l i r o n ) . -1-79,180 c o m p two nitrogens and thus resembles ^ e x c o n t ins a two Fe(CO)^ u n i t s bridged by other complexes mentioned below. I r r a d i a t i o n of diaryldiazomethanes with Fe(CO),. gives products containing nitrogen and not products derived from the d i a r y l c a r b e n e s , expected 181 as intermediates. The same products are obtained by a thermal r e a c t i o n 181 using Fe^(C0)^2* Both diphenyl- and di-p-tolyl-diazo-methanes gave black 1 1 complexes (A and A , r e s p e c t i v e l y ) and orange complexes (B and B , 181 respectively). Mass and n.m.r. s p e c t r a of B and B' showed these complexes to have the formulation [I^CH^FeCCO)^] ^ a n < * a n X-ray s t r u c t u r a l examination 1 of B'showed the complex to be bis-(/i-4 ,4 -dimethylbenzophenonehydrazonatot r i c a r b o n y l i r o n ) , with the s t r u c t u r e shown i n F i g . I . l i b . Again, two Fe(CO)^ u n i t s are bridged by two N atoms and, as observed i n r e l a t e d compounds, the 3 Fe-Fedistance i s short. The N atoms are sp h y b r i d i s e d , the Fe-N bonds being e s s e n t i a l l y s i n g l e . The c r y s t a l s t r u c t u r e of one of the b l a c k , i n v o l a t i l e complexes, A, obtained i n greater y i e l d i n the r e a c t i o n , has a l s o 182 been determined and i s shown i n F i g . I . 1 1 c . The complex, (Ph2C=N-N)2tFe(CO)2]^ i s the f i r s t compound with a nitrogen atom simultaneously and e q u a l l y bridging three metal atoms, and can be regarded as a bridging hydrazone complex i n which both terminal hydrogens have been 182 replaced. replaced. I n the orange complex, only 1 terminal hydrogen had been Two Fe-Fe d i s t a n c e s are much shorter than the t h i r d and bond 182 lengths i n d i c a t e s i n g l e N-N and double C=N bonds. Fig.I.11. R N N (CO)„Fe Ph Fe(CO) 3 178,179,180,186 H-Diphenylureylene-bis(tricarbonyliron) „ 186,186a R • Me ' M R C l 6 V R W N H R W H N (C0) Fe Fe(CO), 3 R = H (B) R = p-Me 181 (B') 181 bis{/i-4,4' -dimethylbenzophenone hydrazonatotricarbonyliron) (b) Fig.I.11. Ph N Ph N Fe(CO) (COLFe Fe(CO) (CO)„Fe CH N N Ph Fe (CO) Ph 182 (c) R p-MeC,H 183 (d) (CO) di-/i(4,4' -dime thy lbenzophenon 1 iminato)bi8(tricaronyliron) ^^ ^-N.N'dehydrosemidinato .. . . . , . ,.183,184 bis(tricarbonyliron) ' (e) (f) Fig.I.ll. R. (CO) Fe Fe(CO), 3 R = Ph (CO)„Fe*- 186 Fe(CO) R = Ph bis4/i-phenylamidotrlcarbonyl, .186 iron) (g) „ 186 R = Me n (h) (CO) Fe v ,.N—N N* (CO) Fe/ :Fe(CO), 3 A > Me—N \ / Fe' (COL 7 „N=N, N—Me N—Me « » Me k / F (CO), Me (i) (ii) 186,186b 186 (i) (j) CH„ x,CH—CH -/ R—CH \ ^ ^ / ^ N — R ' Fe (co) (i) (ii) k Fe' (CO), 3 R = R' = Ph 2 5 , 1 8 7 (i) R = CH ; R' = n-C H 3 4 (k) \N—R 25 9 (ii) R = C H g 25 5 R = n-C^Hg (1) 25 Fig.I.11. N=CHC,H 'I 6 5 C CC77 Fe I Fe (co) (co) 3 Fe. Fe (co) (co) 3 3 3 25 (m) (i) (ii). R - R' = Ph R = Ph; R (n) OC Fe HCH 189 (o) CO 1 188 - Me 188 Fig.I.11. <3> w NH CF N CF H N CO Fe Fe (CO)„ (CO) 190 (p) 191 (q) (CO) / (CO) Fe \H CO or (CO).Fe l\ Fe CO /\ (CO),Fe NMe ii) 192 (r) Ar X Fe(CO) CO NMe (i) (CO)„Fe / CO CO 0 = N H Oc N \ / N=0 'Fe' (CO) 193,194 194 (s) (t) Ar CO -60- Reaction of S c h i f f bases with Fe2(C0)g produces Fe2(C0)gL complexes. The complex formed with the base C H ^ — ^ ^—N=CHPh (prepared from p- t o l u i d i n e and berealdehyde) has been shown by X-ray techniques to have the s t r u c t u r e I . l i d . by a nitrogen atom. 183 crystallographic Again two Fe(CO)^ u n i t s are bridged One Fe atom i s p a r t of a 5-membered r i n g which i n c l u d e s the N-atom and one s i d e of the benzene r i n g . The other Fe atom i s considered to it-bond to one of the o l e f i n i c bonds i n the benzene r i n g . Again, a short Fe-Fe d i s t a n c e i s observed and the nitrogen i s considered to 183 be a 3 - e l e c t r o n donor. The complex formed from the r e a c t i o n of Fe2(C0)g with azobenzene (Ph-N=N-Ph) has a d i f f e r e n t s t r u c t u r e , shown i n F i g . I . l i e , i n which both nitrogens bridge the two Fe(C0).j u n i t s , which are arranged 183 184 i n an e c l i p s e d c o n f i g u r a t i o n . ' The Fe-Fe d i s t a n c e i s very short. Thus formation of the complex i n v o l v e s rupture of the -N=Narrangement to form the o-semidine skeleton. bond with r e - A 36 e l e c t r o n s t r u c t u r e can be r a t i o n a l i s e d on the supposition that each nitrogen a c t s as a three 183 e l e c t r o n donor. 184 ' The benzene r i n g s are not involved i n bonding to the metal atoms i n t h i s complex. 1 I n the r e a c t i o n of 4,4 -dimethylbenzophenoneazine, (p-Me-C H ) C=N-N=C(p-MeC H^) , with F e ( C 0 > , rupture of the =N-N= bond occurs 6 4 2 6 2 5 to give the complex [ (p-MeCgH^ )£N-Fe(C0).j] ^ > whose s t r u c t u r e i s shown i n F i g . 185 I.llf. S p l i t t i n g of the N-N bond a l s o occurs i n r e a c t i o n of azo-benzene with Fe2(C0)g, but, whereas i n that case rearrangement to the o-semidine skeleton occurs, here the moieties are trapped i n the complex s e p a r a t e l y . -61- Again a short Fe-Fe d i s t a n c e i s observed, as i n a l l nitrogen bridged i r o n carbonyl d e r i v a t i v e s . The r e l a t i v e l y short Fe-N d i s t a n c e allows the 2 assumption of sp h y b r i d i s e d n i t r o g e n atoms, each of which a c t s as a 3 e l e c t r o n donor. Dekker and Knox have studied the decomposition of azido-benzene, 186 c a t a l y s e d by Fe2(C0)g. Thermal decompositions of many azido-compounds i n i n e r t media are very slow processes even a t high temperatures, but the c a t a l y s e d r e a c t i o n s occur r a p i d l y under mild conditions. Azidobenzene Fe2(C0)g r e a c t r a p i d l y at room temperature i n benzene s o l u t i o n . azobenzene i s produced, and Very l i t t l e the p r i n c i p l e product being (PhN)2Fe2(CO)g, which i s assigned s t r u c t u r e I . l l g , on the b a s i s of mass, n.m.r., i . r . and Mossbauer spectroscopy. Spontaneous decomposition of I . l l g i n s o l u t i o n g i v e s I.11a, fi-diphenylureylene-bis(tricarbonyliron). Manuel^"^ reported the compound [Fe(CO) CgH^NCO]2 formed from azidobenzene and F e ^ C C O ^ j but h i s product 178 179 3 was l a t e r shown to be I.11a, (R = Ph). ' Also formed during the c a t a l y s e d decomposition of azidobenzene i s the complex (PhNH)2Fe2(CO)g, assigned the s t r u c t u r e I . l l h and obtained only i n low y i e l d i n one of i t s 186 expected isomeric forms - probably the "semi-trans" c o n f i g u r a t i o n shown. Addition of Fe^CcO).^ to a benzene s o l u t i o n of azidobenzene causes very r a p i d decomposition, with the formation of s i g n i f i c a n t amounts of azobenzen'e and 186 azoxybenzene. An extensive range of complexes i s obtained from methyl- azide and Fe2(C0)^; (CH.jN)2Fe.j(C0)g i s assigned s t r u c t u r e I . H i by analogy 186 with S2Fe.j(C0)g and other minor products include isomeric forms of /j-methyl-amido complex I . l l h , (R = Me). The major product of the r e a c t i o n i s -62- 1.11a (R = Me), b e t t e r obtained from methylisocyanate and Fe2(C0)g 186 , and the s t r u c t u r e of t h i s complex has r e c e n t l y been confirmed by X-ray 186a crystallographic studies. A compound Me2N^Fe(C0)^ was a l s o obtained, 186 which i s assigned s t r u c t u r e I . l l j on i . r . , n.m.r. and mass s p e c t r a l data. The t r i n u c l e a r species I . H i i s a l s o obtained from the v i o l e n t r e a c t i o n of 1 86 CH N0 with F e ( C O ) 3 2 2 products. a carbonyl. g , I.11a (R = Me) and I . l l h (R = Me) being minor The r e a c t i o n i s notable for the reduction of a n i t r o compound by The s t r u c t u r e of the t r i n u c l e a r s p e c i e s , I . H i , has been 186b confirmed by X-ray c r y s t a l l o g r a p h i c s t u d i e s . Each of the above r e a c t i o n s involving azido-, isocyanate, and n i t r o - compounds i s i n d i c a t i v e of a c a t a l y t i c generation of n i t r e n e s and the nature of the products strongly suggests t r i p l e t n i t r e n e . The scheme below can account for the formation of the products. RNCO RN N RNO CO [M(CO) R— N solvent RNCO II R-N-C-N-R RN RNH R-N-N=N-N-R I.llh I.llg and I . H i 1 I.Hi M(CO) + C O J -63- Studies of azo-methine analogues of 1,3-dienes i n t h e i r r e a c t i o n s with 25 i r o n carbonyls have been undertaken the metal and the l i g a n d . to i n v e s t i g a t e the bonding between Three unsaturated systems were studied: -CH=CH-CH=N- (e.g. cinnamaldehydeanil and crotonaldehyde-n-butylamine), -N=CR-CR=N- (e.g. d i a c e t y l a n i l and d i a c e t y l - n - b u t y l i m i n e ) , and -CH=N-N=CH25 (e.g. benzalazine and a c e t a l a z i n e ) . with cinnamaldehydeanil structure I . l l k ( i ) . Fe2(C0)g and F e ^ C O ) ^ both reacted to give (PhCH=CH-CH=NPh)Fe(CO) which has the 3 Fe2(C0)g with crotonaldehyde-n-butylimine gave the analogous compound I . l l k ( i i ) , which i s an a i r - s e n s i t i v e l i q u i d . Reaction with PPh^ displacedcne CO group i n I . l l k ( i i ) , but d i s p l a c e d the ligand i n I.llk(ii). aniline. to I . l l k ( i ) can a l s o be prepared from(cinnamaldehyde)Fe(CO)^ and D i a c e t y l a n i l and d i a c e t y l - n - b u t y l i m i n e both reacted with Fe2(C0)g give the compounds I . l l l ( i ) and I . l l l ( i i ) , Fe (C0) 2 respectively. Benzalazine and gave (PhCH=N-N=CHPh)Fe (C0) , I.11m, but a c e t a l a z i n e gave a very g 2 6 unstable product. The s t r u c t u r e shown for I.11m i s very t e n t a t i v e . I.R. 25 and n.m.r. evidence i s the b a s i s for the s t r u c t u r a l assignments , but an 187 X-ray s t r u c t u r a l study on I . l l k ( i ) , has confirmed that the bonding i s s i m i l a r to that found i n conjugated d i - o l e f i n complexes, and that the 187 nitrogen lone p a i r does not play a s i g n i f i c a n t part i n the bonding. . 188 A r e l a t e d type of complex contains the ^C=C=N- skeleton. N-phenyldiphenylketenimine and N-methyldiphenylketenimine r e a c t with Fe (C0) 3 t o 1 2 produce the compounds [(Ph2C=C=N-R)Fe (C0) ], where R = Ph and R = Me, r e s p e c t i v e l y . 2 6 Triphenylphosphine d i s p l a c e s one CO group from each -64- complex, r a t h e r than the l i g a n d . The s t r u c t u r e s of the complexes, shown i n I . l l n ( i ) and ( i i ) , are based on i . r . and n.m.r. evidence, and assume p a r t i c i p a t i o n of both C=C and C=N double bonds. Reaction between Na[rt-CpFe(CO) ] and chloromethylisocyanate g i v e s a 2 mixture of products, from which a small amount of m a t e r i a l , corresponding to 189 (jt-Cp) Fe (CO)^(CH NCO), may 3 3 2 be i s o l a t e d . 189 On the b a s i s of i . r . n.m.r. s p e c t r a data, King and B i s n e t t e I.llo. and have suggested the novel s t r u c t u r e I n the i n d i c a t e d d i p o l a r resonance s t r u c t u r e of the NCO group, the carbon-nitrogen t r i p l e bond i s i s o e l e c t r o n i c with the carbon-carbon t r i p l e 189 bond i n a c e t y l e n e s , which i s known to bridge i n t h i s manner. Trifluorophosphine i s analogous to CO i n i t s rt-acceptor p r o p e r t i e s and 190 r e c e n t l y t r i f l u o r o a c e t o n i t r i l e has been studied f o r the same reason. CF CN and CH Fe(CO) rt-Cp r e a c t to give CF C(NH)Fe(CO)(NCCF )it-Cp. 3 3 2 3 3 The 19 " e x t r a " proton on the nitrogen i s observed i n the n.m.r. F n.m.r. and mass s p e c t r a l evidence i n d i c a t e the s t r u c t u r e I . l i p and the high carbonyl absorption i n the i . r . spectrum , „ 190 of the CF C=N group. n i n d i c a t e s the strong jr-acceptor p r o p e r t i e s >T 3 A compound Fe„(C0),C-H,SNH / o b i\ N >>H» Fe(C0) 3 191 , i s o l a t e d from the r e a c t i o n of o-amino- with F e ( C 0 ) , i s supposed to contain two 3 1 2 u n i t s bridged by both a sulphur and a nitrogen atom ( s t r u c t u r e 191 1.11^).' Reaction between F e C O ) 3 1 2 -0 and C ^ C ^ i n dimethyl formamide 192 leads to a compound H F e ^ C O ^ N l f e ^ incorporated into the F e ( C 0 ) 3 1 2 i n which H and NMe have been 2 s t r u c t u r e with l o s s of one CO group. The -65- s t r u c t u r e of the complex i s thought to be e i t h e r I . l l r ( i ) or I . l l r ( i i ) . 192 Studies of o r g a n o n i t r i l e / i r o n carbonyl systems have shown that heating Fe (CO) 0 Q and PhNO_ g i v e s the corresponding organonitroso ironcarbonyl d e r i v a t i v e [ P h N O F e C C O ) ^ ] ^ . I r r a d i a t i o n with a ^^Co source, of an acetone s o l u t i o n of Fe(CO),. and PhNC^ g i v e s the same product, whereas s i m i l a r treatment of Fe(CO)^ with PhNO i t s e l f g i v e s no organo-ironcarbonyl derivatives. The i . r . of the dimeric compound shows no bridging CO groups, and the s t r u c t u r e I . l i s i s proposed. via The r e a c t i o n i s thought to proceed i n i t i a l formation of a nitrobenzene i r o n t e t r a c a r b o n y l complex, PhlTC^FeCCO)^, which i s reduced by CO to the dimeric nitroso-complex. s i m i l a r r e a c t i o n path was proposed A for the formation of [Fe(CO).jNO] ~ from - 172 [FeCCO^ClK^)] . Studies on the e f f e c t of s u b s t i t u e n t s i n the benzene r i n g of nitrobenzene have shown that e l e c t r o n donating groups i n o- or pp o s i t i o n s encourage the formation of monomeric nitroso-compounds, 194 (X-C,H.NO)Fe(CO)., with the s t r u c t u r e I . l i t . Reaction of the dimeric compound with a n i l i n e i n methanol/glacial a c e t i c a c i d g i v e s azobenzene, p193 194 t o l u i d i n e g i v e s 4-methylazobenzene. ' T h i s type of complex may serve as a s t a b l e source of n i t r o s o compounds. Triphenylphosphine d i s p l a c e s a CO group from the dimer, g i v i n g monomeric PhN0Fe(C0)2PPh.j. Although i t has long been known that amines u s u a l l y cause d i s p r o p o r t 195-199 ionation of i r o n carbonyls, recent s t u d i e s of these, and r e l a t e d systems have'provided some i n s i g h t i n t o the mechanisms of these r e a c t i o n s . 1 2 , 2 , 2 " - T r i p y r i d y l ( t r i p y ) d i s p l a c e s the c y c l o p e n t a d i e n y l group from -66- t [ jt-CpFeCCO^] 2 secondary o give FeCCO^tripy. amines on a t t a c k by The a c t i o n of p r i m a r y [ i r - C p F e C C O ^ L ] * ( L = CO, of t h e t y p e jt-CpFe(CO)L(CONHR). initial 195 The PPh^) g i v e s carboxamido c o m p l e x e s r e a c t i o n i s thought to p r o c e e d the n i t r o g e n l o n e p a i r on g r o u p s , f o l l o w e d by p r o t o n and t h e C atom of one via of the carbonyl loss.''"^ 19 7—198 E d g e l l and h i s c o - w o r k e r s h a v e made a c a r e f u l s t u d y of t h e 197 s t a g e s of r e a c t i o n between Fe(CO),. and n - b u t y l a m i n e initial 197 , piperidine and , ... 198 . . 197,198 198 . . 197,198 pyrrolidine , using l . r . , n.m.r. and c o n d u c t i v i t y techniques. During t h e r e a c t i o n 3 c a r b o n y l s p e c i e s were observed, A, I n t h e c a s e of p i p e r i d i n e , A was anion HFe(CO)^ i s o l a t e d and The - and C was formulated C^H^QNHFe(CO)^. B and a s Fe(CO)^(NHC^H.|^).j, B was F o r p y r r o l i d i n e , compound A the was shown to be Fe(C0)g(C^HgN)2, p r e v i o u s l y p r e p a r e d by Hieber.''"^^ compound i s i o n i c i n n a t u r e and t h e l i g a n d c o n t a i n s an amide l i n k a g e 198 ^NCO-. HFe(CO)^ Thus t h e amine h a s a t t a c k e d the c a r b o n i s formed from w a t e r atom of a c a r b o n y l group. i n t h e amine - more r i g o r o u s d r y i n g resulted 197 i n no H F e ( C O ) ^ b e i n g formed. The mechanism f o r the room t e m p e r a t u r e authors p o s t u l a t e the f o l l o w i n g r e a c t i o n o f amines w i t h F e ( C O ) ^ : C. -67- H 0 II R n—C-Fe(CO) Fe(CO),. + R„NH (A) + R„NH trace of H-0 Fe(CO) R_N + R~NH (B) R_NH„[HFe(CO).] R„NH R_NH R.N R_NHFe(CO), + R„N-CHO R„NHFe(CO), + CO (carbamate) (C) (C) + R-NH 199 B u l k i n and Lynch have attempted to confirm the i d e n t i t y of species C, by r e a c t i n g ( d e f i n e ) F e ( C O ) ^ complexes with p y r r o l i d i n e . An intermediate was formed immediately, which was slowly converted into a species with an 198 i . r . spectrum i d e n t i c a l to E d g e l l ' s compound C. reacted immediately to give (olefine)Fe(CO)^ + Fe (CO) 2 g + f^NH 1 11 [^y * Fe(CO) 5 + T the same compound: y intermediate » ^\Fe(CO) _ Fe2(C0)g and p y r r o l i d i n e + 4 • ^^^Fe(CO)^ + define [^^NFe(CO) 5 0 \H > [ NCFe(CO) 0 /!( ) T NFe(CO) + 4 T NCH A l l attempts to i s o l a t e the products, however, l e d to decomposition. 199 -68- 4b. Ruthenium and Osmium The simple carbonyls of ruthenium and osmium have not been reported to combine with nitrogen l i g a n d s , but s e v e r a l organonitrogen d e r i v a t i v e s are known. [RuCCO^^l carbonyl h a l i d e i s a polymeric m a t e r i a l , but i t w i l l r e a c t with l i q u i d ammonia and other n i t r o g e n - l i g a n d s a t higher temperatures 1 to give the complexes R u C C O ^ ^ ^ ' where L = NH^, p y r i d i n e , a n i l i n e , pt o l u i d i n e , a c e t o n i t r i l e , and where in addition condensing = bipyridyl.^^ Hieber and Hensinger^''', to the py, bipy and NH^ d e r i v a t i v e s , prepared R u ^ O ^ ^ e n by ethylenediamine onto [ R u C C O ^ l ^ ] - The NH^ and ethylenediamine n compounds are unstable i n s o l u t i o n , above -30°C and 20°C r e s p e c t i v e l y . The analogous osmium compound OsCCO^l^Py^ has been prepared from [05(00)2X2] 2 andA excess p y r -Ai d i n e . 202 The ruthenium carbonyl c h l o r i d e dimer [RuCCO^Clg] 2 w a s obtained by the a c t i o n of CO ( a t 10 atmospheres p r e s s u r e ) on a methanolic s o l u t i o n of 203 RuCl '3H 0. 3 The carbonyl was i s o l a t e d i n i t i a l l y as the THF 2 adduct ( C , H 0 ) R u ( C 0 ) C l and r e a c t i o n of t h i s with py or bipy i n THF gives 4 o 3 2. 203 204 p y R u ( C 0 ) C l 2 and bipy R u ( C O ) C l r e s p e c t i v e l y . Wilkinson and co-workers Q 2 o o 2 2 2 obtained a deep red s o l u t i o n of [Ru(C0).jCl] 2 by the a c t i o n of CO on an ethanolic s o l u t i o n of RuCl^-nl^O. They did not i s o l a t e the complex, however, but added an e t h a n o l i c s o l u t i o n of the appropriate amine to give the complexes R u ( C 0 ) C l L o o o where L = C,H NH , C,H CH_NH and L 0 R 0 0 = bipy, o-phen. R u C l ^ n l ^ O and L i B r i n ethanol with CO gave a green s o l u t i o n , and addition of amines to t h i s gave the corresponding bromine complexes R u f a O ^ B ^ I ^ , -69- L = CgH^Nl^j CgHj-CI^Nh^ and with anhydrous S n C l = o-phen. or SnBr 2 R e f l u x i n g the red or green s o l u t i o n s r e s p e c t i v e l y , and subsequent a d d i t i o n of 2 p y r i d i n e gave [Ru(py) (CO) (SnX,j ) ^ \ X = C l , Br. 2 l^X*—NH 2 i n , 2 Addition of o-amino-thiophenol ethanol to the red s o l u t i o n gave [ R u ( C O ) ( C H ^ ( S ) N H ) ] 2 6 2 2 SH i n which the l i g a n d JJ % 1 NH ^ S a c t n ^ 8 a s a uninegative bidentate 204' ion. Although the a c t i o n of p y r i d i n e i n ethanol on a freshly-prepared red s o l u t i o n gives c i s [ - R u ( C O ) C l ( p y ) ] , i f the red s o l u t i o n i s allowed to "age" 2 2 2 for 24 h r s . before the a d d i t i o n of p y r i d i n e , a complex [pyH][RuCl^(C0)py] can be i s o l a t e d . No evidence for the formation of [RuCl (CO)py.j] i n the former r e a c t i o n was 2 found, but norbornadiene or cyclo-octa-1,5-diene with the 205 red s o l u t i o n gave complexes of e m p i r i c a l formula [ R u C l ( C O ) ( d i e n e ) ] and 2 treatment of these with p y r i d i n e gave [RuCl (CO)py.j] . 2 3-Methylpyridine with the f r e s h l y prepared red s o l u t i o n gave cis[-RuCl (CO) (CH.j-C,-H, N)] but 205 quinoline gave t r a n s t R u C l ( C O ) ( q u i n ) ] . The dicarbonyl d i h a l i d e s of Ru** can be r e a d i l y prepared by r e f l u x i n g 206 RuCl^ i n formic a c i d i n the presence of the appropriate h y d r o h a l i c a c i d . The R u ( C 0 ) X complexes r e a c t r e a d i l y with l i g a n d s to give R u ( C 0 ) X L 2 2 2 2 2 i 2 2 2 206 complexes, RuCl (CO) (p-CH CgH^NH ^having been c h a r a c t e r i s e d . 2 2 3 2 2 2 2 -70- I n t h e i r i n v e s t i g a t i o n of the r e a c t i v i t y of Ru^CCO)^ Chandlin and co207 workers obtained an i n s o l u b l e polymeric m a t e r i a l from the a c t i o n of moist NO on Ru^CCO)^- 0 n t n e b a s i s of i t s i . r . spectrum, they formulated the 207 complex as a n i t r i t e , of e m p i r i c a l formula [ R u C C O ^ C l K ^ ^ ] • 5. Cobalt, Rhodium and I r i d i u m Strong bases cause ready d i s p r o p o r t i o n a t i o n of c o b a l t carbonyls to give 4 the t e t r a c a r b o n y l c o b a l t a t e anion: 3Co.(C0) + nB Z o • 2[Co(B) ][Co(C0).]„ + 8C0 n M- Z Q 3 C o . ( C O ) + nB h 1Z > 4[Co(B) [Co(CO). ]„ + n i\ Z 10 ( i f n = 6) 4C0 Reactions of the c o b a l t carbonyl s with l i q u i d ammonia have been studied 208 at room temperature. the f i r s t g i v i n g [ C o With ( ^ ( C O ^ , two r e a c t i o n paths are followed, + I I - I ( N H ) g ] [ C o ( C 0 ) ^ ] ^ + CO, and the second g i v i n g 3 I NH^]Co~ (C0)^] and urea (by r e a c t i o n of CO evolved with NH ). 3 Co^(C0) 1 2 r e a c t s to give the same products, but only a very small amount of NH^lCo'^CO)^] and urea are produced, most of the Co^(C0)^2 r e a c t i n g v i a the _ 08 f i r s t pathway. 2 C o ( C 0 ) ( N 0 ) , obtained from a c i d i f i e d mixtures of Co(CO)^" and N0 ~, 3 2 209 r e a c t s with N-ligands w i t h displacement of two CO groups. 210 ' Thus 209 p y r i d i n e gave Co(N0)(C0)py2 i n s o l u t i o n , which could not be i s o l a t e d , . 2nQ 210 but o-phen and bipy gave the more s t a b l e d e r i v a t i v e s Co(N0HC0)o-phen ' 209 and Co(N0)(C0)bipy. Reaction of Co(C0).jN0 with mixed phosphorus nitrogen -71- l i g a n d s (e.g. Et2NC2H^P(Ph)C2H^NEt2) gave only d e r i v a t i v e s with phosphorus 221 attached to the metal. T h i s i s an example of a metal i n a low oxidation s t a t e ( a " s o f t " a c i d ) p r e f e r r i n g to co-ordinate to a " s o f t " base ( ^ P ) 221 r a t h e r than a "hard" base ( ^N). Using an i n d i r e c t method i n an attempt to s y n t h e s i s e c o b a l t carbonyl 212 N-ligand compounds, Behrens and Aquila reacted (CgHg^CoCCO)^ (C,H_ = cyclohex-1,3-diene) with bipy, o-phen and t r i p y b o 1 (2,2 ,2"-tripyridyl) i n r e f l u x i n g benzene, but obtained only the d i s p r o p o r t i o n a t i o n products [ C o ^ L ^ ] [Co^CcO)^] . However, under the same conditions ( n o r - C ^ H g ^ ( ^ ( C O ) ^ (nor-C^Hg = norbornadiene) gave, with bipy, ( ^ ( C O ^ C b i p y ^ i n 1007 y i e l d , o and with o-phen, (^(CCO^Co-phen^ and some [Co(o-phen)^] [Co(CO)^] . t r i p y , only the s a l t [ C o ( t r i p y ) ^ ] [ C o ( C O ) ^ ] could be obtained. i.r. With From t h e i r s p e c t r a the complexes COgCCO)^!^ were shown to have a c i s - c o n f i g u r a t i o n , 212 with bridging carbonyl groups, as shown i n F i g . I . 1 2 C C N \ N « —-V-.U \ „N N // 0 Fig.I.12 J -72- A complex of e m p i r i c a l formula (jt-CgH.-Co^CNl^^CO was one of the products of the r e a c t i o n between n-CpCoCCO^ and N-t-butylsulphuriimide, 213 (t-C^HgN^S. Mass and i . r . s p e c t r a l evidence suggests that the compound contains an a l k y l u r e a group, whose nitrogen atoms bridge the two c o b a l t 213 atoms. . diffraction J > f £ T h i s structure,shown i n Fig.1.13, has been confirmed j 214 study. (CH ) C 3 C 3 ^C(CH ) 3 by an X-ray 3 Fig.I.13. T h i s s t r u c t u r e i s s i m i l a r to the s t r u c t u r e of the i r o n compound, /i-diphenyl179 180 ureylene-bis(tricarbonyliron), Fig.I.11a. There a r e comparatively ' few c o b a l t carbonyl d e r i v a t i v e s containing a nitrogen atom attached to the metal. Direct r e a c t i o n of bases with cobalt carbonyls causes d i s p r o p o r t i o n a t i o n , and very few i n d i r e c t s y n t h e t i c methods have been attempted. As described e a r l i e r , though, COgCCO^ i s a c a t a l y s t i n many organic r e a c t i o n s , i n c l u d i n g r e a c t i o n s of nitrogen compounds, and i n the l a t t e r , the f i r s t step i n the mechanism i s thought to be co-ordination 36 of the organic compound to the c o b a l t v i a the nitrogen lone p a i r . -73- There have been no r e p o r t s of the d i r e c t r e a c t i o n of N-bases with the rhodium and i r i d i u m carbonyls themselves, but, i n c o n t r a s t to c o b a l t , simple carbonyl h a l i d e d e r i v a t i v e s of Rh and I r are r e a d i l y a v a i l a b l e and have 215-227 proved u s e f u l i n preparing compounds with nitrogen attached to the metal. 215 Reaction of [ R h ( C O ) C l ] 2 2 with p y r i d i n e gave R h ( C O ) p y C l , which Hieber 2 suggested was dimeric, to account for i t s diamagnetism. 2 Reaction w i t h other ligands e.g. p i p e r i d i n e , o-phen and alkylamines gave i n d e f i n i t e products and 215 216 Ph^N did not r e a c t . Wilkinson and Lawson found that amines s p l i t the bridges i n [ R h ( C O ) C l ] 2 2 and [ R h ( C O ) M e C 0 ] 2 2 to give d i c h r o i c , mononuclear 2 s p e c i e s which are decomposed by moisture to i l l - d e f i n e d solids. straw-coloured The complexes prepared were Rh(CO) Cl*L where L = NH^, NH OH, 2 2 NH Me, NH Ph, NH^H^-pMe, py, ( a - p i c o l i n e ) , and a l s o Rh(CO) pyMeC0 , 2 2 2 [ R h ( C O ) p y ] p h t h a l a t e and [ R h ( C O ) C l ] b i p y . 2 2 2 2 2 I n the l a s t compound bipy i s functioning as a b i f u n c t i o n a l r a t h e r than a c h e l a t i n g l i g a n d , but v a r i a t i o n of the proportions of r e a c t a n t s g i v e s some evidence for the formation of Rh(CO)bipyCl and [ R h ( C O ) b i p y ] C l . 2 These authors obtained Hieber's compound R h ( C O ) p y C l by d i s s o l v i n g RhCCO^Cl'py i n p y r i d i n e , and present 2 2 evidence supporting a 5-co-ordinate diamagnetic monomeric s t r u c t u r e for the 216 complex. [Rh(CO) X] 2 A l i p h a t i c and aromatic n i t r i l e s r e a c t i n a s i m i l a r manner with 2 (X = C l , B r ) to give Rh(CO> XL, where L = PhCN, p - C l C ^ C N , 2 2i~i 218 o-.m-or p -MeCH.CN. oc-C. H-.CN. R-C, H_,CN, PhCH CN and p - C l C " CK_CN. 0 4 ' 10 7 ' 10 7 ' 2 6 4 2 218 Two forms of the d e r i v a t i v e s could be i s o l a t e d , designated the a- and B-forms. 0 r The a-form i s more s t a b l e and i s the simple square-planar complex; the 8-form -74- probably i n v o l v e s some metal-metal i n t e r a c t i o n i n the s o l i d . Aliphatic n i t r i l e compounds are much l e s s s t a b l e than the aromatic ones and the CH^CN and CgH^CN d e r i v a t i v e s could only be i s o l a t e d a t -78°C. Reaction of RhCCO^Cl and p-Nl^-CgH^CN gives a monomeric complex with only the amino218 nitrogen co-ordinating to the metal. Thiocyanate rhodium carbonyl complexes have been prepared [Rh(CO) SCN] , from AgSCN and [ R h ( C O ) C l ] 2 2 2 2 1 6 , e.g. [(n-C H ) N][Rh(CO) (NCS) ], 4 g 4 2 2 and RhL (CO)NCS where L i s a v a r i e t y of phosphine, a r s i n e , s t i b i n e and 219 2 phosphite ligands. The i o n i c compound was prepared by the a c t i o n of excess [ ( n - C H ) N ] S C N on [ R h ( C O > C l ] 4 g 4 2 Rh(CO)L Cl and KSCN. 2 2 and the other d e r i v a t i v e s by the r e a c t i o n of A l l the complexes have metal-nitrogen bonding, as expected from jt-bonding arguments d i s c u s s e d e a r l i e r , i n the s o l i d s t a t e and i n solution. The a r y l a r s i n e and triphenylphosphite d e r i v a t i v e s show a remarkable tendency to form d i n u c l e a r , thiocyanate bridged complexes, the 219 l a t t e r being i s o l a t e d for L = triphenylphosphite: 2Rh(P(OPh) ) (CO)(NCS) 3 2 1 P(OPh) (CO)Rh^ 3 Rh(CO)P(OPh> + 2P(OPh> 3 The i r i d i u m carbonyl h a l i d e s a l s o r e a c t r e a d i l y with nitrogen donors to give simple d e r i v a t i v e s . [Ir(CO) Cl] 3 n > which i s polymeric, r e a c t s i n r e f l u x i n g benzene with p-CH,C,H,NH to give ClIr(CO)„(NH„-C H,p-Me) and 0 r treatment of t h i s complex with py, o-phen and bipy gives C l I r ( C O ) p y , 2 3 -75- C l I r ( C O ) o - p h e n and 2 [ I r ( C 0 ) C l ] b i p y with a l i t t l e C l I r ( C O ) o - p h e n , and 2 2 2 the b i p y r i d y l a n a l o g u e , Ir(CO) Clbipy. 220 In 2 the metal i s 5-co-ordinate. 221 Angoletta has a l s o obtained L = ( p - C H C H N H ) and 3 6 4 2 K [Ir (CO) Br J 2 2 4 t h e c o m p l e x e s I r C c O ^ L X , where X = C l , Br ( C H ^ C H N l ^ , by w i t h the l i g a n d . 5 treatment With K [ I r I I 3 : of K [ I r ( C O ) C l 2 2 (CO) I ] 4 4 and 4 4 g ] and or p-CH C H NH , 3 6 4 2 he o b t a i n e d I r ( C O ) _ ( p C H C H N H _ ) „ I _ , w h e r e a s b i p y gave Ir(CO)(bipy)l„, Z J O 4 Z Z Z i. w h i c h was o b t a i n e d a s an i s o m e r i c m i x t u r e o f , p r e s u m a b l y , c i s and trans 222 modifications. The r e a c t i o n between K [ I r ( C O ) l , . ] and ammonia, and - 223 p r i m a r y amines i n t h e c o l d , g i v e s [ I r ( C O ) L I ] ( L = NH^, E t N H and i s o p r o p y l a m i n e ) , when a 1:1 m o l a r r a t i o of r e a c t a n t s i s u s e d . E x c e s s amine III I I 223 gives I r ( C O ) L I i n the c o l d , I r ( C O ) L . j I on warming. 2 4 2 3 2 2 Some rhodium and i r i d i u m c a r b o n y l d e r i v a t i v e s of some S c h i f f b a s e s of 224 a c e t y l a c e t o n e h a v e been p r e p a r e d . These are q u i t e d i f f e r e n t from the 183 S c h i f f base i r o n carbonyl complexes. The complexes c o n t a i n a c h e l a t i n g group w h i c h i s t h e a n i o n d e r i v e d from t h e c o n d e n s a t i o n amine with acetylacetone. [ ( C O ) ( a m i n e ) R h C l ] and 2 and product Thus t h e compounds of g e n e r a l [ ( C O ) ( a m i n e ) l r C l ] were p r e p a r e d from h a l o g e n o c a r b o n y l i r i d a t e s , and primary formula from 2 of a [Rh(CO) Cl] 2 2 then r e a c t e d w i t h a c e t y l a c e t o n e . I n t h e c a s e of i r i d i u m , t h e r e a c t i o n s were n o r m a l l y q u i t e s t r a i g h t f o r w a r d . / oe co .ci \ \ Ir + C H 0 c o > NH R 2 y X CO > CH + H 0 + H C l o & 5 3 & 4 2 '/ \ N R R = C H , p-CH C H , a-naphthyl, n-propylamine. 3 o — c — ^ I r 5 8 2 \ OC Q C H C \n 3 -76- When R = isopropylamine, only the N-free dicarbonyl i r i d i u m ( l ) a c e t y l a c e t o n a t e was obtained. The r e a c t i o n s of [Rh(CO) (amine)C1] were much more complicated. 2 For example [(CO) (p-CH C H^NH )RhCl] reacted with acetylacetone to give 2 3 6 2 the N-containing c h e l a t e , but a l s o some [ (CO) Rh(C,-H^0 )] and some 2 + [p-CH C H^NH ] [cis(CO) RhCl ]~. 3 6 3 [(CO) RhCl] 2 2 2 2 S e v e r a l products were i s o l a t e d when was t r e a t e d with the S c h i f f base 2-p-tolylimino-penten-3-ol-4, 2 [(CO) (p-CH C H^-NH )RhCl] being one of the products. 2 3 6 2 CH (C0 Rh 2 3 VCH o The complexes with R = C,H , p-CH_C,H., and n-C_H, were 6 5' 3 6 4' 3 7 C r N—— C R ^CH 3 i s o l a t e d as w e l l as the amine complexes R h ( C O ) ( L ) C l , where L = CgH^NH , 2 2 224 iso-C H NH , 2,6-(CH ) -C H NH , n - C ^ M ^ and p - C H ^ ^ N H ^ 3 ? 2 3 2 6 3 2 Reaction of [ R h ( C O ) C l ] 2 i n benzene with assymetric c h e l a t i n g l i g a n d s 2 having N and 0 atoms as donors, gave only non-chelated compounds with N 225 atoms as donors. But i f the r e a c t i o n proceeds i n the presence of BaC0 , 3 in MeOH, c h e l a t e d dicarbonyl d e r i v a t i v e s a r e obtained: [Rh(C0) Cl] 9 2 where 2 9 + N ~l HO J M e 0 B a C H ) S N (CO) Rh-^ l 0 2 + HCl ^ o J n • oo • ax. •<x_. HO OH -77- Th e analogous i r i d i u m d e r i v a t i v e s , the 8-oxyquinolate, the quinaldinate and the a - p y r i d i n e - c a r b o x y l a t e complexes were obtained from IrCCO^Cp-CH^CgH^Nl^Cl, but the s a l i c y l a l d o x i n a t e was not prepared. The i . r . s p e c t r a of the complexes i n the s o l i d a r e much more complex than the s o l u t i o n spectra. Metal-metal i n t e r a c t i o n i n the s o l i d i s suggested to 225 account for t h i s , and f o r the dark colours and dichroism of the compounds. Some i r i d i u m complexes, o r i g i n a l l y thought to be formates, have now been 226 re-formulated as carbonyl d e r i v a t i v e s and [IrCl(OAc)(CO) py] « 2 : IrCl(CO)py , 2 [IrCl(OAc)(NH )(C0) ]. 3 2 The f i r s t compound i s prepared by the a c t i o n of 2 aqueous p y r i d i n e on ( N H ^ ) [ I r C l ^ ( C O ) ] , while the l a s t two r e s u l t from the 226 2 action of NH^ and p y r i d i n e , r e s p e c t i v e l y , on [ I r C l ( C O ) ( O A c ) ] . 2 r e a c t i o n of I r I ( C O ) 4 2 2 The with a l i g a n d , (e.g. 2 , 2 ' - b i p y r i d y l ) and methoxide i o n gives complexes of the type I r I ( O C O R ) L ( C O ) . 2 2 The c r y s t a l s t r u c t u r e of the complex diiodocarbonylmethoxycarbonyl(2,2'bipyridyl)iridium ( L R = Me) has been determined and i s shown i n F i g . I . 1 4 . CH I 0, N N Fig.I.14. 2 = bipy, -78- 6. N i c k e l , Palladium and Platinum Bases co-ordinating through nitrogen atoms normally cause disproport- ionation of Ni(CO)^ to carbonyl-free c a t i o n s and polynuclear carbonyl anions.^ I n a l k a l i n e s o l u t i o n , Ni(CO)^ and p y r i d i n e give, initially [ N i ( p y ) g ] [ N i ( C 0 ) g ] but f u r t h e r r e a c t i o n occurs: 2 [ N i ( p y ) ] [ N i ( C O ) ] + 6C0 + 80H 6 2 - » Ni(OH> + 6HC00" + 6 I n a c i d s o l u t i o n , the [Ni^(CO)gH] 2 anion forms. 2 [Ni^CCOg] " Ni(CO)^ with amines such as p y r i d i n e , morpholine and p i p e r i d i n e give [ N i ( B a s e ) ^ ] [ N i ^ ( C O ) g ] . Careful study of Ni(CO)^/amine systems, where the amine i s p y r i d i n e , a - p i c o l i n e , morpholine and p i p e r i d i n e has shown that NiCcO^L s p e c i e s e x i s t i n s o l u t i o n . On warming or pumping, [Ni(amine)g][Ni^(CO)g] forms, but the anion disproportionates to Ni and [FeCo-phen)^] 2+ 2— 228 [Ni^(CO)g] ~. 2*4" Addition of [NiCo-phen)^] , or o-phen to the Ni(CO)^/py system gives Ni(CO) (o-phen) 228 2 , 229 which can a l s o be prepared directly. Ni(CO)^ and b i p y r i d y l a l s o give N i ( C O ) b i p y as the primary product, which does not disproportionate, and 2 229 may be i s o l a t e d . [Ni(CO) NH ] and 3 3 L i q u i d ammonia and Ni(CO)^ give the intermediates [ N i ( C O ) ( N H > ] , both of which disproportionate above 2 3 2 -60°C.^ Tetracarbonyl n i c k e l r e a c t s with dialklcyanamides to give the complexes 230-232 [(R N-CN)Ni(CO) ]. 2 2 I n a preliminary note on the complexes the metal ligand bonding was described as shown i n F i g u r e 1.15 on the b a s i s of i . r . spectrocopy. ?30 However a more d e t a i l e d i n v e s t i g a t i o n complexes from the ligands | N-GsN, ( N-CsN, . ( \ / \s=/ CH 3 231 of s e v e r a l N-CsN , J 1 N-CsN v_/ -79- and ^j^N-GsN suggested that the -CsN was i n f a c t l o c a l i s e d , and the s t r u c t u r e was as shown i n F i g . I . 1 6 . R \ R = CH„ R / ,co. 5sv Ni: or R = (CH -) -••>* 'CO- 'N N / \ R R 2 Fig.1.15. R_N 2 1 \ N Ni Ni 1/ N III NR Fig.1.16. T h i s s t r u c t u r e was based on i . r . , n.m.r. and e l e c t r o n i c s p e c t r a l data, as 231 w e l l as molecular weight and dipole moment measurements. 232 s t r u c t u r e determination of one of these complexes A crystal , carbonyl(piperidine-N- c a r b o n i t r i ! e ) n i c k e l has shown that n e i t h e r of the above d e s c r i p t i o n s i s correct. and The s t r u c t u r e 1.17 contains to a cyanonitrogen group. trimers of n i c k e l atoms o^-bonded to CO There a r e no >N=C=NR_ groups as these would -80- o O v */• N Ni CO O Fig.I.17. be l i n e a r and perpendicular to the l i n e Ni-Ni. The trimer i s formed from the monomer by using the it-bonds of the cyano groups. The bond d i s t a n c e s a r e i n accord with -NsC-NR^ groups and the N and C atoms of the cyano-groups are e q u i d i s t a n t from the n-bonded Ni. The N atom of the p i p e r i d i n e r i n g i s not 232 involved i n bonding to Ni. The simple carbonyls, M(C0)^ 5 of palladium and platinum are not known, but carbonyl h a l i d e s and some base s u b s t i t u t e d compounds have been prepared An aqueous s o l u t i o n of PdClg and an excess of o-phenanthroline r e a c t with a i r and CO to give a s t a b l e red complex, formulated as [(o-phen)Pd(CO) Pd(o-phen).] .4H 0. 2 2 The analogous b i p y r i d y l d e r i v a t i v e i s 233 unstable. Ammonia complexes e.g. Pt(C0)Cl .2NH 2 3 and P t ( C O ) C l . 2 N H 2 2 3 have been prepared by passing ammonia i n t o C C l ^ s o l u t i o n s of P t ( C 0 ) C l , P t ( C 0 ) C l 2 2 2 or -81- Pt (CO) Cl^. 234 2 2 Solutions of [ P t C l ^ ] ~ anions w i l l r e a c t slowly with CO to give, probably, [ P t ( C O ) C l ] ~ , and a d d i t i o n of p y r i d i n e to the s o l u t i o n then 3 gives t r a n s - P t ( C O ) p y C l . The c i s -ammonia d e r i v a t i v e [PtNH^ClCCOjCl] was 2 234 prepared by the a c t i o n of CO on a s o l u t i o n of NH [Pt(NH )Cl.j] . 4 Several bases r e a c t with [ P t ( C O ) X ] 2 3 or [ P t ( C O ) X ] ~ to give the 2 3 complexes trans-Pt(CO)LX , where L = p - t o l u i d i n e 2 235 236 236 ' , aniline , m- .,,236 . 234,236 . ... 234,236 , „, „ nitroamline , ammonia ' and p y r i d i n e ' , and X = C l , Br, I . v These d e r i v a t i v e s a r e unstable with r e s p e c t to excess of the l i g a n d , CO + being evolved with formation of [ P t ( C O ) L X ] X ~ (when L = NH ) and [ P t L ^ ] 2 236 (when L = NH , p y ) . 3 3 Bidentate l i g a n d s e.g. bipy + 235236 236 ' , and o-phen + _ give [ P t ( C O ) ( L - L ) X ] [ P t ( C O ) X ] " and [ P t ( C O ) ( L - L ) X ] X . 3 237 An i n d i r e c t s y n t h e t i c method i n v o l v i n g the displacement of a n- bonded o l e f i n e from a Pt complex by CO, has enabled a large number of ( C O ) P t C l L complexes to be prepared: 2 1 CH 2 C H S| CHC1 > Pt * | C H 3 L + CO S| 1 CO — P t < L I Cl + C.H. 24 Cl - Z or O . N ^ _ 2 A study of the i . r . and n.m.r. s p e c t r a of the complexes with a v a r i e t y of s u b s t i t u e n t s i n the p y r i d i n e r i n g (e.g. Z = CH , OCH , N0 , COCH , C0 CH , 3 3 2 3 2 3 -82- CH OH, CN, CgH ) has i n d i c a t e d l i t t l e djt-pit* i n t e r a c t i o n between CO and Pt 2 5 237 i n these complexes. CHAPTER TWO Azomethine D e r i v a t i v e s of T r a n s i t i o n Metals -83- A. Introduction In t h i s C h a p t e r , s t u d i e s o f a z o m e t h i n e groups i n t r a n s i t i o n m e t a l s y s t e m s w i l l be d e s c r i b e d . were s t u d i e d i n i t i a l l y , N o n c a r b o n y l c o b a l t ( l l ) and n i c k e l ( l l ) and t h e work was t h e n e x t e n d e d t o c o b a l t systems carbonyl compounds. Imino-compounds were c h o s e n a s l i g a n d s s i n c e , i n p r i n c i p l e , they c a n bond i n a v a r i e t y o f ways t o a t r a n s i t i o n m e t a l . d e r i v a t i v e would c o n t a i n the n i t r o g e n The s i m p l e s t t y p e o f t h e n e u t r a l l i g a n d R2C=NH o-bonded t o t h e m e t a l v i a lone p a i r , but s i n c e the nitrogen i s p a r t o f an u n s a t u r a t e d s y s t e m , n-bonding v i a b a c k - d o n a t i o n o f e l e c t r o n s from f i l l e d m e t a l i n t o j r - a n t i b o n d i n g o r b i t a l s o f the ^C=N- bond i s p o s s i b l e . ligand, As a n a n i o n i c t h e i m i n o - g r o u p would f o r m a l l y be a 1- o r 3 - e l e c t r o n donor, b u t stabilisation bridge d-orbitals t h r o u g h it-backbonding i s s t i l l two m e t a l atoms. possible; the ligand could A t h i r d b o n d i n g p o s s i b i l i t y would be l a t e r a l also co- o r d i n a t i o n o f t h e C=N- group t o form a it-complex a n a l o g o u s t o d e f i n e complexes. carbonyl T h e C-N s t r e t c h i n g f r e q u e n c i e s a n d , where a p p r o p r i a t e , t h e s t r e t c h i n g f r e q u e n c i e s , were e x p e c t e d t o be s e n s i t i v e t o t h e mode of a t t a c h m e n t o f t h e k e t i m i n e group to t h e m e t a l and i t was hoped t o s t u d y the b o n d i n g by i n f r a r e d s p e c t r o s c o p y . For a n e u t r a l l i g a n d , t h e most l i k e l y g e o m e t r i c a l r e l e v a n t atoms i s shown i n F i g . I I . 1, t o g e t h e r with arrangement of the jr'-orbitals involved i n 2 back-donation. p and p The t r i g o n a l n i t r o g e n atomic o r b i t a l s (relative atom i s sp hybridised, involving the t o t h e a x e s shown), w h i l e the p orbitals -84- on n i t r o g e n orbitals. and The carbon overlap d^ o r b i t a l on z to form the n-bonding and the m e t a l would be -antibonding of c o r r e c t symmetry to over- l a p w i t h t h e n* o r b i t a l s . If the i m i n o - g r o u p i s a n i o n i c , t h e n s e v e r a l bonding modes a r e possible. 2 Firstly, i n one extreme the n i t r o g e n lone p a i r could occupy t h e sp x >y 23 8 orbital shown bonding the h y d r o g e n i n F i g . I I . 1 . the l o n e p a i r i n an sp-hydrid jt-bonding, a s he h a s r e s u l t s has pair o r b i t a l may c a l c u l a t e d overlap t h i s were the c a s e , electron on the in Fig.II.2. be O v e r l a p of f i l l e d m e t a l the a n i o n i c above, i s a l s o m e t a l d - o r b i t a l s , and skeleton overlap also occur. Of relevance h e r e i s the b o n d i n g of an u.v. spectra show t h a t ( a ) the C-N-Si s k e l e t o n bond c h a r a c t e r more T h i s a r r a n g e m e n t m a x i m i s e s the p o s s i b i l i t y of can The If d-orbitals l i g a n d , a l i n e a r M-N-C l o n e p a i r , i n a p u r e p^ o r b i t a l , w i t h s u i t a b l e m e t a l element, s i l i c o n . lone possible. nitrogen applied his system. regarded as c o n t r i b u t i n g ligand described l a p between l i g a n d i t * - o r b i t a l s and multiple , to L — > M the b a s i s of i s possible, i n a non-linear to the L-M b o n d i n g . s e c o n d extreme f o r illustrated significantly i n t e g r a l s and then the l i g a n d c o u l d w i t h the jt* o r b i t a l s of The contribute to E b s w o r t h a g r e e d t h a t s u b s t a n t i a l ( s p — > d ) it-bonding form a n i t r o g e n to empty s i l i c o n d - o r b i t a l s than one According over- the d-orbitals i m i n o group to t h e m a i n group of i m i n o s i l a n e s have been i n t e r p r e t e d i s b e n t and 239 i n the Si-N of is link. to t r a n s i t i o n m e t a l s , where the (b) that there i s very I f these r e s u l t s can d - o r b i t a l s are at l e a s t to little be partially bo <U bo 60 0) cd cd 00 0) Hi >4-( 01 en CM bO bO PL, f±4 4-< cd Li cd cu cu cu CO <u -85- filled, at t h e y would i m p l y an a n g u l a r a r r a n g e m e n t b a s e d on the n i t r o g e n atom, and to a s e c o n d m e t a l atom. t h a t the l o n e p a i r c o u l d r e s u l t i n g i n a weakening of the C=N (C=N) rt* o r b i t a l s c o u l d bond. This lower than i n the s h o u l d be free I f a c o m p a r i s o n c a n be made between n e u t r a l d e r i v a t i v e s , and unsaturated c o m p l e x e s of o t h e r l i g a n d s system (e.g. dn-n* i n t e r a c t i o n i n t h e of e.g. pyridine and occur, reflected in a than that found i n a imino-transition metal nitrogen in an b i p y r i d y l d e r i v a t i v e s ) , the amount p r o b a b l y be small. p y r i d i n e metal c a r b o n y l complexes have suggested t h a t and of ligand. containing imino d e r i v a t i v e s w i l l a c t i o n i s sometimes n o n - e x i s t e n t , donation complex, o v e r l a p i n t h e C=N v i b r a t i o n a l f r e q u e n c y to a l o w e r v a l u e mononuclear d e r i v a t i v e , and hybridisation available for I n a ligand bridged dinuclear d - o r b i t a l s on b o t h m e t a l atoms w i t h the shift be sp ~ i n other cases 19 e x t e n t . (p.^9).0f the c o m p l e x e s c o n t a i n i n g anionic this Studies inter- o c c u r s o n l y to a ligands discussed of small in 1 QC Chapter I , the i r o n compound [ ( ( C H C H ^ = N ) F e ( C O ) ] 3 6 3 2 , I . l l f .(p.60) i s o f 2 p a r t i c u l a r relevance nitrogen any and the I t s s t r u c t u r e i s c o n s i s t e n t w i t h sp o s h o r t Fe-N other reported character here. bond d i s t a n c e iron carbonyl nitrogen i n the Fe-N U n f o r t u n a t e l y , the C-N bond of the complex, i m p l i e s type implied s t r e t c h i n g f r e q u e n c y was d i s c u s s i o n of the bonding from t h i s p o i n t the and existence ( a v e r a g e 1*94 A ) , s t r u c t u r e of bonding p r e s e n t e d above. The hybridised shorter than i n some d o u b l e bond i n the above d e s c r i p t i o n . not reported, of v i e w i s n o t so further possible. t h i s complex s u p p o r t some of the However, ideas complex [ ( P h C = N - N ) ( F e ( C 0 ) ) . J , 1.11c. 9 9 1 on 182 ir- -86- is a l s o noteworthy, a s i t c o n t a i n s shows ( t o g e t h e r w i t h o t h e r two t r i p l y - b r i d g i n g n i t r o g e n atoms, and examples) that nitrogen i s capable of co- o r d i n a t i o n t o p o l y n u c l e a r m e t a l s y s t e m s i n ways a t l e a s t a s v a r i e d a s carbon. A r y l k e t i m i n e s were u s e d a s s t a r t i n g m a t e r i a l s a s t h e y a r e s t a b l e to r e - a r r a n g e m e n t , have been s t u d i e d q u i t e e x t e n s i v e l y and c a n be r e a d i l y prepared. A l k y l k e t i m i n e s would have p r o v i d e d more s t r u c t u r a l d a t a from n.m.r. s t u d i e s , b u t t h e y c o u l d n o t be s u c c e s s f u l l y s y n t h e s i s e d i n t h e s e 240 laboratories. The p r e p a r a t i o n o f a l k y l k e t i m i n e s h a s been r e p o r t e d by t h e 241 242 addition of Grignards or alkylaluminium compounds t o t h e c o r r e s p o n d i n g nitriles and s u b s e q u e n t h y d r o l y s i s o f t h e p r o d u c t . s y n t h e s i s i s probably The d i f f i c u l t y i n t h e i r due t o t h e hydrogen i n t h e c c - p o s i t i o n i n t h e k e t i m i n e , 243 w h i c h e n t e r s i n t o enamine t a u t o m e r i s m silanes 239 , a s h a s been o b s e r v e d f o r imino- . ; i.e. C=N-SiMe 3 n / CH < • C-N(H)SiMe. ^ 3 CH 2 ketimine enamine T h i s l a b i l e h y d r o g e n i s a c i d i c , and l i b e r a t i o n o f a l k a n e from G r i g n a r d s o r 244 alkylaluminium compounds h a s been o b s e r v e d responsible f o r the d i f f i c u l t y , and t h i s f a c t o r i s probably i n obtaining alkylketimines. Arylketimines 240 are r e a d i l y prepared from b e n z o n i t r i l e , by t h e G r i g n a r d route. -87- M e t a t h e t i c a l r e a c t i o n s u s i n g P h C = N L i and 2 h a l i d e complex h a v e been s t u d i e d i n a t t e m p t s i n t o metal systems. i n Ph C=N-N=CPh 2 2 by t h e r m a l or p h o t o c h e m i c a l 3 with a metal to i n t r o d u c e k e t i m i n o g r o u p s s i n g l e bond i n i t i a t i o n i n the presence of attempted. N o n c a r b o n y l c o b a l t c o m p l e x e s and 1. 2 I n a d d i t i o n , h e m o l y t i c c l e a v a g e o f the N-N d i c o b a l t o c t a c a r b o n y l , was B. Ph C=NSiMe ketimines Experimental (a) 2Ph,,C=NLi + a n h y d r o u s C o C l 2 A s o l u t i o n o f d i p h e n y l k e t i m i n o l i t h i u m . ( 1 5 * 2 mmoles) i n e t h e r ( 4 0 was prepared as f o l l o w s . i n e t h e r i n one arm of a A s o l u t i o n of d i p h e n y l k e t i m i n e ( 2 * 7 5 g., double Schlenk e q u i m o l a r q u a n t i t y of n - b u t y l l i t h i u m t u b e , was i n hexane was 2*60 ml.) ml.) f r o z e n t o -196°C and an added by s y r i n g e . 245 (Methyl The lithium i n e t h e r may r e d m i x t u r e was allowed a l s o be u s e d t o warm up 1 h r . to e n s u r e c o m p l e t e r e a c t i o n . mmoles) was to b l a c k was to room t e m p e r a t u r e for Anhydrous c o b a l t c h l o r i d e ( l ' O g., 7'6 observed. added by An immediate d a r k e n i n g A f t e r overnight s t i r r i n g under vacuum, l e a v i n g a g r e y - b l a c k gum. m i s c i b l e with petroleum and and available). stirred s l u r r i e d w i t h e t h e r (25 ml.) red ketiminolithium solution. , but i s l e s s r e a d i l y s y r i n g e to t h e blood- i n c o l o u r through the s o l v e n t was A l t h o u g h t h e gum was brown removed slightly e t h e r (80-100°) and more so w i t h t o l u e n e , e f f o r t s to obtain a s o l i d r e s u l t e d only i n a black t a r . A d d i t i o n of t r i p h e n y l p h o s p h i n e resulted to a t o l u e n e s o l u t i o n of t h e gum i n i s o l a t i o n of a b l a c k t a r , w h i c h t u r n e d g r e e n y - y e l l o w on still exposure -88- to a i r . When t h e r e a c t i o n was r e p e a t e d by a d d i n g a THF s o l u t i o n of C o C l 2 t h e P h C = N L i s o l u t i o n c o o l e d t o -196°C,and a l l o w i n g t h e m i x t u r e t o warm up s l o w l y , the b l a c k c o l o u r developed but 2 no p r o d u c t c o u l d be w e l l b e l o w room t e m p e r a t u r e , 2 L 3 2 2 A s o l u t i o n of d i p h e n y l k e t i m i n o l i t h i u m prepared a s above. 2*1 mmoles) was mixture allowed The 2 to warm to room t e m p e r a t u r e , t h e s o l v e n t was b l u e and w h i t e t o g i v e a deep b l u e s o l u t i o n w h i c h P h C = N L i s o l u t i o n was b l u e p r e c i p i t a t e were o b s e r v e d . temperature, solids. ( 4 mmoles) i n e t h e r ( 2 0 B i s ( t r i p h e n y l p h o s p h i n e ) c o b a l t d i c h l o r i d e (1*4 d i s s o l v e d i n THF c o o l e d to -196°C. again isolated. (b) 2Ph C^NLi jMPh P) CoCl was to added by ml.) g., was s y r i n g e , and the when a b l u e s o l u t i o n and much After stirring f o r 30 min. a t room removed under vacuum, l e a v i n g a m i x t u r e Washing w i t h p e t r o l e u m e t h e r ( 4 x 10 m l . ) of and e v a p o r a t i o n o f t h e w a s h i n g s gave w h i t e c r y s t a l s o f t r i p h e n y l p h o s p h i n e , w h i c h were i d e n t i f i e d by the i n f r a r e d t h e m e l t i n g p o i n t (77°C, lit.80°C) and by c o m p a r i s o n of spectrum w i t h t h a t o f an a u t h e n t i c sample. The b l u e s o l i d r e m a i n i n g e x t r a c t i o n w i t h tnot b e n z e n e . were washed w i t h p e t r o l e u m was r e c r y s t a l l i s e d by continuous A f t e r c o o l i n g to room t e m p e r a t u r e , e t h e r and pumped d r y . The compound c h a r a c t e r i s e d as b i s ( d i p h e n y l k e t i m i n e ) c o b a l t d i c h l o r i d e , M.Pt. 14*4%. 238-242°C CoC 9 f i Y i e l d , 0 = 72 g. H, N Cl 9 9 9 (72%). liquid the crystals was (Ph C=NH) CoCl . 2 2 2 Found: C.63-4; H,4-3; N.5-6; C I , r e q u i r e s C,63'4; H,4«5; N,5*7; C l , 1 4 ' 4 % . The infrared -89- s p e c t r u m showed t h a t h y d r o g e n h a s confirmed the a b s e n c e of CoCl 2 Anhydrous c o b a l t cobalt i n t o a THF yellow solution slowly b l u e s o l i d had s o l i d was liquid ( 1 * 6 g., t o g e t h e r by s o l u t i o n of became b l u e , and M.Pt. 237-241°C. diphenylketimine continuous l i q u i d The extraction initially of pale a f t e r o v e r n i g h t e x t r a c t i o n , much cooling to room t e m p e r a t u r e , t h e recrystallised e x t r a c t i o n , washed w i t h p e n t a n e and d i c h l o r i d e was 12 mmoles) and the k e t i m i n e . and After filtration phenylketimine)cobalt (b). chloride precipitated. i s o l a t e d by and 2 25 mmoles) were r e a c t e d chloride to the n i t r o g e n , triphenylphosphine. ( c ) 2Ph C=NH + ( 5 ml., become a t t a c h e d from benzene by pumped d r y . identical to the The blue continuous complex, b i s ( d i - sample p r e p a r e d Found: C,63'6; H,4'5; N,5'7; C l , 1 5 ' 0 % . CoC in 2 6 H 2 2 N Cl 2 2 r e q u i r e s C,63'4; H,4'5; N,5*7; C I , 1 4 ' 4 % . ( d ) . ( i ) 2Ph C=N-SiMe 2 3 + (P^P^CoCl,, B i s ( t r i p h e n y l p h o s p h i n e ) c o b a l t d i c h l o r i d e ( 1 * 3 g., dissolved i n THF (45 ml.) k e t i m i n e ( 0 * 9 5 ml., o b s e r v e d , and oil (80-100°) and T h i s compound was p e n t a n e , and On cooling ( I ) p r e c i p i t a t e d w h i c h was was the the was N-(trimethylsilyl)diphenyl- (5 ml.) a f t e r overnight s t i r r i n g , b a t h 90-100°C). solid a s o l u t i o n of 4 mmoles) i n THF l e a v i n g a blue s o l i d . ether and 2 mmoles) was added solvent appreciably extracted filtered c o l l e c t e d by was No change removed under vacuum, soluble w i t h hot was i n petroleum toluene (50 s o l u t i o n i n an ml., i c e bath, a f i l t r a t i o n , washed w i t h p e n t a n e -90- and pumped d r y . M.Pt. 182-4°C Found: C,64«8; 65*4; 65'57„. H, (Ph C=NH)(Ph P)CoCl 2 3 bands due 2 r e q u i r e s C,64'6; H,4'5. 3*8; The 5-17.. infrared spectrum to b o t h t r i p h e n y l p h o s p h i n e and d i p h e n y l k e t i m i n e , and as (Ph P)(Ph C=NH)CoCl . 3 2 The 3*6; F u r t h e r comment i s d e f e r r e d u n t i l 2 b l u e t o l u e n e mother l i q u o r r e m a i n i n g after I i s formulated the n e x t f o r 2 days, deposited blue c r y s t a l s , almost On The crystals I, M.Pt. 228°C. temperature, The ( P h . j P ) ( P h C = N H ) C o C l , and 2 occurred. 2 f o r 24 h r s . ) were u n s u c c e s s f u l . i n f r a r e d spectrum The s o l u t i o n and r e a c t i o n was T h i s was identical 197-199°C 3 + (Ph P) CoCl 3 2 after filtration identified as Found: C,64«8; H,4'7; N,2«5; Cl,12«5%. 0 presence of c o - o r d i n a t e d the n i t r o g e n . The had 2. washed r a p i d l y w i t h p e n t a n e and to I above, and was of 2 r e p e a t e d a s above, and r e q u i r e s C,64*6; H,4'5; N,2*4; Cl,12'47 . h y d r o g e n on from t h a t e v a p o r a t i o n to s m a l l b u l k , c o o l i n g to -78°C c a u s e d of a b l u e s o l i d . compound was e t h e r (80-100°) and of I I d i f f e r e d T h i s complex i s a l s o d e s c r i b e d i n s e c t i o n 2 the to r e d i s s o l v e t h e c r y s t a l s i n showed t h a t l o s s of t r i p h e n y l p h o s p h i n e ( d ) . ( i i ) 2Ph C=NSiMe M.Pt. attempts ( I I ) were i s o l a t e d , washed w i t h p e t r o l e u m pumped d r y . l e a v i n g an washing these c r y s t a l s w i t h pentane, w a s h i n g s r e m a i n e d c o l o u r l e s s , and t o l u e n e ( a t 90-100° o i l b a t h section. s e p a r a t i o n of I , a f t e r s t a n d i n g a t room t e m p e r a t u r e colourless solution. showed infrared t r i p h e n y l p h o s p h i n e and of the THF crystallisation pumped d r y . This (Ph P)(Ph C=NH)CoCl . 3 CoC 2 3 1 spectrum H 2 2 NPCl 2 2 confirmed d i p h e n y l k e t i m i n e , and also the -91- P r o l o n g e d s t a n d i n g a t room t e m p e r a t u r e o f t h e THF mother l i q u o r caused d e p o s i t i o n o f b l u e c r y s t a l s , w h i c h were i s o l a t e d , washed w i t h p e n t a n e and pumped d r y . The i n f r a r e d spectrum o f t h e s e c r y s t a l s was i d e n t i c a l of I I and showed l o s s o f PPh.j h a d o c c u r r e d . formulated a s [ ( P h C = N H ) C o C l l . 2 2 T h i s complex i s t e n t a t i v e l y M.Pt. 212°C. 2 to that Found: C,55'3; H, 3-4; C l , 25*8% C.53-3; H,4-5; C l , 2 1 - 9 % . C C H N °2 26 22 2 C 1 4 r e { l u i r e s C,50'2; H,3'5; C l , 2 2 ' 8 % . Evaporation o f the almost gummy s o l i d , whose i n f r a r e d probably c o l o u r l e s s THF mother l i q u o r gave a g r e y , spectrum indicated t h e p r e s e n c e o f PPh^ and Ph C=N-SiMe . 2 3 L o s s o f t r i p h e n y l p h o s p h i n e from I , ( P h . j P ) ( P h C = N H ) C o C l , was a c h i e v e d 2 by h e a t i n g a l i t t l e temperature). identical o f I i n t o l u e n e f o r 3 d a y s , a t 90-100°C ( o i l b a t h The b l u e c r y s t a l s w h i c h s e p a r a t e d o u t h a d an i n f r a r e d to that o f I I . g a v e a gummy w h i t e PPh^ and p r o b a b l y Evaporation of the almost s o l i d whose i n f r a r e d spectrum colourless indicated spectrum toluene solution the presence of benzophenone. Attempted s u b l i m a t i o n o f ( P h P ) ( P h C = N H ) C o C l 3 produced a s m a l l amount o f w h i t e benzophenone, a s d e t e r m i n e d toluene u n t i l 2 2 by i n f r a r e d . r e c o v e r e d from t h e t o l u e n e e x t r a c t s . m a t e r i a l remaining had an i n f r a r e d grey during h e a t i n g . a t 70°C o v e r 2 weeks, s o l i d , w h i c h c o n s i s t e d o f PPh^ and p r o b a b l y The b l u e r e s i d u e was e x t r a c t e d w i t h t h e w a s h i n g s were c o l o u r l e s s . t h i s compound, I I I , 2 ( P h P ) ( P h C = N H ) C o C l was 3 2 2 The s m a l l amount o f t o l u e n e spectrum similar to that of I I . d i d n o t m e l t below 360°C, a l t h o u g h Found: C,27'5; H,2*56; C l , 1 9 ' 6 % . insoluble However, the colour paled to -92- ( e ) 2Ph C=NLi + Py CoCl 2 2 2 A s o l u t i o n o f d i p h e n y l k e t i m i n o l i t h i u m ( 1 0 mmoles) i n e t h e r ( 5 0 m l . ) was p r e p a r e d as described i n ( a ) . B i s ( p y r i d i n e ) c o b a l t d i c h l o r i d e ( 1 * 4 g., 5 mmoles) was d i s s o l v e d i n THF ( 1 0 0 m l . ) and the s o l u t i o n c o o l e d t o -198°C. A f t e r a d d i t i o n o f the Ph C=NLi s o l u t i o n , the temperature of the m i x t u r e 2 allowed to r i s e . A b l a c k colour developed w h i l e b e l o w room t e m p e r a t u r e . t h e t e m p e r a t u r e was was still Removal o f v o l a t i l e s under vacuum gave a b l a c k t a r w h i c h was m i s c i b l e w i t h e t h e r and t o l u e n e , b u t a t t e m p t s t o i s o l a t e a s o l i d from t h e s e s o l u t i o n s w e r e u n s u c c e s s f u l . ( f ) 2Ph C=NSiMe 2 (i) 3 + BipyCoCl 2 , 2 ' - B i p y r i d y l c o b a l t d i c h l o r i d e ( 0 * 4 3 g., 1*5 mmoles) was p l a c e d i n one arm o f a d o u b l e S c h l e n k and 2 the suspension heated overnight tube, nitrobenzene a t 100°C ( o i l b a t h of t h e complex d i s s o l v e d t o g i v e a g r e e n s o l u t i o n . No r e a c t i o n o c c u r r e d temperature). Some N(trimethylsilyl)di- p h e n y l k e t i m i n e ( 3 mmoles) was d i l u t e d w i t h n i t r o b e n z e n e to t h e h o t s u s p e n s i o n . ( 1 0 0 m l . ) was added ( 1 0 m l . ) and added o v e r 3 days a t t h i s temperature. ( i i ) 2 , 2 ' - B i p y r i d y l c o b a l t d i c h l o r i d e ( 0 * 8 6 g., 3 mmoles) was p l a c e d i n a f l a s k and N ( t r i m e t h y l s i l y l ) d i p h e n y l k e t i m i n e ( 1 * 5 m l . , 6 m m o l e s ) was added. The s o l i d d i s s o l v e d t o some e x t e n t , g i v i n g a b l u e - g r e e n After stirring overnight, a t room t e m p e r a t u r e , t h e n h e a t i n g a t 80-90°C f o r s e v e r a l d a y s , no change was o b s e r v e d and no new s p e c i e s c o u l d be (iii) solution. detected. 2 , 2 ' - B i p y r i d y l c o b a l t d i c h l o r i d e ( 1 * 7 g., 6 mmoles) and -93- N ( t r i m e t h y l s i l y l ) d i p h e n y l k e t i m i n e ( 3 m l . , 12 mmoles) were p l a c e d i n a walled glass with t u b e , w h i c h was t h e n e v a c u a t e d and s e a l e d . the temperature b e i n g r a i s e d i n steps. The tube was h e a t e d , No change was o b s e r v e d u n t i l t h e t e m p e r a t u r e had r e a c h e d 276°C, when a d a r k e n i n g i n c o l o u r was 1 ( B i p y C o C l 2 decomposes a t 268°C, under n i t r o g e n ) ? * ^ room t e m p e r a t u r e and e x t r a c t e d w i t h p e n t a n e . c o n t a i n b i p y C o C ^ (by i n f r a r e d O'Ol mm/Hg t o y i e l d slightly 3 b l a c k s o l i d remained a f t e r d i s t i l l a t i o n 2 3 Removal shown t o o f s o l v e n t from t h e 2 ml. of a y e l l o w v i s c o u s l i q u i d . 2 Ph C=NSiMe The tube was c o o l e d to w h i c h was d i s t i l l e d impure P h C = N S i M e , by i n f r a r e d noticed. The b l a c k r e s i d u e was spectroscopy). p e n t a n e e x t r a c t s gave a d a r k r e d o i l , thick a t 80-110°C, T h i s was shown t o be spectroscopy. A s m a l l amount o f S i n c e ~*657<, o f of the o i l . was r e c o v e r e d , i t was c o n c l u d e d t h a t no r e a c t i o n had occurred a p a r t from some d e c o m p o s i t i o n . 2. R e s u l t s and Discussion R e a c t i o n of ( P h P ) C o C l 3 2 w i t h P h C = N L i and Ph C=N-SiMe 2 2 2 b l u e c r y s t a l l i n e complexes ( P h C = N H ) C o C l 2 2 2 and gave t h e b r i g h t 3 (Ph P)(Ph C=NH)CoCl , 3 2 2 r e s p e c t i v e l y , w h i c h were i d e n t i f i e d by e l e m e n t a l a n a l y s e s and spectroscopy. CoCl 2 (Ph C=NH) CoCl 2 2 2 was a l s o p r e p a r e d d i r e c t l y from a n h y d r o u s and Ph C=NH, b u t r e a c t i o n o f P h C = N L i w i t h a n h y d r o u s C o C l 2 2 b l a c k t a r from w h i c h no s o l i d c o u l d be i s o l a t e d , e v e n a f t e r triphenylphosphine. (Ph P)(Ph C=NH) CoCl 3 infrared 2 the t e t r a h e d r a l 2 the a d d i t i o n of The c o l o u r s o f t h e c o m p l e x e s ( P h C = N H ) C o C l 2 gave a 2 2 2 and 1 2 a r e c h a r a c t e r i s t i c o f t e t r a h e d r a l C o * c o m p l e x e s , and s t r u c t u r e of ( P h C = N H ) C o C l 2 2 2 i s c o n f i r m e d by i t s d i f f u s e -94- reflectance spectrum, recorded i n t h e r a n g e 25,000 cm ^ t o 10,000 cm *" - (400 m/J t o 1,000 m/u), w h i c h shows a b r o a d i n t e n s e band a t 16,000 cm *" w i t h two - s h o u l d e r s a t 16,560 cm"''" and 17,090 cm *. Tetrahedral c o b a l t ( l l ) halide c o m p l e x e s o f 2 - c h l o r o p y r i d i n e and 2 - b r o m o p y r i d i n e h a v e s i m i l a r -1 t h e i n t e n s e band n e a r On p r o l o n g e d s t a n d i n g i n t o l u e n e o r THF s o l u t i o n , o r on h e a t i n g i n 3 2 deposited. 247 16,000 cm toluene, (Ph P)(Ph C=NH)CoCl are 2 l o s e s PPh PPh , contaminated 3 3 and b l u e c r y s t a l s o f a complex, ( I I ) , w i t h benzophenone, was r e c o v e r e d t h e THF mother l i q u o r and i d e n t i f i e d by i n f r a r e d s p e c t r u m o f I I shows t h e a b s e n c e o f P P h due to spectra with to c o - o r d i n a t e d Ph C=NH. 3 spectroscopy. The i n f r a r e d i n t h e complex, and c o n t a i n s bands The p o s i t i o n s o f t h e s e bands a r e v e r y 2 from t h o s e i n t h e s p e c t r u m o f t h e complex ( P h C = N H ) ( P P h ) C o C l . 2 3 2 similar The b r i g h t b l u e c o l o u r o f I I i s c h a r a c t e r i s t i c o f t e t r a h e d r a l c o b a l t ( l l ) c o m p l e x e s , and it seems l i k e l y that l o s s of PPh 3 from ( P h C = N H ) ( P P h ) C o C l 2 3 2 h a s caused d i m e r i s a t i o n and t h e d a t a on complex I I i s c o n s i s t e n t w i t h t h e f o r m u l a t i o n [(Ph C=NH)CoCl ]2' 2 The i n f r a r e d 2 spectra, particularly i n d i c a t e t h a t the environment o f the c o - o r d i n a t e d changed upon d i m e r i s a t i o n , and so I I p r o b a b l y The analytical suggests data obtained on I I s u p p o r t s the presence diphenylketimine o f vN-H i s little contains chlorine bridges. the formulation, although i t t h a t t h e sample i s o l a t e d was s l i g h t l y c o n t a m i n a t e d , p r o b a b l y with (Ph.P)(Ph C=NH)CoCl . 0 0 After heating (Ph P)(Ph C=NH)CoCl 3 2 2 i n the s o l i d state for several days, most o f t h e complex was r e c o v e r e d , b u t a l i t t l e b l u e , i n s o l u b l e s o l i d , I I I , -95- remained. The i n f r a r e d s p e c t r u m of I I I was showed t h a t c o m p l e t e l o s s of PPh^ had d i p h e n y l k e t i m i n e was still very similar a g a i n o c c u r r e d , but p r e s e n t . ' The was shown to be d i f f e r e n t and i t d i d n o t m e l t b e l o w 360°C (m.pt. I I , 212°C). formulated as a polymeric that and co-ordinated b l u e c o l o u r of I I I i s a g a i n c h a r a c t e r i s t i c of t e t r a h e d r a l c o b a l t ( l l ) c o m p l e x e s . from I I j to t h a t o f I I , i t s carbon However, complex I I I c o n t e n t was considerably Complex I I I lower i s tentatively compound formed from ( P h P ) ( P h 2 C = N H ) C o C l 2 by loss 3 of PPh.j and p o s s i b l y some Pti2C=NH. Polymeric structures with chlorine b r i d g e s a r e known f o r o t h e r c o b a l t c h l o r i d e c o m p l e x e s , f o r example a n h y d r o u s 248 C0CI2 and the v i o l e t form of P y 2 C o C l 2 , i n w h i c h t h e c o b a l t i s i n an 249 o c t a h e d r a l environment. (Py2CoCl2 a l s o e x i s t s i n a l e s s s t a b l e blue 249 monomeric, t e t r a h e d r a l form w h i c h c o n v e r t s t o t h e v i o l e t form on s t a n d i n g ) . R e a c t i o n o f ( p y ^ C o C l g w i t h Ph2C=NLi a t room t e m p e r a t u r e tar; the s m e l l of f r e e p y r i d i n e was solid ( p y ^ C o C l j does n o t b e g i n t a r produced resembled and a g a i n no detected during the r e a c t i o n , although to l o s e p y r i d i n e u n t i l that obtained s o l i d c o u l d be i s o l a t e d . 102°C.^^ The (Ph_P)(Ph C=NH)CoCl of ( P h j P ^ C o C ^ and black Using ( b i p y ) C o C l 2 and Ph2C=NLi, CoC^, no occurred; t o decompose a t 268°C, under n i t r o g e n . a b s o r p t i o n s i n the i n f r a r e d 0 The i n t h e r e a c t i o n of Pb.2C=NLi w i t h r e a c t i o n c o u l d be d e t e c t e d b e l o w 276°C, when d e c o m p o s i t i o n (Bipy)CoCl2 begins gave a b l a c k 0 are l i s t e d s p e c t r a of (Ph2C=NH)2CoCl2 i n T a b l e I I . 1 , w h i c h a l s o i n c l u d e s the s p e c t r a Ph2C=NH f o r c o m p a r i s o n . The s p e c t r a o f the two compounds d e r i v e d from ( P h P ) ( P h C = N H ) C o C l 2 were i d e n t i c a l 3 and 2 polymeric to t h a t of -96- Table I I . 1 . Infrared Spectra of tetrahedral C o 11 Ph_C=NH (liquid complexes (Nujol mull) and of smear) Ph P -CoCl 2 (Ph C=NH) CoCl 2 2 2 Ph C=NH 2 (Ph P) CoCl 3 2 2 Ph C=NH-^^' 2 -1 -1 cm cm 3279(vw) 1600(s) 1567(s) 1479(sh) 1451(sh) 1437(s) 1393(sh) 1238(m) 1186(w) 1161(w) 1126(vw) 1099(s) 1075(w) 1029(m) 1000(m) 973(w) 939(w) 911(w) 868(s) 791(s) 763(s) 745(vs) 740(sh) -1 cm 3279(w) 1597(s) 1567(s) 3257(w) 1603(m) 1572(m) 1451(sh) 1449(m) 1395(sh) 1236(ms) 1364(s) -1 cm 1435(s) 1163(w) 1196(ms) 1179(sh) 1149(w) I075(w) 1030(w) 1000(w) I072(w) 1029(w) 1000(vw) 939(m) 910(m) 868(s) 852(sh) 791(s) 763(s) 1181(w) 1156(w) I096(s) I068(vw) 1026(w) 997(w) 927(m) 891(s) 787(s) 761(s) 746(vs) 740(sh) 719(w) / \}y i a 704 J s p l i t 693(vs) 643(s) 617(w) 521(vs) 499(vs) 708 "]vs 704 J s p l i t 695(s) 643(s) 616(vw) 709(ms) 696(vs) 623(s) 692(vs) 520(vs) 497(vs) -97- (Ph C=NH) CoCl 2 2 2 The vN-H and vC=N s t r e t c h i n g f r e q u e n c i e s of several d i p h e n y l k e t i m i n e c o m p l e x e s of t r a n s i t i o n m e t a l s a r e shown i n T a b l e I I . 2 , comparison. behaviour I t c a n r e a d i l y be s e e n t h a t t h e r e i s no d i s t i n c t of e i t h e r parameter. The c o b a l t complexes, i n ( P h C = N H ) C u C l 2 2 shift 2 and to h i g h e r f r e q u e n c y for trend i n of vN-H i n the i n t h e molybdenum c a r b o n y l complex 253 i s a l s o observed i n diphenylketimine adducts of main group m e t a l s . the manganese c a r b o n y l h a l i d e d e r i v a t i v e s , t h e s h i f t o f vN-H i s c o n s i s t e n t with electron withdrawal upon c o - o r d i n a t i o n . vC=N seems t o be l i t t l e t h e l i g a n d , a s h a s been o b s e r v e d to l o w e r a f f e c t e d by c o - o r d i n a t i o n o f 253 f o r m a i n group m e t a l 2 Direct source a t temperatures peak a t M/e No 181 2 o f 95°C, 160°C and + fragments 2 2 due and (Ph P)(Ph C=NH)CoCl , 3 3 + and 2 2 the t o breakdown of t h i s i o n . Similarly, obtained w i t h a source temperature peaks c h a r a c t e r i s t i c of [ P h P ] The 2 200°C gave s p e c t r a showing a p a r e n t c o b a l t - c o n t a i n i n g p e a k s c o u l d be d e t e c t e d . 2 complexes. i n s e r t i o n of t h e former compound, w i t h ( P h C = N H ) and (Ph.jP)(Ph C=NH)CoCl frequencies from n i t r o g e n v i a the cr-bond, A t t e m p t s to o b t a i n mass s p e c t r a of ( P h C = N H ) C o C l were u n s u c c e s s f u l . In the s p e c t r u m of 190°C showed of only + [Ph C=NH] . 2 r e l u c t a n c e of d i p h e n y l k e t i m i n e t o complex w i t h t r a n s i t i o n m e t a l s as an a n i o n i c l i g a n d i s somewhat s u r p r i s i n g , s i n c e m a i n group m e t a l h a l i d e s 254 254 255 (aluminium , beryllium and boron ) react r e a d i l y with ketiminolithium a t room t e m p e r a t u r e to e l i m i n a t e L i X . R e a c t i o n o f Ph_C.=NLi w i t h Mn(CO)^Cl gave two c o m p l e x e s , one o f w h i c h was formulated a s Mn(CO) N=CPh n 2 ( n = 4 or 5 ) , -98- Table I I . 2 . v„ and v_ f o r some T r a n s i t i o n M e t a l N-H C=N D i p h e n y l k e t i m i n e Complexes Complex v Ph C=NH 2 (Ph C=NH) CoCl 2 2 2 (Ph C=NH)(PPh )CdCl 2 3 CuCl .(Ph C=NH) 2 2 2 5 2 0 2 250 CuCl .Ph C=NH 2 N-H v (cm ) ' V C=N ( c m _ 1 ) 3257 1603 3279 1597 3279 1600 3281 1607 3200 1601 3215 1618, 1597 3215 1616, 1597 3279 1595 2 951 Mn(CO) (Ph C=M) Cl 3 2 2 251 Mn(CO) (Ph C=NH) Br 3 2 2 252 Mo(CO) (Ph C=NH) 3 2 3 -99- a l t h o u g h Ph C=NSiMe 2 3 w i t h Mn(CO) Br gave o n l y Mh(CO) (Ph C=NH) Br. 5 3 2 251 The 2 source o f the hydrogen i n t r o d u c e d i n t o the l i g a n d i n the f o r m a t i o n o f k e t i m i n e - c o b a l t complexes from Ph C=NLi and Ph C=NSiMe 2 the s o l v e n t . 2 i s thought 3 t o be The k e t i m i n e - c o p p e r complexes r e f e r r e d t o i n Table I I . 2 were prepared by d i r e c t r e a c t i o n o f Ph C=NH w i t h anhydrous C u C l 2 2 > (Ph C=NH) CuCl 2 2 2 250 being the major p r o d u c t . (bipy)CoCl 2 The t e t r a h e d r a l c o b a l t complexes ( p y ) C o C l and 2 were prepared and r e a c t e d w i t h Ph C=NLi and Ph C=NSiMe 2 hope t h a t the n i t r o g e n l i g a n d s a l r e a d y p r e s e n t 2 3 2 i n the i n t h e complex would encourage t h e f o r m a t i o n o f a k e t i m i n o d e r i v a t i v e . Lack o f r e a c t i o n between bipyCoCl 2 and Ph C=NSiMe 2 3 i n d i c a t e s t h a t even when displacement o f t h e n e u t r a l l i g a n d i n t h e s t a r t i n g m a t e r i a l by Ph C=NH i s made u n f a v o u r a b l e by 2 the presence o f a s t r o n g l y bonding c h e l a t i n g l i g a n d , the a l t e r n a t i v e r e a c t i o n i e . e l i m i n a t i o n o f Me^SiCl s t i l l w i l l n o t occur D i f f e r e n c e s i n b e h a v i o u r between Ph C=NLi and Ph C=NSiMe.j have been 2 2 observed w i t h o t h e r m e t a l s . The Mn(C0),.X system has been mentioned i n t h e 251 p r e c e d i n g paragraph. I n main group m e t a l systems, Ph C=NLi w i t h 254 aluminium and b e r y l l i u m c h l o r i d e s , d i s p l a c e s a l l the halogens , whereas 254 2 excess Ph,,C=NSiMe w i l l r e p l a c e o n l y one halogen i n each m e t a l h a l i d e . 3 N e v e r t h e l e s s , i t seems s u p r i s i n g t h a t Ph C=NLi r e a d i l y r e p l a c e s 2 triphenylphosphine groups i n (Ph.jP) CoCl 2 2 w h i l e g a i n i n g a p r o t o n , whereas Ph C=NSiMe^ w i l l r e p l a c e o n l y one PPh^ group, a l t h o u g h 2 can s l o w l y l o s e the r e m a i n i n g both the r e s u l t i n g complex Ph^P group and p o l y m e r i s e . -100- C. Non-carbonyl n i c k e l systems A l t h o u g h L2C8X2 complexes u s u a l l y e x i s t i n a t e t r a h e d r a l configuration i n the s o l i d s t a t e , t e t r a h e d r a l s q u a r e p l a n a r and o c t a h e d r a l c o n f i g u r a t i o n s } 256 are known f o r the n i c k e l complexes L2NiX2« However, ( P h ^ P ^ N i C ^ has 257 been shown t o have a t e t r a h e d r a l c o n f i g u r a t i o n and s t u d i e s o f the r e a c t i o n s o f t h i s complex w i t h d i p h e n y l k e t i m i n e and i t s t r i m e t h y l s i l y l d e r i v a t i v e were undertaken. However, a d d i t i o n o f THF t o t h e v e r y dark b l u e c r y s t a l s o f ( P h ^ P ^ N i C ^ gave a v i o l e t s o l u t i o n , b u t a l s o a voluminous p a l e - y e l l o w p r e c i p i t a t e , and 1. the i n v e s t i g a t i o n o f t h i s r e a c t i o n w i l l be d e s c r i b e d (Ph P) NiCl 3 2 2 + THF B i s ( t r i p h e n y l p h o s p h i n e ) n i c k e l d i c h l o r i d e (4 g., 6 mmoles) was i n a f l a s k and THF (30 m l . ) was added. The f o r 30 min. the p r e c i p i t a t e was occurred only very slowly, temperature, the p r e c i p i t a t e . the b l u e - g r e e n mother l i q u o r was (10 m l . ) . over- t o room removed by f i l t r a t i o n , This and was t w i c e more, and t h e cream c o l o u r e d r e s i d u e f i n a l l y washed w i t h u n t i l the washings were no l o n g e r green, then pumped d r y . mother l i q u o r and washings were pumped d r y , and was This refluxed After cooling t h e r e s i d u e r e f l u x e d f o r s e v e r a l hours w i t h more THF repeated observed. allowed to s e t t l e . though, and so the suspension was n i g h t i n an a t t e m p t t o c o a g u l a t e placed s o l v e n t i m m e d i a t e l y became d a r k l y c o l o u r e d , and r a p i d f o r m a t i o n o f a p a l e y e l l o w p r e c i p i t a t e was After stirring first. washed w i t h pentane (4 x 10 m l . ) . The the green s o l i d THF combined remaining On e v a p o r a t i o n o f t h e pentane washings, -101- t r i p h e n y l p h o s p h i n e ( i d e n t i f i e d by i n f r a r e d s p e c t r o s c o p y ) (2 g. , 627„). recovered The green s o l i d r e m a i n i n g a f t e r washing w i t h pentane was shown by i n f r a r e d spectroscopy The cream i n the a i r . was t o be u n r e a c t e d (Ph^P^NiC^- powder i s d e l i q u e s c e n t and g r a d u a l l y t u r n s green on s t a n d i n g I t s i n f r a r e d spectrum ( N u j o l m u l l ) shove bands a t 1 3 5 0 ( s h ) , 1261(vw), 1176(w), I 0 5 5 ( s h ) , 1 0 4 2 ( v s ) , 9 1 8 ( s , s h ) , 8 8 5 ( v s ) , 8 0 0 ( v w ) , 722(w), -1 680(w) c m , which can be a t t r i b u t e d t o c o - o r d i n a t e d THF. (THF itself absorbs a t 1370(vw), 1179(w), 1 0 7 3 ( v s ) , 1 0 3 3 ( s h ) , 9 1 2 ( s ) , 658(w,broad) cm"^"). A n a l y t i c a l data on t h e compound, i s shown i n Table I I . 3 , w i t h t h e o r e t i c a l values together f o r NiCl '2THF, NiC^-THF and N i C l . 2 2 Table I I . 3 . %Ni %C1 %C %H Found 33*5 5*4 31-8, 29-4 23 '4 NiCl .2THF r e q u i r e s 35'0 5*8 25*9 21*5 NiCl^THF requires 24-3 4*0 35*1 29-2 NiCl requires - - 54 «6 45*4 2 2 Although n o t c o n c l u s i v e , these f i g u r e s suggest t h e compound i s NiCl '2THF, 2 perhaps c o n t a i n i n g some NiCl .THF. 0 The complex NiCl .2THF has been r e p o r t e d 0 258 p r e v i o u s l y i n the form o f y e l l o w cubes. d i r e c t r e a c t i o n of N i C l 2 I t c o u l d n o t be prepared and THF, b u t was o b t a i n e d by replacement o f ftOIEKOE " r \ 1 8 AUG 1969 lEonoa., IBRARj by -102- a c e t o n i t r i l e from a r o y a l b l u e a c e t o n i t r i l e n i c k e l complex. 2. 258 259 ' N i c k e l complexes + k e t i m i n e s (a) (Ph P) NiCl 3 2 2 + Ph C=NH 2 B i s ( t r i p h e n y l p h o s p h i n e ) n i c k e l d i c h l o r i d e (1*3 g. , 2 mmoles) was p l a c e d i n a f l a s k and d i p h e n y l k e t i m i n e (0*7 m l . , 4 mmoles) was added by syringe. was The m i x t u r e was s t i r r e d f o r a few m i n u t e s , and then THF (20 m l . ) added. The s o l u t i o n immediately dissolved. l o o k e d p u r p l e , and a l l t h e s o l i d A f t e r 30 min. t h e s o l v e n t was removed under vacuum, l e a v i n g a p u r p l e s o l i d , which was washed w i t h e t h e r and pentane t o remove PPh^. purple (Ph C=NH) NiCl 2 2 2 was r e c r y s t a l l i s e d r a p i d l y from THF/ether, washed w i t h e t h e r and pumped d r y . Yield 0*6 g. ( 6 0 % ) . Found: C.63'0; H,4«3; N,5*2; Cl,13'77o. N,5'7; Cl,14*47o. o f PPh 3 The M.Pt. 196°C ( d ) . NiC H N Cl 2 6 2 2 2 2 r e q u i r e s C,63'4; H,4'5; The i n f r a r e d spectrum ( N u j o l m u l l ) c o n f i r m e d t h e absence and showed a b s o r p t i o n s a t t r i b u t a b l e t o Ph C=NH, a t 3 1 9 3 ( s h ) , 2 3175(m), 1 5 9 7 ( s ) , 1562(m), 1351(w), 1 2 6 6 ( s ) , 1 2 5 2 ( s h ) , 1163(m), I 0 8 7 ( s h ) , I 0 7 6 ( w ) , 1031(w), 1002(w), 985(w), 9 4 3 ( s ) , 9 3 7 ( s h ) , 9 1 7 ( s h ) , 9 0 7 ( s ) , 8 5 5 ( s h ) , 845(w), 7 9 5 ( s ) , 785(m), 7 7 4 ( s h ) , 7 6 9 ( s ) , 726(m), 7 0 7 ( s ) , 6 9 6 ( v s ) , 6 5 1 ( s ) cm ^. ( b ) NiClp.nTHF + Ph C=NH 2 The n i c k e l d i c h l o r i d e - T H F adduct (0*38 g., 1*4 mmoles) was p l a c e d i n a f l a s k and d i p h e n y l k e t i m i n e ( 1 m l . , 6 mmoles) was added. o c c u r r e d on s t i r r i n g a t room temperature. and No r e a c t i o n A f t e r a d d i t i o n o f THF (15 m l . ) s l i g h t warming, a b l u e - v i o l e t c o l o u r developed i n t h e s o l v e n t and a l i t t l e -103- p u r p l e s o l i d was observed. However, a f t e r s t i r r i n g s e v e r a l hours much NiCl2'2THF remained, and t h e s o l u t i o n was f i l t e r e d warm. A mixture of p u r p l e c r y s t a l s and a cream s o l i d d e p o s i t e d on c o o l i n g , which were i d e n t i f i e d by i n f r a r e d spectroscopy as (Ph2C=NH)2NiCl2 and NiC^-nTHF, r e s p e c t i v e l y . The two complexes c o u l d n o t be s e p a r a t e d , as they have s i m i l a r s o l u b i l i t y properties and t h e k e t i m i n e complex decomposes s l o w l y i n s o l u t i o n . (c) (Ph P) NiCl 3 2 2 + Ph C=NSiMe 2 Bis(triphenylphosphine)nickel 3 d i c h l o r i d e (1*9 g., 3 mmoles) was t r e a t e d w i t h N ( t r i m e t h y l s i l y l ) d i p h e n y l k e t i m i n e (1*5 m l . , 6 mmoles) i n one arm o f a double Schlenk tube. The dark b l u e - g r e e n m i x t u r e was a l l o w e d t o s t i r o v e r n i g h t , b u t no change was observed. Washing w i t h p e t r o l e u m e t h e r (80-100 ) l e f t a dark green s o l i d and c o m b i n a t i o n o f the washings and e v a p o r a t i o n y i e l d e d a y e l l o w o i l , shown by i n f r a r e d spectroscopy t o be Pt^C^NSiMe^. E x t r a c t i o n o f t h e dark green s o l i d w i t h t o l u e n e gave a brown v i o l e t s o l u t i o n which y i e l d e d a s m a l l amount o f gummy s o l i d . The m a j o r i t y of t h e green s o l i d which was i n s o l u b l e i n t o l u e n e , was shown by i n f r a r e d s p e c t r o s c o p y t o be u n r e a c t e d 3. (Ph^P^NiC^. R e s u l t s and D i s c u s s i o n When t h e dark b l u e b i s ( t r i p h e n y l p h o s p h i n e ) n i c k e l d i c h l o r i d e complex was t r e a t e d w i t h THF, displacement o f t h e PPh^ groups o c c u r r e d and t h e cream s o l i d which p r e c i p i t a t e d c o n s i s t e d o f THF adducts o f N i C ^ , m a i n l y NiCl .2THF. 9 R e a c t i o n i n t h e absence o f a s o l v e n t between b i s ( t r i p h e n y l - -104- p h o s p h i n e ) n i c k e l d i c h l o r i d e and d i p h e n y l k e t i m i n e gave t h e p u r p l e complex b i d ( d i p h e n y l k e t i m i n e ) n i c k e l d i c h l o r i d e , (Ph C=NH) MG .The two complexes were 2 i d e n t i f i e d by e l e m e n t a l a n a l y s i s 2 l and i n f r a r e d spectroscopy. systems NiCl .2THF/Ph C=NH and ( P h P ) N i C l / P h C = N S i M e 2 2 3 only t o a very s l i g h t 2 complexes o f N i * u u J- 1 3 reaction occurred s t a b i l i t i e s o f o c t a h e d r a l and t e t r a - 1 1 and ( C o ) h a l i d e s w i t h a v a r i e t y o f amines, have J 247,256,260 been much d i s c u s s e d . important, 2 extent. The f a c t o r s g o v e r n i n g t h e r e l a t i v e hedral 2 However, i n t h e „ . . j , • * Both s t e r i c and e l e c t r o n i c f a c t o r s a r e t h e l a t t e r i n c l u d i n g t h e b a s i c i t y o f t h e l i g a n d and i t s j t - a c c e p t o r p r o p e r t i e s , as w e l l as t h e p o l a r i s a b i l i t y o f the h a l i d e . N i c k e l ( l l ) seems 256 t o show a marked p r e f e r e n c e f o r an o c t a h e d r a l , r a t h e r than a t e t r a h e d r a l environment, i n c o n t r a s t t o c o b a l t ( l l ) f o r which t e t r a h e d r a l complexes 256 L C'oX a r e common. 2 The n i c k e l d i c h l o r i d e THF adduct appears from i t s 2 colour and l a c k o f s o l u b i l i t y i n s o l v e n t s presumably w i t h c h l o r i n e b r i d g e s , The d i f f u s e r e f l e c t a n c e 25,000 cm" and 1 1 complexes 2 5 6 g i v i n g the n i c k e l an o c t a h e d r a l s t r u c t u r e . spectrum o f NiCl .2THF, r e c o r d e d over t h e range 2 t o 10,000 cm" 11,900 cm . o t h e r than THF t o be p o l y m e r i c , 1 shows bands a t 2 1 , 9 8 0 , ~ 2 1 , 0 5 0 ( s h ) , ~ 1 2 , 9 0 0 ( s h ) Comparison w i t h t h e s p e c t r a o f o t h e r o c t a h e d r a l ( e . g . N i C l : 22,100, ~19,400, 12,900,^11,600 c m 2 - 1 Ni 1 1 and 1 N i p y C l : 2 4 , 1 0 0 , ~ 2 2 , 0 0 0 ( s h ) , 13,900, ~ 1 2 , 5 0 0 ( s h ) cm" ) c o n f i r m s t h a t 2 2 NiCl .2THF has an o c t a h e d r a l c o n f i g u r a t i o n . 0 Bis(triphenylphosphine)nickel 25 d i c h l o r i d e has been shown t o be monomeric, w i t h a t e t r a h e d r a l c o n f i g u r a t i o n ? Further co-ordination of ligands i n t h i s complex i s p r o b a b l y r e s t r i c t e d by -105- the b u l k y PPh^ groups. 257 The d r i v i n g f o r c e f o r the displacement o f PPh^, which i s a s t r o n g donor, by the r e l a t i v e l y weak donor THF, may be t h a t t h e r e s u l t i n g compound i s p o l y m e r i c and has n i c k e l i n i t s p r e f e r r e d o c t a h e d r a l environment. The p u r p l e n i c k e l complex (Pb^C™!^!^!^^ i s much l e s s s t a b l e i n m o i s t a i r than i t s c o b a l t analogue. I t i s i n s o l u b l e i n hydrocarbon s o l v e n t s , e t h e r , carbon t e t r a c h l o r i d e , b u t d i s s o l v e s t o some e x t e n t i n THF and CHCl^ t o g i v e v i o l e t and b l u e s o l u t i o n s r e s p e c t i v e l y . solution causes decomposition Warming the THF w i t h p r e c i p i t a t i o n of a white s o l i d . The diffuse r e f l e c t a n c e spectrum o f (Ph2C=NH)2NiCl2 ( r e c o r d e d i n the range 25,000 t o - 1 10,000 c m ) showed bands a t 19,460, 1 6 , 6 7 0 ( s h ) , l l , 9 6 0 ( s h ) —10,000 Comparison w i t h t h e s p e c t r a o f o t h e r o c t a h e d r a l N i 3 I ^ N i ^ C ^ ^ * ' i n d i c a t e s t h a t ( P t ^ C ! ^ ! ^ ! ^ ^ has Since o t h e r o c t a h e d r a l I ^ N i C ^ complexes e.g. 1 1 complexes o f the an o c t a h e d r a l 1 cm" . type configuration. N i p y g C ^ have p o l y m e r i c 256 s t r u c t u r e s w i t h c h l o r i n e b r i d g e s i n the s o l i d s t a t e 3 ( P t ^ C ! ^ ! ^ ! ^ ^ ^ has the same s t r u c t u r e . , i t seems l i k e l y On d i s s o l u t i o n i n c h l o r o f o r m , c h l o r i n e b r i d g e s are b r o k e n , g i v i n g the c h a r a c t e r i s t i c b l u e c o l o u r o f h e d r a l n i c k e l complexes. The 3 i n f r a r e d spectrum o f ( P h j C ! ^ ! ^ ! ^ ^ n o t i c e a b l y from t h a t o f (Ph C=NH)2CoCl2• 2 complex i s much s t r o n g e r , and I n p a r t i c u l a r , vN-H the o t h e r bands due that the tetra- differs i n the n i c k e l to co-ordinated diphenyl- k e t i m i n e a r e s h i f t e d by v a r y i n g amounts. The r e l u c t a n c e o f the n i c k e l d i c h l o r i d e THF adduct t o r e a c t w i t h d i p h e n y l k e t i m i n e r e f l e c t s the s t a b i l i t y o f the complex. The almost complete -106- l a c k o f r e a c t i o n between ( P h ^ P ^ N i C ^ and Ph C=N-SiMe may 2 3 be due t o the absence o f a s o l v e n t t o a c t as a source o f a p r o t o n f o r Pti2C=N , so the complex (Ph2C=NH)2NiCl2 can form. that The a l t e r n a t i v e r e a c t i o n i . e . e l i m i n a t i o n o f Me^SiCl (and f o r m a t i o n o f (Pti2C=N)2Ni(PPh.j)2) seems as u n f a v o u r a b l e as i t was D. shown t o be i n the c o b a l t system. C o b a l t Garbonyls and K e t i m i n e s 1. Introduction The work d e s c r i b e d i n t h i s s e c t i o n concerns the e x t e n s i o n o f t h e study o f d i p h e n y l k e t i m i n e as a n e u t r a l and a n i o n i c l i g a n d i n t o the f i e l d o f m e t a l c a r b o n y l systems. C o b a l t c a r b o n y l was i n v e s t i g a t i o n f o r s e v e r a l reasons. chosen as t h e c a r b o n y l system f o r F i r s t l y , t h i s study was p a r t o f a w i d e r i n v e s t i g a t i o n i n t o the r e a c t i o n s o f i m i n o compounds w i t h t r a n s i t i o n metal complexes, e s p e c i a l l y c a r b o n y l complexes, undertaken by t h e r e s e a r c h group. 251 S e v e r a l o t h e r m e t a l c a r b o n y l systems had a l r e a d y been s t u d i e d , and the background t o these i n v e s t i g a t i o n s w i l l now be b r i e f l y summarised. The r e a c t i o n o f d i p h e n y l k e t i m i n e w i t h Mn(C0)^X (X = C l , B r ) gave t h e expected d i s u b s t i t u t e d d e r i v a t i v e s Mn(C0).jL X. 2 The bromide was also prepared from Mn(C0),-Br and Ph C=NSiMe.j, a l t h o u g h a complex f o r m u l a t e d as 2 Mn(CO) (N=CPh„) ( n = 4 or 5) was R e a c t i o n was o b t a i n e d from Ph„C=NLi and Mn(C0) Br. c shown t o occur w i t h h e a t i n g between it-CpFe(C0) X and Ph2C=NY 2 (X = C l , Br; Y = MgBr, L i or Sa) b u t t h e m i x t u r e o f p r o d u c t s c o u l d noL be s a t i s f a c t o r i l y separated and i d e n t i f i e d . between [it-CpMo(C0) ] 3 2 Attempts to i n i t i a t e r e a c t i o n s and a z i n e s [ (PhC(H)=N-) and (Me C=N-) ] both t h e r m a l l y 2 2 2 -107- and p h o t o l y t i c a l l y , were u n s u c c e s s f u l and Natir-CpMoCCO)^] w i t h Ph C=NBr gave 2 m a i n l y [ jr-CpMo(C0) ] 3 2 with a l i t t l e rt-CpMo(C0) Br. 3 However, Ph C=NSiMe 2 r e a c t s w i t h jt-CpMo(C0) Cl t o g i v e t h e d i m e r i c species 3 3 [ jt-CpMo(C0)N=CPh ] 2 2 251 and a l i t t l e monomer, [rt-CpMo(CO) N=CPh ]. 2 2 The analogous monomeric 261 t u n g s t e n complex can a l s o be o b t a i n e d i n good y i e l d . Interestingly, jt-CpM(CO) Cl r e a c t s w i t h 2 moles o f Ph C=NLi t o g i v e 3 rt-CpM(CO) (Ph CNCPh ) 2 2 2 2 where M = Mo^^^, W^^, i n which t h e l i g a n d i s thought t o be bonding as a p s e u d o - a l l y l i c group. These two complexes w i l l be discussed complex [(p-CH -CgH^) C=NFe(CO) ] 3 2 3 2 later. The w i t h b r i d g i n g k e t i m i n o groups ( d e s c r i b e d i n Chapter I ) was o b t a i n e d from t h e c o r r e s p o n d i n g a z i n e and Fe(CO),. b u t t h e 185 c o n d i t i o n s o f t h e r e a c t i o n were n o t s p e c i f i e d . Another i m p o r t a n t reason f o r i n v e s t i g a t i n g c o b a l t c a r b o n y l - i m i n e systems stems from t h e w e l l known c a t a l y t i c p r o p e r t i e s o f Co„(C0) . Q z far This carbonyl, o more than any o t h e r , d i s p l a y s remarkable v e r s a t i l i t y i n c a t a l y s i n g 16 numerous o r g a n i c r e a c t i o n s , including reactions involving 36 and n i t r o g e n - n i t r o g e n u n s a t u r a t e d compounds. carbon-nitrogen Many o f these r e a c t i o n s i n v o l v e c y c l i s a t i o n w i t h i n s e r t i o n o f carbon monoxide, t o g i v e h e t e r o c y c l i c compounds. Examples o f t h e f o r m a t i o n o f s u b s t i t u t e d p h t h a l i m i d i n e s 36 S c h i f f bases and a r o m a t i c ketoximes ( a n d a l d o x i m e s ) ( i ) and ( i i ) r e s p e c t i v e l y . from a r e shown i n e q u a t i o n s -108- c» u Qr X) CH CO Benzaldehyde a n i l - o-i-o V N-Ph Co„(C0) 8 N-phenylphthalimidine Ph CO OH Co„(C0) 8 Benzophenone amine 5^ 3-phenylphthalimidine The c o b a l t c a r b o n y l c a t a l y s e d r e a c t i o n s a r e a l l t h o u g h t t o proceed v i a i n i t i a l c o - o r d i n a t i o n o f t h e o r g a n i c compound v i a t h e n i t r o g e n l o n e p a i r , t o ( ^ ( C O j g o r HCo(CO)^. A p o s s i b l e mechanism f o r a c y c l i s a t i o n r e a c t i o n has a l r e a d y been g i v e n i n Chapter I ( p . 1 8 ) , and i t was hoped t h a t i s o l a t i o n o f a k e t i m i n o c o b a l t c a r b o n y l d e r i v a t i v e might l e n d s u p p o r t t o these ideas. I n many o r g a n i c syntheses u s i n g c o b a l t c a r b o n y l as c a t a l y s t , a l k y l or . . . 16 a c y i c o b a l t t e t r a c a r b o n y l species a r e thought t o be i n t e r m e d i a t e s . Perhaps t h e b e s t known r e a c t i o n o f t h i s type i s t h e h y d r o f o r m y l a t i o n , or oxo r e a c t i o n i n which aldehydes a r e formed from o l e f i n e s , carbon monoxide and -109- hydrogen i n the presence o f Co ( C 0 ) : 2. o o . + .CO. . + .H_ ^C=C / 2 \ C °2 ( C 0 ) — Ic 8 2_> , I 100-160°C I I C 100-250 atm. and _* C ! H 0 t h e r e i s some chemical and i n f r a r e d evidence t h a t a c y l c o b a l t 1 c a r b o n y l s a r e formed d u r i n g t h e r e a c t i o n . ^ tetra- RCo(CO)^ and RCOCo(CO)^ species have been prepared and i s o l a t e d i n d e p e n d e n t l y , f o r example by t h e a l k y l a t i o n of t h e c o b a l t h y d r o c a r o n y l a n i o n w i t h a l k a l i h a l i d e s : C o ( C 0 ) " + RX 4 » RCo(C0) + X" 4 A l k y l d e r i v a t i v e s a r e l o w m e l t i n g a i r - s e n s i t i v e compounds, which a r e u s u a l l y 1 thermally unstable. ** some o r g a n i c e.g. RCo(CO)^ and RCOCo(CO)^ species themselves a r e used i n syntheses. RX + CO + C o ( C 0 ) " 4 > RC0Co(C0) + X~ 4 |R'OH 1 RC00R + HCo(CO). 4 I t was hoped i n t h i s study t o prepare i n t e r m e d i a t e a l k y l c o b a l t complexes, c o n t a i n i n g a m e t a l - n i t r o g e n , compounds s i m i l a r t o r a t h e r than a m e t a l - c a r b o n bond. The p r e p a r a t i o n o f c o b a l t t e t r a c a r b o n y l i o d i d e i n s o l u t i o n had r e c e n t l y 262 appeared i n t h e l i t e r a t u r e , and i t was thought t h a t t h i s complex might prove a u s e f u l s t a r t i n g m a t e r i a l f o r t h e s y n t h e s i s derivative. o f an a n i o n i c ketimino -110- 2. Experimental (a) Co (C0) 2 g +_I 2 + Ph C=NSiMe 2 3 262 Using the method of Pankowski and Bigorgne , s o l u t i o n s of d i c o b a l t o c t a c a r b o n y l (1*3 g., 4 mmoles) and i o d i n e ( 1 g., 4 mmoles) i n cetane ( t o t a l volume 100 m l . ) were mixed, g i v i n g a deep y e l l o w - b l a c k s o l u t i o n . The r e a c t i o n was f o l l o w e d by i n f r a r e d spectroscopy. A f t e r 2 hrs., absorptions due t o C o _ ( C 0 ) and i t s thermal decomposition p r o d u c t , Co.(CO),- were / o t\ Li Q observed, b u t i n a d d i t i o n , a weak band a t 2115 appeared. cm"''', assigned t o CdC0)^I had Other a b s o r p t i o n s a s s o c i a t e d w i t h t h i s complex a r e i n a r e g i o n obscured by Co (C0)g a b s o r p t i o n s . 2 The i n t e n s i t y of t h i s h i g h frequency d i d n o t i n c r e a s e over a f u r t h e r 2 h r s . , and, s u s p e c t i n g an band equilibrium, N ( t r i m e t h y l s i l y l ) d i p h e n y l k e t i m i n e (2 m l . , 8 mmoles) i n centane (5 m l . ) added. Gas disappeared; e v o l u t i o n was was observed and over a p e r i o d o f 73 h r s . , C o ( C 0 ) t h e s o l u t i o n developed a p u r p l e b l u e . c a r b o n y l species were p r e s e n t i n s o l u t i o n . c o l o u r e d s o l i d separated o u t , which was a n o n - c a r b o n y l decomposition product. On Co^(C0)^ 2 and a o Q Z o new s t o r i n g a t -20°C,a d a r k l y shown by i n f r a r e d spectroscopy The carbonyl product could not t o be be i s o l a t e d from the cetane s o l u t i o n s i n c e the s o l v e n t c o u l d n o t c o n v e n i e n t l y be removed under vacuum w i t h o u t h e a t i n g and thus decomposing the p r o d u c t , ( c e t a n e b . p t . 287°C) and s o l v e n t e x t r a c t i o n w i t h n i t r o m e t h a n e and a c e t o n i t r i l e caused d e c o m p o s i t i o n , y i e l d i n g blue solutions. Using hexane as the r e a c t i o n medium, the r e a c t i o n proceeded as above, a l t h o u g h no band a t t r i b u t a b l e t o Co(C0)^I was observed. described On c o o l i n g -111- the red-brown s o l u t i o n a f t e r f i l t r a t i o n , a l i t t l e red-brown s o l i d d e p o s i t e d , b u t on warming t o room temperature, s o l i d ( a t room t e m p e r a t u r e , t h i s turned purple. 0*001 mm/Hg) was u n s u c c e s s f u l , and spectrum o f the p u r p l e s o l i d showed decomposition brown mother l i q u o r was b l a c k p r e c i p i t a t e was Sublimation of t h i s the i n f r a r e d had o c c u r r e d . The red- reduced i n volume, and on c o o l i n g , a second r e d - o b t a i n e d , whose i n f r a r e d spectrum showed c a r b o n y l a b s o r p t i o n s , and suggested c o - o r d i n a t e d d i p h e n y l k e t i m i n e . Before further measurements c o u l d be made, t h i s s o l i d became p u r p l e i n c o l o u r , and further d e p o s i t s from the mother l i q u o r were a l s o p u r p l e . (b) Co (C0) 2 g + Ph C=N-N=CPh 2 2 No r e a c t i o n o c c u r r e d between equimolar q u a n t i t i e s of dicobalt o c t a c a r b o n y l and benzophenone a z i n e on s t i r r i n g i n pentane a t room H e a t i n g caused f o r m a t i o n o f C o ^ ( C 0 ) ^ was 2 as the o n l y new i s o l a t e d as b l a c k needle l i k e c r y s t a l s . unchanged. S i m i l a r l y , no new The c a r b o n y l s p e c i e s , which a z i n e was recovered c a r b o n y l compounds were d e t e c t e d when t h e r e a c t a n t s , i n t o l u e n e ( i n a s i l i c a f l a s k ) were i r r a d i a t e d . unreacted a z i n e were a g a i n recovered. infrared temperature The Co^(C0)^ a n a 2 r e a c t i o n s were f o l l o w e d by spectroscopy. (b) Co (C0) 2 g + 2Ph C=NH 2 D i c o b a l t o c t a c a r b o n y l (1*05 g., 3 mmoles) was d i s s o l v e d i n pentane (30 m l . ) i n one arm o f a double Schlenk tube, and d i p h e n y l k e t i m i n e ( 1 m l . , 6 mmoles), d i l u t e d w i t h pentane (8 m l . ) was added by s y r i n g e . r e a c t i o n o c c u r r e d ; v i g o r o u s gas e v o l u t i o n was An immediate observed and a p u r p l e -112- p r e c i p i t a t e formed. A f t e r gas e v o l u t i o n had ceased (~-g-hr.) the dark y e l l o w mother l i q u o r was removed from the s o l i d by f i l t r a t i o n , w i t h pentane u n t i l and the s o l i d washed the i n i t i a l l y dark y e l l o w washings were c o l o u r l e s s . A s o l u t i o n i n f r a r e d spectrum o f t h e mother l i q u o r and washings showed ( ^ ( C O j g and Co^CcO)^ t o be the o n l y c a r b o n y l species p r e s e n t . The p u r p l e powder whose i n f r a r e d spectrum showed c a r b o n y l groups and c o - o r d i n a t e d k e t i m i n e was r e c r y s t a l l i s e d from t o l u e n e ( a t 50°C) y i e l d i n g dark p u r p l e c r y s t a l s ( I ) , b u t a second e x t r a c t i o n o f the crude s o l i d w i t h t o l u e n e a t 90°C caused decomposition and a b l a c k s o l i d was o b t a i n e d . R e p e t i t i o n o f the r e a c t i o n by m i x i n g the r e a c t a n t s a t -196°C and a l l o w i n g the m i x t u r e t o warm up s l o w l y gave the same p u r p l e powder. Recrystallisation from monoglyme gave a t a r , b u t w i t h THF/ether, dark p u r p l e c r y s t a l s were obtained. A f t e r s t o r i n g f o r s e v e r a l days a t -20°C, e x t r a c t i o n o f the c r y s t a l s w i t h t o l u e n e l e f t a p a l e p u r p l e r e s i d u e ( I I ) , which s t i l l c o n t a i n e d carbonyl and c o - o r d i n a t e d k e t i m i n e groups, as shown by i n f r a r e d spectroscopy. a d d i t i o n , on p r o l o n g e d standing, a toluene s o l u t i o n o f I deposited In pale purple, toluene i n s o l u b l e c r y s t a l s o f I I . Attempted s u b l i m a t i o n o f I a t room t e m p e r a t u r e , 0*001 mms/Hg was u n s u c c e s s f u l ; a t 70°C, t h e s o l i d g r a d u a l l y became p a l e grey and the c o l o u r l e s s l i q u i d which c o l l e c t e d on the c o l d f i n g e r was shown by i n f r a r e d spectroscopy to be a m i x t u r e o f d i p h e n y l k e t i m i n e and a l i t t l e benzophenone. Since a l l t h e ( ^ ( C O j g had not been used up i n the p r e v i o u s p r e p a r a t i o n s , the r e a c t i o n was r e p e a t e d by adding p o r t i o n s o f Ph„C=NH t o the C o ( C 0 ) 7 fl -113- solution. Thus, a f t e r r e a c t i o n o f Ph C=NH ( 7 mmoles) w i t h Co (CO)g (3*5 2 2 mmoles), the dark y e l l o w mother l i q u o r was removed from t h e p u r p l e p r e c i p i t a t e and t r e a t e d w i t h a f u r t h e r 3 mmoles o f Ph C—NH. 2 Effervescence o c c u r r e d and more p u r p l e p r e c i p i t a t e was o b t a i n e d , and a f u r t h e r 3 mmoles o f Ph C=NH caused f u r t h e r e f f e r v e s c e n c e and p r e c i p i t a t i o n , l e a v i n g an almost 2 c o l o u r l e s s mother l i q u o r . R e c r y s t a l l i s a t i o n o f the p r e c i p i t a t e s from t o l u e n e / pentane gave dark p u r p l e c r y s t a l s o f I . On a l l o w i n g a t o l u e n e s o l u t i o n o f I to s t a n d f o r s e v e r a l days, p a l e p u r p l e c r y s t a l s o f I I were o b t a i n e d , which were r e c r y s t a l l i s e d from THF/ether. A n a l y t i c a l Data. 64-5, 62*3; H, 4-06, 3-85, 4-46; N,6-817 . 0 4*0; N,5'07„. [Co(Ph C=NH) ][Co(C0) ] 2 6 [Co(Ph C=NH) ][Co(C0) l 2 4 [Co(C0) ] 4 2 4 4 2 I . Found: C,65*3* I I . Found: C,60'3, 55*6; H,3'7, r e q u i r e s C,69'9; H,4'4; N,5'4%. r e q u i r e s C.64'0; H,3'9; N, 5'0%. 2 [Co(Ph C=NH) ] 2 2 N r e q u i r e s C,62'5; H.2'8; N,3'7%. R e s u l t s and D i s c u s s i o n R e a c t i o n between C o _ ( C 0 ) Q and i o d i n e i n cetane s o l u t i o n probably produced a l i t t l e C o ( C 0 ) I , b u t none c o u l d be d e t e c t e d i n hexane s o l u t i o n . 4 A d d i t i o n o f Ph C=NSiMe,j t o these m i x t u r e s produced a new c a r b o n y l compound, 2 p o s s i b l y a k e t i m i n o d e r i v a t i v e , b u t i t s extreme i n s t a b i l i t y has p r e c l u d e d its identification. Attempts t o i n i t i a t e r e a c t i o n between C o ( C 0 ) g and 2 Ph C=N-N=CPh b o t h t h e r m a l l y and p h o t o l y t i c a l l y were u n s u c c e s s f u l . 2 2 Reaction between Co ( C 0 ) and Ph_C=NH gave a t o l u e n e s o l u b l e c o b a l t c a r b o n y l 2 o 2 u d i p h e n y l k e t i m i n e d e r i v a t i v e , which on s t a n d i n g changes t o a t o l u e n e i n s o l u b l e compound, s t i l l c o n t a i n i n g c a r b o n y l and k e t i m i n e groups. Product 475 5-0 55 CoCCO)8 475 50 50 55 I • 475 5-5 Fig.II.3 -114- S i n c e v e r y l i t t l e C o ( C O ) ^ I c o u l d be d e t e c t e d i n t h e r e a c t i o n s between Co (CO) 2 The and g I , i t i s probable 2 t h a t Ph C=NSiMe 2 3 reacted with 2 g p o s s i b i l i t y of t h e — S i M e ^ f r a g m e n t b o n d i n g to t h e c a r b o n y l c a n n o t ignored, 2 6 3 2 6 ' ^ ( f r o m Me„SiH and C o „ ( C O ) ) i s a v o l a t i l e J / o i s much more s t a b l e i n s o l u t i o n . o and Q Ph C=NSiMe„ h a s Me^SiCo(CO)^. probably similar 0 no a b s o r p t i o n s due i n the s o l i d Thus t h e p r o d u c t state, of t h e r e a c t i o n between s t a b i l i t y p r o p e r t i e s to t h o s e However, i n f r a r e d e v i d e n c e absent; pink 0 compound, w h i c h decomposes s l o w l y a t room t e m p e r a t u r e Co (C0) be e s p e c i a l l y a s many R ^ S i C o C c O ) ^ d e r i v a t i v e s have been r e p o r t e d . Indeed M e - S i C o C C O ) , 5 4- but Co (CO) . suggests of t h a t t h e compound i s t o Me^Si c o u l d be d e t e c t e d , and the 264 spectrum i n the c a r b o n y l r e g i o n d i f f e r s It from t h a t r e p o r t e d f o r M e ^ S i C o ( C O ) ^ . i s p o s s i b l e t h a t the i o d i n e p r e s e n t i n s o l u t i o n c o u l d h a v e r e a c t e d w i t h the Me^Si f r a g m e n t to g i v e M e ^ S i l , a l t h o u g h The pentane s o l u t i o n i n f r a r e d product Co^(CO)^ i s shown i n F i g . 1 1 3 2 probably i n pentane. o c c u r s , no p o s i t i o n s and no e v i d e n c e f o r t h i s was spectrum i n the c a r b o n y l r e g i o n of the t o g e t h e r w i t h t h e s p e c t r a of C o ( C O ) g deductions and 2 S i n c e o v e r l a p o f bonds due to p r o d u c t and about t h e n a t u r e o f t h e p r o d u c t r e l a t i v e i n t e n s i t i e s of i t s carbonyl obtained. Co^(CO)^ from 2 the stretching frequencies, can be made. The attempts b o t h t h e r m a l l y and C o ^ ( C O ) ^ , and 2 to i n i t i a t e r e a c t i o n between C o ( C O ) g and 2 photolytically, l e a d to decomposition r e c o v e r y of t h e u n r e a c t e d c o n d i t i o n s n e c e s s a r y to r u p t u r e t h e N-N azine. Ph C=N-N=CPh , 2 2 of Co (CO)g 2 I t i s apparent to that bond i n t h e a z i n e would be too -115- s e v e r e f o r the c a r b o n y l , w h i c h would decompose b e f o r e r e a c t i o n c o u l d R e a c t i o n between n i t r o g e n b a s e s and ( ^ ( C O ^ n o r m a l l y p o r t i o n a t i o n to y i e l d causes d i s p r o - s a l t s o f the t y p e [ C o L ^ ] [ C o ( C O ) ^ ] ^ ( n = 4 or u s u a l l y ) ^ , as d e s c r i b e d i n Chapter I. However, t h e p r o d u c t 6, ( I ) obtained from the r e a c t i o n of ( ^ ( C C O g w i t h Pti2C=NH does n o t appear to be o f type. I t s solubility this i n t o l u e n e s u g g e s t s i t i s c o v a l e n t r a t h e r than i n n a t u r e , but u n f o r t u n a t e l y attempts measurements i n n i t r o b e n z e n e compound. occur. to c o n f i r m t h i s by c o n d u c t i v i t y s o l u t i o n r e s u l t e d i n decomposition A t o l u e n e s o l u t i o n of the d a r k p u r p l e complex, I , on standing deposits pale purple c r y s t a l s ionic, of complex I I . of the prolonged Both t h e s e c o m p l e x e s c o n t a i n c a r b o n y l groups and c o - o r d i n a t e d d i p h e n y l k e t i m i n e , a s shown by infrared s p e c t r o s c o p y , and b o t h a r e a i r - s e n s i t i v e , complex I b e i n g especially so. Since diphenylketimine expected [Co + I I product seems to b e h a v e a s a weak base^^'^^''", from t h e r e a c t i o n o f ( ^ ( C C O g and (Ph„C=NH) ] [ C o 2 n - I (CO).] . 4 Z 0 Pti2C=NH i s Complex I I i s t e n t a t i v e l y f o r m u l a t e d t y p e of complex. T h i s i s s u p p o r t e d by the i n f r a r e d spectrum t h e c a r b o n y l r e g i o n , w h i c h shows a v e r y s t r o n g , b r o a d a l s o a s h o u l d e r a t 1910 cm The cm s t r o n g peak a t 1883 weak bands a r e p e r h a p s due -1 -1 and the i s attributable to i m p u r i t y . complex I I a r e c o n s i s t e n t w i t h an i o n i c The to [ C o ( C O ) ^ ] -4 cm and 2000 and the ^, but cm s o l u b i l i t y p r o p e r t i e s of and a c e t o n e , but a t t e m p t s -1 other formulation: i t i s insoluble i n t o l u e n e , p e n t a n e , e t h e r but s o l u b l e i n THF this (Nujol mull) i n peak a t 1883 two v e r y weak bands a t 2012 as to -116- o b t a i n c o n d u c t i v i t y measurements i n n i t r o b e n z e n e l e a d to decomposition. A c o m p a r i s o n o f t h e p r o p e r t i e s o f complex I I and o t h e r compounds o f t h e t y p e [CoL ][Co(CO).]„ s u p p o r t s an a n i o n i c f o r m u l a t i o n . n 4 L T h e s e compounds a r e a i r s e n s i t i v e , d a r k r e d , and i n s o l u b l e i n h y d r o c a r b o n s o l v e n t s , b u t s o l u b l e i n 252 253 THF and a c e t o n e . ' However, t h e a n a l y t i c a l d a t a o b t a i n e d on I I and r e p o r t e d i n t h e p r e v i o u s s e c t i o n i s i n c o n s i s t e n t , and does n o t r e a l l y any formulation of t h i s type. The i n f r a r e d s p e c t r u m support o f complex I I shows bands due t o c o - o r d i n a t e d k e t i m i n e , w i t h v„ „ a t 3268 cm * and v„ „ a t 1607 cm N-H C=N The n a t u r e o f complex I i s u n c e r t a i n . was a g a i n o b t a i n e d , a l t h o u g h t h e complex f a l l s on c h a n g i n g Inconsistent analytical t h i s d a t a s u g g e s t s t h a t t h e "L c a r b o n t o complex I I . samples, c l e a r whether t h e i n c o n s i s t e n c i e s a r e due t o t h e s a m p l e s , u n r e l i a b i l i t y o f t h e a n a l y t i c a l methods Complex I extremely ionic. s o l u b l e i n THF, monoglyme and a c e t o n e , figures and i t i s n o t or to t h e f o r complexes of t h i s i s i n s o l u b l e i n pentane, but r e a d i l y The i n f r a r e d spectrum content of Some o f t h e a n a l y t i c a l f o r c o m p l e x e s I and I I were o b t a i n e d on d i f f e r e n t data type. s o l u b l e i n t o l u e n e and and i s thus p r o b a b l y n o t ( N u j o l m u l l ) i n t h e c a r b o n y l r e g i o n shows a weak band a t 2008 cm"''" and a s t r o n g b r o a d band r e s o l v e d i n t o 3 maxima a t - 1905, 1869 and 1842 cm *. I n a d d i t i o n bands a t t r i b u t a b l e t o c o - o r d i n a t e d Ph„C=NH a r e o b s e r v e d , w i t h v„ „ a t 3257 c m and v „ a t 1605 and 1594 cm" . 2 ' N-H C=N - 1 Complexes o f t h e t y p e [Cp(.C0)^L] ? w i t h e.g. PPh^ h a v e been o b t a i n e d by d i r e c t r e a c t i o n of the l i g a n d with C o ( C 0 ) . 2 infrared spectrum 1 g s o f [CoCcO^PPh^l ^ *- s i m i l a r The c a r b o n y l p a t t e r n i n t h e to that observed f o r complex I -117- (bands a t 2030(vw), 1960m,(sh), 1 9 5 0 ( v s ) , 1902(vw)) although in I are considerably shifted of t h e t y p e to lower frequencies. [Co(CO)2Ph2C=NH]^ would n o t a c c o u n t Ph2C=NH were r e q u i r e d t o r e a c t c o m p l e t e l y However, a f o r m u l a t i o n f o r the f a c t was o b s e r v e d , parent t h a t 4 moles o f w i t h 2 m o l e s o f COgCCO^. A t t e m p t s were made t o o b t a i n a mass s p e c t r u m o f complex I . 180 the absorptions A peak a t m/e due t o Pb^C^N* and s e v e r a l p e a k s t o h i g h e r m/e, b u t no peak c o u l d be i d e n t i f i e d . Thus r e a c t i o n between ( ^ ( C O ^ complex w h i c h i s p r o b a b l y and Pti2C=NH o c c u r s t o p r o d u c e a p u r p l e o f t h e type i n t e r m e d i a t e complex i s i s o l a t e d [CoL ][Co(CO)^]^ initially n (n = 4 ? ) . An i n the r e a c t i o n , which changes i n t o t h e i o n i c complex, b u t t h e n a t u r e o f t h e i n t e r m e d i a t e c o u l d n o t be determined. Conclusions R e a c t i o n s o f d i p h e n y l k e t i m i n e and i t s d e r i v a t i v e s w i t h c o b a l t and n i c k e l systems non-carbonyl show t h a t t h e n e u t r a l l i g a n d b e h a v e s a s a n o r m a l b a s e towards t r a n s i t i o n m e t a l s . Attempts to i n t r o d u c e diphenylketimine a s an a n i o n i c l i g a n d i n t o c o m p l e x e s were u n s u c c e s s f u l ; i n some c a s e s , r e a c t i o n did not occur, i n other cases n o n - c r y s t a l l i a a b l e other r e a c t i o n s , the anion t a r s were o b t a i n e d , and i n a b s t r a c t e d h y d r o g e n , p o s s i b l y from t h e s o l v e n t t o y i e l d complexes c o n t a i n i n g the n e u t r a l l i g a n d . In c o b a l t carbonyl systems, r e a c t i o n o c c u r s between t h e c a r b o n y l and l i g a n d , b u t i n one c a s e t h e p r o d u c t the o t h e r , f u l l was e x t r e m e l y c h a r a c t e r i s a t i o n of the products t h e r m a l l y u n s t a b l e , and i n h a s n o t been p o s s i b l e . CHAPTER THREE Reactions of Diphenylketiminodiphenylmethylchloride T r a n s i t i o n M e t a l Complexes with -118- A. Introduction The e v i d e n t u n w i l l i n g n e s s o f d i p h e n y l k e t i m i n e to form isolable d e r i v a t i v e s c o n t a i n i n g t h e l i g a n d a s an a n i o n i c group, i n t h e s y s t e m s described i n Chapter I I l e a d t o a change o f e m p h a s i s i n t h e s t u d y o f un- saturated nitrogen ligands with t r a n s i t i o n metals. e n c o u r a g e d by t h e p r e p a r a t i o n o f t h e pseudo a l l y l The change was p a r t i c u l a r 1 complex 130 [rt-CpMo(CO) Ph CNCPh ] 2 attempts 2 by an i n d i r e c t r o u t e . 2 to p r e p a r e T h i s chapter d e s c r i b e s a n a l o g o u s compounds d i r e c t l y from diphenylketiminodi- p h e n y l m e t h y l c h l o r i d e , P h C = N C ( C l ) P h , w h i c h was p r e p a r e d from d i p h e n y l 267 268 k e t i m i n o l i t h i u m , P h C = N L i and d i c h l o r o d i p h e n y l m e t h a n e . ' I t i s b e l i e v e d t h a t t h e P h C N C P h group i n t h e molybdenum complex i s 2 2 2 2 2 130 bonding to t h e m e t a l concerned a s a p s e u d o - a l l y l group and s i n c e t h i s c h a p t e r i s with the attempted p r e p a r a t i o n of p s e u d o - a l l y l complexes, i t i s r e l e v a n t a t t h i s s t a g e t o comment on t h e c h e m i s t r y o f t r a n s i t i o n m e t a l complexes themselves. appeared. metals allyl Numerous complexes a r e known and s e v e r a l r e v i e w s >270 ,271 j t - a l l y l c o m p l e x e s h a v e been p r e p a r e d have for several e.g. ( i T - C . j H ^ ) N i , (it-C^H^^Mo, b u t t h e m a j o r i t y o f t h e d e r i v a t i v e s 2 c o n t a i n o t h e r g r o u p s a l s o , e.g. it-C H,.Mo(C0) Jt-C H,-, and it-C H,-Co(CO) PPh.j. 3 rt-allyl 2 5 3 d e r i v a t i v e s i n w h i c h one or more o f t h e p r o t o n s o t h e r groups e.g. a l k y l g r o u p s o r h a l o g e n s need n o t be " f r e e " b u t c a n be p a r t o f a r i n g and atoms. III.2. i s r e p l a c e d by a r e a l s o common, e.g. Tt-C^HgMn(CO)^, 1 , 1 - d i m c t h y l a l l y l m a n g a n e s e t e t r a c a r b o n y l . carbon 2 system The n - a l l y l group or a long c h a i n o f E x a m p l e s o f t h e s e t y p e s o f compound a r e shown i n F i g s . III.l -119- Ph -CI Pd Ph C Ph \C Ph Ni 2 OEt Fig.III.2. Fig.III.1. Several n-allyl d e r i v a t i v e s have v e r s a t i l e c a t a l y t i c p r o p e r t i e s Ni(jt-C,jH,-^ c a t a l y s e s and a m i x t u r e of the t r i m e r i s a t i o n of b u t a d i e n e to (jt-C.jH|-)Ni(Br)PR.j) and e.g. cyclododecatriene, E t A l C ^ catalyses the dimerisation 271 of e t h y l e n e to b u t e n e . The fairly bonding i n j r - a l l y l t r a n s i t i o n m e t a l c o m p l e x e s can r e a d i l y i n a q u a l i t a t i v e manner. group form an (or nearly so) schematically The be 3 c a r b o n atoms of understood the jr-allyl i s o s c e l e s t r i a n g l e w i t h t h e m e t a l atom i n a p l a n e p e r p e n d i c u l to for the p l a n e of the triangle. the b i s - 2 - m e t h y l a l l y l This is illustrated n i c k e l complex F i g . I I I . 3 . H„C CH Ni CH Fig.III.3. z •3 ¥2 6> X 0 y ROC ROC M Fig.III-4. R e p r e s e n t a t i o n of n - a l ' i y l m o l e c u l a r o r b i t a l s , w i t h ' w h i c h t h e y a r e most l i k e l y allyl bonding. to i n t e r a c t and the metal orbitals to g i v e s u b s t a n t i a l metal- -120- The t h r e e pit o r b i t a l s o f t h e a l l y l group form t h r e e M.O.s, w h i c h a r e represented with a r e most in Fig.III.4, likely together to i n t e r a c t , p i c t o r i a l manner, s i n c e t h e l o c a l For arguments a l o n e example, t h e d plane (i.e. These from o v e r l a p c o n s i d e r a t i o n s , i n a rough, symmetry o f t h e jt-C,H,--M i s v e r y low (C ) l e a d to a l a r g e number of p o s s i b l e combinations. and d 2 ^2 o r b i t a l s l i e i n a p l a n e below t h e a l l y l x they a r e n o t d i r e c t e d towards t h e l i g a n d ) and a r e l i k e l y non-bonding. they t o g i v e s u b s t a n t i a l m e t a l - a l l y l bonding. combinations a r e a r r i v e d a t mainly and symmetry the metal o r b i t a l s w i t h which t o be F u r t h e r d i s t i n c t i o n s a r e made on t h e b a s i s t h a t m e t a l and ligand o r b i t a l s having larger overlap than c o i n c i d e n t nodal p l a n e s a r e more l i k e l y to have a t h o s e w h i c h do n o t c o i n c i d e . M (a) (b) Fig.III.5. Considering a p s e u d o - a l l y l i c l i g a n d , replacement c e n t r a l -CR- group i n t h e a l l y l i c group of a n i t r o g e n atom f o r t h e R >^*»v R C^'""^CR 2 qualitatively the jt-molecular o r b i t a l s of the a l l y l i c w i l l not alter 2 group. However t h e 2 n i t r o g e n p o s s e s s e s a l o n e p a i r of e l e c t r o n s w h i c h w i l l be i n an sp orbital, -121- d i r e c t e d a s shown I n F i g . I I I . 5 , and the e f f e c t of t h e l o n e p a i r on t h e bonding must be c o n s i d e r e d . Two III.5. I n structure (a) i t will to i n the a l l y l c o m p l e x e s d e s c r i b e d above. that extreme p o s i t i o n s f o r the metal be r e a d i l y s e e n , t h a t a r e shown i n F i g . the bonding i s I n s t r u c t u r e ( b ) the n i t r o g e n l o n e p a i r a-bonds t o the m e t a l , but s u i t a b l e m e t a l still available pseudo-allylic If analogous orbitals are to o v e r l a p w i t h t h e *^ and *^ r r - m o l e c u l a r o r b i t a l s of the ligand. o t h e r c o m p l e x e s c o n t a i n i n g the -RC=NR s y s t e m a r e c o n s i d e r e d , t h e n i t i s obvious t h a t e i t h e r an M-N CT bond c a n be formed, a s f o r example, i n t h e 125 d i a z a b u t a d i e n e molybdenum c o m p l e x e s 126 ' d e s c r i b e d i n Chapter I (p.35), 24 or n-bonds a r e formed a s i n t h e i r o n complex (PhCI-I=CII-CH=NPh)FeCO) s t r u c t u r e i s shown i n C h a p t e r I (p.63, F i g . I . l l k ( i ) ) . The 3 , whose s t r u c t u r e of the 232 n i c k e l complex [ N i ( C ^ H ^ N - C = N ) ( C O ) ] ^ has a l s o been d e s c r i b e d i n C h a p t e r 0 I (p.80, F i g . I . 1 7 ) . I n t h i s complex, t h e l o n e p a i r on t h e -C=N atom o-bonds to one N i atom, and t h e -C=N A few N - h e t e r o c y c l i c a n a l o g u e s h a v e been p r e p a r e d , but because t h e y a r e i n g e n e r a l much l e s s t h e n - s y s t e m of t h e r i n g n e g a t i v e n i t r o g e n atom and so t h a t t h e M-L group it-bonds to a n o t h e r N i atom. of i t - c y c l o p e n t a d i e n y l m e t a l p e n t a d i e n y l c o m p l e x e s , and more d i f f i c u l t nitrogen to p r e p a r e . i s d i s t o r t e d by complexes s t a b l e than t h e c y c l o T h i s i s probably t h e p r e s e n c e of an electro- l e s s a v a i l a b l e f o r s y m m e t r i c a l bonding to the m e t a l , jt-bond i s w e a k e r . The compounds shown i n F i g s . I I I . 6 I I I . 7, n - p y r r o l y l m a n g a n e s e t r i c a r b o n y l ' ' ' ^ and a z a f e r r o c e n e ^ " ^ ^ , both have s i m i l a r p h y s i c a l p r o p e r t i e s t o t h o s e of the p a r e n t and respectively n-cyclopenta- -122- d i e n y l complexes, but t h e n i t r o g e n atom i n t h e C^H^N r i n g i s o n l y w e a k l y basic. t h a t the l o n e p a i r on T h i s suggests i n v o l v e d i n M-L bonding. w i t h t h e r i n g and for The the n i t r o g e n i s to some e x t e n t l o n e p a i r i s i n an o r b i t a l w h i c h i s c o p l a n a r t h u s d i r e c t e d away from t h e m e t a l , a s would be the c a s e a p s e u d o - a l l y l complex h a v i n g t h e s t r u c t u r e shown i n F i g . I l l . 5 ( a ) . N N M 0 c c c o Fig.III.6. Thus by metal Fig.III.7. c o m p a r i s o n w i t h o t h e r c o m p l e x e s , i t would a p p e a r t h a t c o u l d be i n e i t h e r of the p o s i t i o n s i n d i c a t e d i n F i g . I I I . 5 . i n t e r m e d i a t e between t h e two atom i s n e a r e r involvement on be more l i k e l y , to t h e n i t r o g e n , r a t h e r t h a n of t h e n i t r o g e n l o n e p a i r . the carbon bulky e x t r e m e s may atoms w i l l groups tending I t i s likely h a v e some e f f e c t on to f o r c e the m e t a l be d i s c u s s e d i n S e c t i o n C. the c a r b o n the A position i n which the atoms, b e c a u s e metal of that the s u b s t i t u e n t s the p o s i t i o n o f the n e a r e r to the n i t r o g e n . metal, This will -123- The t u n g s t e n p s e u d o - a l l y l complex [rt-CpW(CO) Ph CNCPh ] 2 prepared by t h e r e a c t i o n o f rt-CpW(CO).jCl 2 261 2 h a s been w i t h 2 m o l e s o f P h C = N L i , and i s 2 130 similar to t h e v e r y s t a b l e molybdenum complex. molecules Ph CNCPh 2 I n t h e r e a c t i o n , two o f P h C = N L i must " c o n d e n s e " i n some manner, to g i v e t h e 2 moiety. 2 The n i t r o g e n atom w h i c h i s e l i m i n a t e d i n t h i s p r o c e s s h a s been d e t e c t e d a s l i t h i u m i s o c y a n a t e , w h i c h i s mixed w i t h t h e l i t h i u m c h l o r i d e which p r e c i p i t a t e s out d u r i n g the r e a c t i o n . A t t e m p t s to p r e p a r e t h e p s e u d o - a l l y l molybdenum compound by r e a c t i n g P h C = N - C ( C l ) P h 2 Na[ir-CpMo(C0) ] i n THF, d i m e t h y l 3 a s t h e main p r o d u c t , formamide and d i g l y m e gave [ jt-CpMo(C0) ] 3 p s e u d o - a l l y l compounds d i r e c t l y reacted with s e v e r a l metal 2 7 1 2 The l i g a n d i t s e l f 2 h a l i d e s h a v e y i e l d e d numerous i t - a l l y l 2 1) N a [ M n ( C 0 ) ] + ClCH CH=CH + 2 2 > i n t h e f o l l o w i n g schemes (CO) Mn(o-CH CH=CH ) 5 2 u. v . or 80° (COXMndt-C-H,.) 4 3 5 was analogous c o m p l e x e s , and : 5 unchanged. to s y n t h e s i s e c a r b o n y l and n o n - c a r b o n y l d e r i v a t i v e s ; 1-3 ) ' i n attempts from P h C = N - C P h C l . some o f t h e s e r e a c t i o n s a r e i l l u s t r a t e d 9 2 one o t h e r c a r b o n y l complex were d e t e c t e d b u t c o u l d Two g e n e r a l methods o f p r e p a r a t i o n were u s e d 6 with and most o f t h e o r g a n i c l i g a n d was r e c o v e r e d S m a l l amounts o f a t l e a s t . . , „ 251 n o t be i s o l a t e d . r e a c t i o n s of a l l y l 2 2 (equations -124- 2) Ni(C0) + CH =CH-CH -X 4 2 (X = 3) — [ i t - C ^ N i X ] 2 Br,I) Pd ( m e t a l ) + CH =CH-CH Br 2 The v a r i e t y of the l i g a n d , > 2 s e c o n d method of p r e p a r a t i o n d e r i v a t i v e of 2 [jt-C H PdBr] 3 used involved (PhgCNCPh,, )MgCl, and t r a n s i t i o n metal systems. 5 2 s y n t h e s i s of r e a c t i o n of Again a l l y l Grignard the this with , / . schemes ( e q u a t i o n s 4) 5) 5 T H F the > (jt-C H )Ni(it-C H ) 2 5 N i C l _ + C,H,.MgCl — - — > 2 3 5 _ o 1 0 Since in . i i - \ 269,271 4 and 5 ) : (it-C H ) Ni + C^MgCl 5 a r e a g e n t s have been used to p r e p a r e a l l y l - t r a n s i t i o n metal complexes, as i l l u s t r a t e d * , following Grignard c 5 3 5 (rt-C-Hj-Ni 3 5 2 the d i r e c t r e a c t i o n between P h C = N - C ( C l ) P h 2 2 and Na[jt-CpMo(CO) ] 3 251 failed to p r o d u c e the p s e u d o - a l l y l d e r i v a t i v e other metals. I n p a r t i c u l a r , the r e a c t i o n s of P h C = N - C ( C l ) P h 2 manganese c a r b o n y l d e r i v a t i v e s , and i n v e s t i g a t e d , as a l l y l Allyl-nickel , a t t e n t i o n was with compounds of b o t h t h e s e Another c o n s i d e r a t i o n t h a t t h e m e t a l s t o w a r d s the l e f t - h a n d general side. with s y s t e m s h a v e been p r e p a r e d . h a v e been p r e p a r e d i n a i n choosing which metal to study s i d e of the P e r i o d i c T a b l e tend form more s t a b l e c o m p l e x e s w i t h n i t r o g e n - c o n t a i n i n g towards t h e r i g h t - h a n d ligands t h a n the to ones I n p a r t i c u l a r manganese ( + l ) c o m p l e x e s i n seem e s p e c i a l l y s t a b l e . on some n i c k e l c o m p l e x e s were c o m p l e x e s e s p e c i a l l y a r e common, and v a r i e t y o f ways. 2 focussed was -125- B. Experimental 1. Na[Mn(CO) ] + Ph C=NC(Cl)Ph 5 Sodium manganese 2 2 p e n t a c a r b o n y l was p r e p a r e d v i g o r o u s l y s t i r r i n g dimanganese d e c a c a r b o n y l i n t h e u s u a l way, by ( 1 g., 2*5 mmoles) w i t h an 272 e x c e s s o f an a p p r o x i m a t e l y 1% sodium amalgam i n THF y e l l o w colour of M i ^ C C O ) ^ disappeared removed (20 m l . ) . When t h e ( 2 h r s . ) , most o f t h e amalgam was from the r e a c t i o n f l a s k v i a a tap a t t h e bottom, and d i p h e n y l - k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e ( 1 * 9 g., 5 m m o l e s ) , i n THF ( 1 5 m l . ) was added. i.r. A f t e r o v e r n i g h t s t i r r i n g and t h e n r e f l u x i n g s p e c t r o s c o p y showed t h a t t h e main c a r b o n y l p r o d u c t was manganese but new a b s o r p t i o n s were d e t e c t e d a t 2110, 2062 and Mn (C0) 2 1 Q ( ~ 2 0 % ) and P h C = N - C ( C l ) P h 2 to i s o l a t e t h e p r o d u c t in for 5 hrs., solution failed, 2 2026 cm~*. carbonyl, Both ( ~ 4 0 % ) were r e c o v e r e d , b u t a l l a t t e m p t s s i n c e i t appeared t o decompose i n t o Mn (C0)^Q 2 solution. 2. Mn(C0) Br + Manganese 5 Ph C=N-C(Cl)Ph 2 2 pentacarbonylj[was d i s s o l v e d i n chloroform (6 m l . ) . Diphenyl- k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e ( 0 ' 3 8 g., 1 mmole) was d i s s o l v e d i n c h l o r o f o r m ( 1 2 m l . ) and a t h i r d o f t h i s s o l u t i o n the c a r b o n y l s o l u t i o n . ( 0 * 3 3 mmoles P h C = N - C ( C l ) P h ) added t o 2 The r e a c t i o n was f o l l o w e d by w i t h d r a w i n g t h e s o l u t i o n p e r i o d i c a l l y , and r e c o r d i n g t h e i r carbonyl region. 2 infrared A f t e r s t i r r i n g a t room t e m p e r a t u r e samples of s p e c t r a i n the f o r 3^- h r s . ( p r o t e c t e d from t h e l i g h t ) a s m a l l amount o f w h i t e p r e c i p i t a t e was o b s e r v e d and c a r b o n y l bands were d e t e c t e d , b u t t h e b u l k o f t h e Mn(C0),-Br r e m a i n e d . new The -127- washed r a p i d l y w i t h hexane and was shown to be t e t r a p h e n y l e t h y l e n e , on spectroscopic data. C H r 26 20 e ( l u i r e s C,94-0; H,6«0%. A v e r a g e C,94«4%. M.Pt. 218°C ( l i t . identical T h i s compound 223°C). infrared H,5'l%. The infrared to the s p e c t r u m o f an a u t h e n t i c sample. r e s i d u e a f t e r e t h e r e x t r a c t i o n was t e s t s showed the p r e s e n c e ( Y i e l d , 0*2 g . ) . t h e b a s i s of a n a l y t i c a l and Found: C,94*9, 93'9%. s p e c t r u m ( N u j o l m u l l ) was The pumped d r y . o f n i c k e l and p a l e brown i n c o l o u r and chlorine. The infrared elemental spectrum of the r e s i d u e showed o n l y weak a b s o r p t i o n s . ( b ) I n a r e p e a t of night stirring recovered by left a black sublimation y e l l o w s o l i d w h i c h was Analytical and the r e a c t i o n , r e m o v a l of the s o l v e n t a f t e r t a r , from w h i c h u n r e a c t e d nickelocene , over- w ( ' 5 0 % ) was ( a t 50°C, 0*001 mm/Hg). E t h e r e x t r a c t i o n y i e l d e d a shown to c o n t a i n n i c k e l spectroscopic data suggested o r g a n i c l i g a n d s bonded to n i c k e l . (by elemental tests). t h a t t h i s compound c o n t a i n s I t does n o t c o n t a i n h a l o g e n , nor a it- c y c l o p e n t a d i e n y l group. ( c ) No r e a c t i o n occurred d i p h e n y l m e t h y l c h l o r i d e on stirring compound can be r e c r y s t a l l i s e d g r e e n s o l u t i o n of n i c k e l o c e n e 5 between n i c k e l o c e n e and i n toluene from c h l o r o f o r m i n chloroform f o r 16 h r s . without showed no diphenylketiminoThe organic d e c o m p o s i t i o n , and change over a p e r i o d days. 4. N K C O ) , -I- P h C = N - C ( C l ) P h 2 2 Diphenylketiminodiphenylmethyl c h l o r i d e ( toluene ( 30 m l . ) to g i v e a y e l l o w s o l u t i o n . 1 g.) was dissolved in Tetracarbonyl n i c k e l , after a of -128- b e i n g d r i e d by s t a n d i n g over anhydrous CuSO^, was o f n i t r o g e n onto the Ph2C=NC(Cl)Ph (M.Pt. Ni(CO)^ -18'9°C). 2 condensed out o f a stream s o l u t i o n by c o o l i n g t h e l a t t e r t o -78°C Excess Ni(CO)^ was used i n each r e a c t i o n , the exact q u a n t i t y n o t b e i n g determined due t o t h e d i f f i c u l t i e s o f h a n d l i n g the extremely v o l a t i l e , t o x i c carbonyl. No change was observed a t room v t e m p e r a t u r e , b u t on c a r e f u l warming to* 40°C, c o n s i d e r a b l e d a r k e n i n g i n c o l o u r o f the s o l u t i o n and a b l a c k p r e c i p i t a t e were observed a f t e r ^ 3 0 mins. A f t e r 5 h r s . , no f u r t h e r change was was observed and a f t e r c o o l i n g , the s o l u t i o n f l u s h e d out w i t h n i t r o g e n t o remove any u n r e a c t e d Ni(CO)^. r e s i d u e a f t e r f i l t r a t i o n was f i n e l y divided Ni. The The red f i l t r a t e y i e l d e d a r e d s o l i d which y i e l d e d p a l e y e l l o w c r y s t a l s on r e c r y s t a l l i s a t i o n toluene/hexane. 2 R e s u l t s and and 2 Ph C=CPh . 2 2 Discussion o f d i p h e n y l k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e w i t h sodium manganese p e n t a c a r b o n y l studied. from A n a l y t i c a l and i n f r a r e d s p e c t r o s c o p i c data suggested t h a t the c r y s t a l s c o n s i s t e d o f Ph C=N-C(Cl)Ph Reactions black and w i t h manganese p e n t a c a r b o n y l bromide have been The main p r o d u c t i n the r e a c t i o n o f the sodium s a l t i s the dimer, Mn (C0)^Q, a l t h o u g h a new c a r b o n y l species was 2 detected spectroscopically. S e p a r a t i o n o f t h i s species from Mn (C0)^Q c o u l d n o t be e f f e c t e d , s i n c e i t 2 seemed t o decompose i n t o Mn (C0)^g i n s o l u t i o n . 2 s o l u t i o n o f Ph C-NC(Cl)Ph 2 2 Warming a c h l o r o f o r m and Mn(C0)^Br caused r e a c t i o n t o occur, w i t h f o r m a t i o n of the complex Mn(CO)^(Ph CNCPh ). 2 2 I n t h e r e a c t i o n s o f n i c k e l o c e n e and n i c k e l t e t r a c a r b o n y l w i t h d i p h e n y l - -129- k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e , no f u l l y c h a r a c t e r i s e d complexes c o n t a i n i n g n i c k e l and t h e o r g a n i c l i g a n d c o u l d be o b t a i n e d . I n each case, though, t h e i n f o r m a t i o n o h t a i n e d shows t h a t , i n t h e former case a t l e a s t , r e a c t i o n d i d occur. I n t h e r e a c t i o n o f Na[Mn(CO) ] w i t h Ph C=N-C(Cl)Ph , a c o n s i d e r a b l e 5 2 2 q u a n t i t y o f Mn^CO).^ was d e t e c t e d q u i t e e a r l y d u r i n g t h e r e a c t i o n , w h i l e some u n r e a c t e d sodium s a l t and o r g a n i c l i g a n d were s t i l l p r e s e n t , and i t seems l i k e l y t h a t f o r m a t i o n o f t h e d i m e r i c c a r b o n y l d i r e c t l y from t h e sodium s a l t i s t h e main r e a c t i o n . However, a s m a l l amount o f a new c a r b o n y l complex was d e t e c t e d s p e c t r o s c o p i c a l l y a f t e r r e f l u x i n g t h e m i x t u r e ; removal o f Mn (cO)^Q 2 and Ph C=N-C(Cl)Ph by e x t r a c t i o n w i t h hexane and t o l u e n e , r e s p e c t i v e l y 2 2 l e f t a s m a l l amount o f green s o l i d which gave a green s o l u t i o n when d i s s o l v e d i n CHCl^. However, t h e i n f r a r e d spectrum o f t h i s s o l u t i o n which t u r n e d y e l l o w on s t a n d i n g , showed M ^ C C O ) ^ t o be p r e s e n t as w e l l as t h e new c a r b o n y l complex, i n d i c a t i n g t h a t t h e complex decomposes t o Mn^CCO)^ i n s o l u t i o n , and s a t i s f a c t o r y p u r i f i c a t i o n o f t h i s s m a l l amount o f p r o d u c t n o t be could achieved. T h i s r e a c t i o n can be compared t o t h a t between Na[ jr-CpMo(CO),j] and 251 Ph2C=N-C(Cl)Ph 2 , where t h e main r e a c t i o n was decomposition o f t h e sodium s a l t t o t h e d i m e r , [it-CpMo(CO) ] , a l t h o u g h a new c a r b o n y l complex i n s m a l l 3 2 amounts was d e t e c t e d s p e c t r o s c o p i c a l l y . Warming a c h l o r o f o r m s o l u t i o n o f Mn(CO) Br and Ph C=N-C(Cl)Ph 5 2 2 gave a new c a r b o n y l complex, Mn(CO)^(Ph CNCPh ), o b t a i n e d as a p a l e y e l l o w powder. 2 2 -130- The complex decomposed f a i r l y r a p i d l y i n s o l u t i o n t o a w h i t e n o n - c a r b o n y l m a t e r i a l , b u t i s s t a b l e f o r l o n g e r p e r i o d s i n the s o l i d s t a t e . I t d i d not m e l t , b u t on b e i n g heated i n a tube s e a l e d under n i t r o g e n , i t began t o darken a t "'80°C and c o n t i n u e d It t o darken and s o f t e n t o a dark orange t a r , up t o 200°C i s v e r y s o l u b l e i n CHCl^, acetone, somewhat s o l u b l e i n benzene and t o l u e n e and s l i g h t l y s o l u b l e i n pentane. The bands i n t h e i n f r a r e d spectrum o f t h e s o l i d are recorded III.l, t o g e t h e r w i t h those o f Ph2C=N-C(Cl)Ph 2 i n Table and known assignments. A CHCl^ s o l u t i o n o f t h e complex shows c a r b o n y l a b s o r p t i o n s a t 2104(w), 2 0 3 3 ( s ) , 2020(sh), 1 9 6 5 ( s ) cm ^. These band p o s i t i o n s can be compared t o t h e c a r b o n y l a b s o r p t i o n s o f (7t-C H,_)Mn(CO)^, w h i c h occur a t 2110, 2060, 2049 and 3 1950 cm - 1 274 . assigned to v The absence o f ^in c a C=N s t r e t c h i n g frequency 268 Ph C=N-C(Cl)Ph 2 i s noteworthy. 2 and o f t h e d o u b l e t The p a t t e r n o f a b s o r p t i o n s due t o t h e l i g a n d i s c o n s i d e r a b l y s i m p l i f i e d i n t h e spectrum o f the complex. A p.m.r. spectrum o f Mn(CO)^(Ph CNCPh ), o b t a i n e d i n CDCl 2 accumulating 2 25 times u s i n g a D i g i c o C.A.T., c o n s i s t s o f two m u l t i p l e t s c e n t r e d a t 2'6 T and 2*9 T, r e l a t i v e t o TMS Ph C=N-C(Cl)Ph 2 after 3 2 i n CDCl 3 (internal standard). shows two s t r o n g m u l t i p l e t s c e n t r e d a t 2*6 T and 3*0 T and a weaker m u l t i p l e t c e n t r e d a t 3'5 T, r e l a t i v e t o TMS (internal standard) The s i g n a l s i n each spectrum were t o o c l o s e t o g e t h e r f o r a s a t i s f a c t o r y i n t e g r a t i o n t o be o b t a i n e d . Repeated a t t e m p t s t o o b t a i n a mass spectrum o f Mn(CO)^(Ph CNCPh ) u s i n g 2 2 -131- Table III.l. I n f r a r e d S p e c t r a o f MnCCO)^ (Ph,,CNCPh ) and Ph C=NC(Cl)Ph 2 Mn(CO) (Ph CNCPh ) 4 2 2 2 Ph C=NC(Cl)Ph -1 cm Assignment L cm ^ 2095(w) 2025(s,br) 1938(s) 1919(s,sh) 1595(m) 1575(m) 1493(sh) 1447(sh) 1323(m) 1263(w) 1178 1160 2 (Nujol mull) 268,273 CO CO CO CO C=N C=C ( o f a r o m a t i c C=C nuclei) 1623(m) 1597(m) 1575(m) 1490(sh) 1449(sh) 1314(w) 1280(m) 1269(m,sh) 1193" } Phenyl n u c l e i (w) 1093(w,sh) I075(m) I029(m) • ' (w) I n Plane Bending o f Phenyl Groups (m) l000(vw) 983(w) 957(m) 909(w) 800(m,br) Out o f Plane Bending 775(m) 762(s) 746(m) 725(w) 698(vs) 693(vs) 667(m) 655(m) 647(w) 626(m) 614(w) 570(m) 730 \, , . . C-Cl 724 J C s . s p l i t ) 696(vs) 667(m) 637(w) 628(w) 616(w) 600(s) 589(w) 3 Out o f Plane Bending MCO bend -132- t h e d i r e c t i n s e r t i o n probe and v a r y i n g t h e source temperature from room temperature to 200°C were u n s u c c e s s f u l . at insertion No m e t a l - c o n t a i n i n g peaks c o u l d be d e t e c t e d , b u t peaks due t o f r a g m e n t a t i o n o f t h e o r g a n i c were observed. I n t h e mass spectrum o f Ph2C=N-C(Cl)Ph , no p a r e n t peak i s 2 observed; the. h i g h e s t mass peak i s a t m/e [Pl^CNCPt^] . 346, c o r r e s p o n d i n g t o T h i s peak i s n o t , however, observed i n t h e spectrum from Mn(CO)^(Ph CNCPh ); t h e h i g h e s t i n t e n s e peak was observed a t m/e 2 corresponding ligand 2 t o [Pt^ON]"^. The spectrum o f Ph C=N-C(Cl)Ph 2 peak a t m/e 332, c o r r e s p o n d i n g + t o [Pt^CCPh,,] . 2 180, also contains a T h i s has been a t t r i b u t e d 268 t o an i m p u r i t y , r a t h e r than due t o breakdown o f Ph C=N-C(Cl)Ph , b u t t h e 2 2 peak a l s o occurs i n t h e mass s p e c t r a o f Mn(C0)^(Ph CNCPh ) and i t i s p o s s i b l e 2 t h a t i t a r i s e s from thermal d e c o m p o s i t i o n 2 of t h e complex. M o l e c u l a r weight d e t e r m i n a t i o n s c o u l d n o t be made on t h e complex s i n c e i t i s t o o u n s t a b l e i n s o l u t i o n f o r e b u l l i o s c o p i c measurements, and n o t s o l u b l e enough i n s u i t a b l e s o l v e n t s f o r c r y o s c o p i c measurements. The i n f o r m a t i o n o b t a i n e d on t h i s complex i s c o n s i s t e n t w i t h t h e f o r m u l a t i o n Mn(CO)^(Ph CNCPh ). 2 2 The s p e c t r a d a t a on t h e complex, when compared t o t h a t o f t h e p a r e n t l i g a n d , suggests t h a t t h e phenyl groups i n the complex a r e a l l i n a s i m i l a r chemical regarded environment. as d o n a t i n g 3 e l e c t r o n s t o t h e m e t a l . bonding can be envisaged The l i g a n d can be Several types o f m e t a l - l i g a n d f o r t h i s complex, and some o f then a r e r e p r e s e n t e d s c h e m a t i c a l l y i n F i g . l i t 8. -133- N Mn "1- N N Mn Mn a) (b) (c) C Mn N N & c Mn N Mn (d) (e) x ( f ) Fig.III.8. The first two p o s s i b i l i t i e s , ( a ) and ( b ) , r e p r e s e n t t h e extremes d e s c r i b e d i n Section A of t h i s chapter, f o r a p s e u d o - a l l y l i c l i g a n d , w h i l e ( c ) shows the same arrangement o f atoms i n t h e l i g a n d , b u t the m e t a l , i n t h e same p l a n e as t h e CNC s k e l e t o n , i s between t h e two carbon atoms, i n t e r a c t i n g o n l y w i t h t h e i t - o r b i t a l s o f t h e l i g a n d , and n o t w i t h t h e n i t r o g e n a bond forms between t h e two carbon a s u b s t i t u t e d azirLdine. lone p a i r . I f atoms o f t h e l i g a n d , then t h e l i g a n d i s I n t h i s case, t h e m e t a l would bond o n l y t o t h e n i t r o g e n and t h e l i g a n d c o u l d f o r m a l l y donate 3 e l e c t r o n s a- and jt-bonds i n v o l v i n g n i t r o g e n sp h y b r i d and p z t o the m e t a l t h r o u g h orbitals respectively. I n ( e ) , the m e t a l forms a normal cr-bond w i t h one carbon atom, and i n t e r a c t i o n -134- between t h e CN double bond and t h e m e t a l a l s o occurs. w i l l p l a y no p a r t i n M-L bonding. The n i t r o g e n l o n e p a i r The p o s s i b i l i t y t h a t t h e CNC s k e l e t o n may be l i n e a r , w i t h an sp h y b r i d i s e d N atom must be c o n s i d e r e d (Fig.Ill.8f). R e l a t i v e t o t h e axes shown, t h e n i t r o g e n l o n e p a i r would occupy a pure p o r b i t a l , and t h e p^ o r b i t a l s on t h e two carbon and t h e n i t r o g e n atoms would be a v a i l a b l e f o r f o r m a t i o n o f 3 j t - o r b i t a l s . Thus, M-L bonding c o u l d occur v i a d o n a t i o n o f t h e n i t r o g e n l o n e p a i r t o t h e m e t a l , and o v e r l a p o f s u i t a b l e m e t a l o r b i t a l s w i t h t h e it- o r jt* - o r b i t a l s o f t h e l i g a n d . A l t h o u g h a d e f i n i t e answer t o t h e problem o f t h e bonding i n t h e complex 130 Mn(CO) (Ph CNCPh ) (and i n t h e r e l a t e d complex [*-CpMo(CO) (Ph CNCPh )] 4 2 2 2 2 2 ) must a w a i t an X-ray c r y s t a l s t r u c t u r e s t u d y , some o f t h e s t r u c t u r e s b r i e f l y described a r e l e s s l i k e l y than o t h e r s . A study o f m o l e c u l a r models o f t h e 2 l i g a n d c o n t a i n i n g an sp o r sp h y b r i d i s e d n i t r o g e n atom show t h a t t h e b u l k y phenyl groups make t h e n i t r o g e n atom v e r y crowded. A photograph o f a model 2 o f t h e l i g a n d w i t h sp suggests hybridised N i s included. C o n s i d e r a t i o n o f t h e model t h a t s t r u c t u r e s ( c ) and ( e ) i n F i g . I I I . 8 a r e e x t r e m e l y u n l i k e l y , s i n c e t h e phenyl groups would p r e v e n t the m e t a l approaching near enough f o r bond f o r m a t i o n . t h e CNC s k e l e t o n Of t h e o t h e r p o s s i b i l i t i e s , ( b ) and ( d ) have the m e t a l w e l l removed from t h e phenyl groups, and on s t e r i c grounds anyway, are perhaps t h e most l i k e l y structures. A s t r u c t u r e o f type ( e ) i s p r o b a b l y u n l i k e l y , s i n c e t h e s p e c t r o s c o p i c evidence on t h e complex suggests s i m i l a r chemical environment. t h a t t h e f o u r p h e n y l groups a r e a l l i n a S t r u c t u r e s ( a ) - ( f ) i m p l y a C-N bond o r d e r \ \ sac?; Si 7 1 -135- between 1 and 2 and an i n f r a r e d a b s o r p t i o n due t o t h e d e l o c a l i s e d C-N - 1 273 would be expected i n t h e r e g i o n 1600 t o 1360 cm . stretch Indeed, bands a t 1458 cm * and 1505 cm * i n t h e s p e c t r a o f [ ( j t - C ^ H ^ P d C l l g ^ ^ and 274 (n-C,jHg)Mn(C0)^ r e s p e c t i v e l y have been a t t r i b u t e d t o the d e l o c a l i s e d C-C s t r e t c h , and replacement o f C by N seems t o make l i t t l e d i f f e r e n c e t o t h e 273 positions of v v and Q_Q- However, bands i n t h i s r e g i o n o f t h e spectrum of t h e complex can be a t t r i b u t e d t o the p h e n y l n u c l e i , and unambiguous assignments are n o t p o s s i b l e . Several t r a n s i t i o n m e t a l ( n o n - c a r b o n y l ) complexes o f a z i r i d i n e and 275—8 s u b s t i t u t e d a z i r i d i n e s have been r e p o r t e d infrared absorption ~ and they a l l show a s t r o n g i n the r e g i o n 850-900 cm *, due t o t h e r i n g deformation. There i s no band i n t h i s r e g i o n i n t h e spectrum o f MnCcOj^CPb^CNCPt^), and, s i n c e t h e band p o s i t i o n i s l i t t l e 275 by c o - o r d i n a t i o n t o t h e m e t a l a f f e c t e d by s u b s t i t u e n t s i n the r i n g o r , a s t r u c t u r e o f type ( d ) can p r o b a b l y be ruled out. Thus, o f the s t r u c t u r a l types i n d i c a t e d i n F i g . I I I . 8 , ( c ) , ( d ) and ( e ) can perhaps be r u l e d o u t . the complex i s i n t e r m e d i a t e I t i s perhaps most l i k e l y t h a t t h e s t r u c t u r e o f between types ( a ) , ( b ) and ( f ) , w i t h t h e N atom 1-2 of the l i g a n d sp h y b r i d i s e d , and t h e m e t a l i n t e r a c t i n g w i t h b o t h t h e n i t r o g e n l o n e p a i r , and t h e j t - o r b i t a l s o f t h e CNC skeleton. When t h e r e a c t i o n between ( j t - C p ^ N i and Ph2C=N-C(Cl)Ph was a l l o w e d 2 continue to f o r 4 days, a s m a l l amount o f p a l e brown s o l i d was i s o l a t e d and i d e n t i f i e d as t e t r a p h e n y l e t h y l e n e by a n a l y t i c a l and i n f r a r e d spectroscopic -136- techniques. The compound i s w h i t e when pure, b u t i s o f t e n o b t a i n e d as a p a l e y e l l o w s o l i d . 279 280 ' initially I t s s l i g h t l y low m e l t i n g p o i n t i n d i c a t e s the presence o f some i m p u r i t y . When t h e r e a c t i o n was i n t e r r u p t e d a f t e r n i c k e l o c e n e was r e c o v e r e d 14 h r s . , some u n r e a c t e d and a complex i s o l a t e d , f o r which a n a l y t i c a l data, t o g e t h e r w i t h t h e o r e t i c a l v a l u e s f o r some n i c k e l complexes, i s shown i n Table I I I . 2 . Since n i c k e l and c h l o r i n e were d e t e c t e d i n t h e r e s i d u e i n each r e a c t i o n , and t h e i n f r a r e d spectrum showed o n l y weak a b s o r p t i o n s , i t seems t h a t t h e u l t i m a t e p r o d u c t s o f the r e a c t i o n between ( i r - C p ^ N i and Ph C=N-C(Cl)Ph 2 2 a r e Ph C=CPh and N i C l 2 2 2 However, a complex s e r i e s o f r e a c t i o n s must occur i n which t h e c y c l o p e n t a d i e n y l groups a r e d i s p l a c e d from the m e t a l by t h e l i g a n d , o r some d e r i v a t i v e o f t h e l i g a n d , and t h e r e s u l t i n g complex e l i m i n a t e s Ph C=CPh . 2 2 The l i g a n d i t s e l f c o u l d become a t t a c h e d t o + the m e t a l , o r i t c o u l d i o n i s e f i r s t , and t h e cation,Ph C=N-CPh 2 attached t o the metal. 2 become However, t h e former p o s s i b i l i t y i s perhaps t h e most l i k e l y and a r e a c t i o n p a t h something l i k e t h e one shown i n t h e e q u a t i o n can be envisaged: ci — — c f / ^^c> h\ ^ C ^ C C + NiCl + N ? C o - o r d i n a t i o n o f t h e l i g a n d v i a t h e n i t r o g e n l o n e p a i r would w i t h d r a w from t h e a d j a c e n t carbon atoms and weaken t h e C-Cl bond. charge Rupture o f t h i s bond would be encouraged by t h e p o l a r s o l v e n t CHCl^J l a c k o f r e a c t i o n i n t o l u e n e may be due t o t h e n o n - p o l a r nature of t h i s solvent. -137- Table I I I . 2 . %C 76-3,78-6 For N i complex i s o l a t e d %H %N 4-9 1-8 %halogen <1% (Ph CNCPh ) Ni r e q u i r e s 83-1 5-3 3-7 - (Ph CNCPh )Ni(Ph C=CPh ) r e q u i r e s 84-6 5-4 1-9 - [(Ph CNCPh )NiCl] 71-1 4-5 3-2 8-0 2 2 2 2 2 2 2 2 2 2 requires On warming a t o l u e n e s o l u t i o n o f Ni(CO)^ and Ph C=N-C(Cl)Ph 2 2 to"*40°C, r a p i d d e c o m p o s i t i o n o f the c a r b o n y l was observed and a deep r e d c o l o u r was observed. Since Ni(CO)^ i t s e l f does n o t decompose q u i t e so r a p i d l y ( i n t h e vapour s t a t e d e c o m p o s i t i o n i s slow a t 100°C), i t i s p o s s i b l e t h a t i n t e r a c t i o n between t h e l i g a n d and Ni(CO)^ was c a t a l y s i n g supported by the f a c t t h a t t h e Ph C=NC(Cl)Ph 2 the decomposition. 2 This i s r e c o v e r e d from t h e r e a c t i o n m i x t u r e c o n t a i n e d c o n s i d e r a b l e q u a n t i t i e s o f Ph C=CPh , as shown by i n f r a r e d 2 2 s p e c t r o s c o p y - t h e spectrum o f t h e y e l l o w c r y s t a l s o b t a i n e d from t h e r e a c t i o n i s i d e n t i c a l t o t h a t o b t a i n e d by superimposing the s p e c t r a o f Ph C=N-C(Cl)Ph 2 and Ph C=CPh . 2 2 Thus, i t seems p r o b a b l e t h a t s i m i l a r r e a c t i o n s occur between Ph C=NC(Cl)Ph 2 i n each case. 2 and N i ( C 0 ) 4 and U - C p ) N i , Ph C=CPh b e i n g t h e f i n a l p r o d u c t 2 2 2 I n the case o f t h e c a r b o n y l though, the r e a c t i o n was much more r a p i d and i t seems t h a t t o t a l decomposition o f Ni(CO)^ o c c u r r e d b e f o r e all t h e l i g a n d had r e a c t e d . 2 CHAPTER FOUR R e a c t i o n s o f the G r i g n a r d D e r i v a t i v e of D i p h e n y l k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e w i t h T r a n s i t i o n M e t a l Complexes -138- A. Experimental 1. P r e p a r a t i o n o f the G r i g n a r d o f Ph C=NC(Cl)Ph,, 2 D i p h e n y l k e t i m i n o d i p h e n y l m e t h y l c h l o r i d e was d i s s o l v e d i n THF y e l l o w s o l u t i o n , and a s l i g h t excess o f magnesium t u r n i n g s was r e a c t i o n occurred added. No u n t i l a few drops o f dibromoethane had been added, and sometimes warming was i n c o l o u r was to give a a l s o necessary t o i n i t i a t e the r e a c t i o n . A darkening u s u a l l y observed, and on occasions the c o l o u r became v e r y dark p u r p l e , b u t when almost a l l the magnesium had d i s s o l v e d , the s o l u t i o n had become v e r y p a l e y e l l o w . one t o t h r e e hours. b e f o r e use. THF was The The time taken t o reach t h i s stage v a r i e d s o l u t i o n was filtered from from the u n d i s s o l v e d magnesium used as the s o l v e n t s i n c e Ph C=NC(Cl)Ph 2 2 i s only s l i g h t l y soluble i n ether. 2. Mn(CO ) Br_4_(Ph CNCPh )MgCl 5 2 2 A s o l u t i o n o f (Ph CNCPh )MgCl was 2 pentacarbonyl occurred 2 filtered bromide ( 1 * 1 g., 4 mmoles) i n THF (20 m l . ) . No r e a c t i o n a t room t e m p e r a t u r e over 16 h r s . , b u t a f t e r h e a t i n g a t 80°C o v e r n i g h t , a s l i g h t amount o f w h i t e p r e c i p i t a t e had solution. i n t o a s o l u t i o n o f manganese separated from the darkened y e l l o w A f t e r removal o f s o l v e n t under vacuum a r e d o i l remained which d i d n o t y i e l d a s o l i d a f t e r washing w i t h pentane and extracted w i t h several p o r t i o n s of ether u n t i l leaving a white s o l i d . The toluene. The o i l was the e x t r a c t s were c o l o u r l e s s , combined e x t r a c t s again gave a r e d o i l on removal o f s o l v e n t b u t y e l l o w - o r a n g e n e e d l e - l i k e c r y s t a l s were e v e n t u a l l y -139- o b t a i n e d by e x t r a c t i n g w i t h a CHCl^/hexane m i x t u r e , and c o o l i n g t o -20°C. C a r e f u l adjustment o f the volumes o f each s o l v e n t was necessary, o t h e r w i s e an o i l separated o u t . Warming a CHCl^ s o l u t i o n o f the compound produced a w h i t e p r e c i p i t a t e w h i c h would n o t r e d i s s o l v e i n c h l o r o f o r m . The compound i s f o r m u l a t e d as BrMn(CO) (Ph CNCPh ), on the b a s i s o f a n a l y t i c a l and 4 s p e c t r a l evidence. 14*6%. 2 2 M.Pt. 133-5°C ( d ) . Found: C,60-6; H,3-5; N.2-8; B r , Mn H NOBr r e q u i r e s C,60'6; H,3*5; N,2-4; Br,13-57.. 3Q 21 I n an a t t e m p t t o e l i m i n a t e HBr from t h e complex, an e t h e r s o l u t i o n was irradiated for 30 mins. Rapid decomposition t o a w h i t e , non-carbonyl r e s i d u e o c c u r r e d and no i n t e r m e d i a t e c a r b o n y l complex c o u l d be d e t e c t e d . 3. Mn(C0) Br + .[(p-CHjCgH, ),,CNCPhjMgCl 5 The method used t o prepare was the G r i g n a r d d e r i v a t i v e o f (p-CH_C,H,)„CNCPh„ 3 o 4 2 2. i d e n t i c a l t o that described p r e v i o u s l y f o r the diphenyl d e r i v a t i v e . Equimolar q u a n t i t i e s o f the G r i g n a r d and Mn(C0)^Br i n THF were a l l o w e d t o r e a c t a t 75°C o v e r n i g h t , when a dark y e l l o w s o l u t i o n and a l i t t l e p r e c i p i t a t e were observed. white Removal o f s o l v e n t under vacuum and e x t r a c t i o n o f the brown o i l r e m a i n i n g w i t h c h l o r o f o r m gave a y e l l o w s o l u t i o n , whose i n f r a r e d spectrum was very s i m i l a r t o t h a t o f BrMn(CO)^(Ph CNCPh ), w i t h 2 2 1 c a r b o n y l a b s o r p t i o n s a t 2105(w), 2 0 3 1 ( s h ) , 2 0 2 5 ( s ) , 1 9 3 8 ( s , b r ) cm" . Repeated a t t e m p t s t o o b t a i n c r y s t a l s from CHCl^/hexane and from THF/hexane s o l u t i o n s y i e l d e d o n l y brown o i l s . On one o c c a s s i o n , a s m a l l amount o f y e l l o w s o l i d was o b t a i n e d which was t h e r m a l l y u n s t a b l e , even i n t h e s o l i d s t a t e (on h e a t i n g i n a tube sealed under n i t r o g e n , the s o l i d darkened *V50°C -140- and m e l t e d w i t h decomposition «*»75 C) and i n c o n s i s t e n t a n a l y t i c a l d a t a was obtained. 4. it-CpMo(C0 ) C 1 + (Ph CNCPh )MgCl 3 2 2 A THF s o l u t i o n o f t h e G r i g n a r d reagent ( 2 mmolar) was f i l t e r e d i n t o a red s o l u t i o n o f i t - c y c l o p e n t a d i e n y l m o l y b d e n u m t r i c a r b o n y l c h l o r i d e (0*27 g., 2 mmoles) i n THF (20 m l . ) and t h e r e a c t i o n f o l l o w e d by i n f r a r e d spectroscopy. A f t e r o v e r n i g h t s t i r r i n g a t room t e m p e r a t u r e , much s t a r t i n g m a t e r i a l remained, b u t a new weak band a t 1880 cm"''" was d e t e c t e d . s o l u t i o n was heated A portion of this f o r s e v e r a l hours a t 70°C, b u t t h e spectrum was little changed, and removal o f s o l v e n t l e f t an o i l , which c o u l d n o t be c r y s t a l l i s e d . The o t h e r p o r t i o n o f t h e s o l u t i o n was i r r a d i a t e d f o r s e v e r a l hours. Again, the c a r b o n y l a b s o r p t i o n s due t o s t a r t i n g m a t e r i a l , and t h e band a t 1880 cm"''' p e r s i s t e d , b u t t h e t a r o b t a i n e d on removal o f s o l v e n t c o u l d n o t be crystallised. 5. rt-CpFe(C0) Cl 2 + (Ph CNCPh )MgCl 2 2 A THF s o l u t i o n o f t h e G r i g n a r d ( 2 mmolar) was f i l t e r e d i n t o a r e d s o l u t i o n o f n - c y c l o p e n t a d i e n y l i r o n d i c a r b o n y l c h l o r i d e (0*44 g., 2 mmoles) i n THF (20 m l . ) . A f t e r s t i r r i n g o v e r n i g h t , no change was observed, b u t removal of s o l v e n t and e x t r a c t i o n o f t h e o i l y r e s i d u e w i t h CHCl^ gave a r e d s o l u t i o n whose i n f r a r e d spectrum showed two s t r o n g c a r b o n y l a b s o r p t i o n s , v e r y s h i f t e d from those o f it-CpFe(C0)-Cl. Suspecting slightly t h a t the c r - a l l y l type o f complex had formed, a f t e r removal o f s o l v e n t , t h e r e s i d u e was sublimed. Only jt-CpFe(C0) Cl c o l l e c t e d on t h e c o l d f i n g e r ( i d e n t i f i e d by i t s i n f r a r e d 9 -141- spectrum) and an i . r . spectrum o f t h e r e s i d u e showed no c a r b o n y l a b s o r p t i o n s . The r e a c t i o n was repeated and t h e THF s o l u t i o n r e f l u x e d . No new c a r b o n y l a b s o r p t i o n s c o u l d be d e t e c t e d i n t h e i n f r a r e d s p e c t r a o f t h e s o l u t i o n and a f t e r 6 h r s . , bands due t o jt-CpFeCCO^Cl had disappeared. A s m a l l amount o f n o n - c a r b o n y l p r e c i p i t a t e was o b t a i n e d , and t h e s o l u t i o n y i e l d e d an orange t a r , which, though s o l u b l e i n s e v e r a l s o l v e n t s , c o u l d n o t be induced t o crystallise. I n another r e a c t i o n , t h e THF was removed a f t e r o v e r n i g h t s t i r r i n g , and an e t h e r e x t r a c t was i r r a d i a t e d . be d e t e c t e d b e f o r e decomposition 6. No new c a r b o n y l species could had o c c u r r e d . NiC 1 . 2 T H F j M P h C N C P h )MgCl 2 2 R e a c t i o n between equimolar q u a n t i t i e s o f t h e n i c k e l d i c h l o r i d e / T H F adduct ( d e s c r i b e d i n Chapter I I ) and t h e G r i g n a r d reagent was attempted s e v e r a l times u s i n g a s i m i l a r r e a c t i o n procedure. When t h e p a l e y e l l o w THF s o l u t i o n o f t h e G r i g n a r d was f i l t e r e d i n t o t h e THF suspension o f NiCl .2THF 2 an immediate b r i g h t green c o l o u r was observed. temperature, On s t i r r i n g a t room sometimes t h e c o l o u r p e r s i s t e d and e v e n t u a l l y t h e NiCl .2THF 2 dissolved completely. On o t h e r occasions,,a. deep y e l l o w c o l o u r developed and a p r e c i p i t a t e formed. One one o c c a s i o n , an orange s o l i d was i s o l a t e d , and on o t h e r o c c a s i o n s , p a l e green s o l i d s were o b t a i n e d , by c o n t i n u o u s liquid e x t r a c t i o n w i t h benzene o f t h e s o l i d r e m a i n i n g a f t e r removal o f THF. A l l these s o l i d s were shown t o c o n t a i n n i c k e l , and a n a l y t i c a l data i n d i c a t e d t h e presence o f C, H, N and c h l o r i n e , b u t t h e f i g u r e s o b t a i n e d were i n c o n s i s t e n t . The i n f r a r e d s p e c t r a o f d i f f e r e n t samples v a r i e d , b u t a l l showed bands -142- a t t r i b u t a b l e t o the organo groups. sensitive. Reaction The compounds were a l l e x t r e m e l y a i r t o produce a n i c k e l complex c o n t a i n i n g the o r g a n i c l i g a n d i n some form i s a p p a r e n t l y o c c u r r i n g , b u t r e p r o d u c i b l e r e s u l t s c o u l d not be B. obtained. R e s u l t s and Warming a THF Discussion s o l u t i o n o f Mn(CO),.Br and (Ph CNCPh )Mg caused r e a c t i o n t o 2 2 occur w i t h f o r m a t i o n o f the complex BrMn(CO)^(Ph CNCPh ). JJ 2 compound BrMn(CO)^[(p-CR^CgH^) CNPh J 2 o n l y o b t a i n e d as an o i l . 2 Reaction w a The 2 analogous s detected s p e c t r o s c o p i c a l l y , but o c c u r r e d between the G r i g n a r d d e r i v a t i v e and NiCl .2THF, b u t r e p r o d u c i b l e r e s u l t s i n the r e a c t i o n c o u l d n o t 2 achieved. A t t e m p t s t o i n i t i a t e r e a c t i o n between (Ph CNCPh )MgCl and 2 jt-CpMo(CO) Cl and 3 unsuccessful. was rt-CpFe(CO) Cl, 2 b o t h t h e r m a l l y and p h o t o c h e m i c a l l y , were obtained, but attempts H e a t i n g and produced a t a r , which c o u l d n o t be The crystals. 2 complex, p o s s i b l y a o"-type suspected, b u t when the r e a c t i o n was worked up, o n l y s t a r t i n g m a t e r i a l s were r e c o v e r e d . N to i s o l a t e a s o l i d yielded only a I n the i r o n system, the f o r m a t i o n o f a new d e r i v a t i v e was 2 I n the molybdenum case, i n d i c a t i o n t h a t some s l i g h t r e a c t i o n o c c u r r i n g was tar. be i r r a d i a t i o n o f the s o l u t i o n b o t h crystallised. complex BrMn(CO)^(Ph CNCPh ) was 2 2 o b t a i n e d as y e l l o w , n e e d l e - l i k e I n the s o l i d s t a t e , s l i g h t decomposition f o r s e v e r a l weeks, b u t decomposition e s p e c i a l l y on warming. occurs on s t o r i n g under i n s o l u t i o n i s much more r a p i d , I t i s v e r y s o l u b l e i n c h l o r o f o r m , and THF, fairly s o l u b l e i n e t h e r , s l i g h t l y s o l u b l e i n t o l u e n e and benzene, and almost i n s o l u b l e in pentane. -143- I n an a t t e m p t e d s u b l i m a t i o n o f t h e complex, a t 100-120°C, an orange o i l appeared on t h e c o l d f i n g e r , which was s o l u b l e i n CHCl^ b u t a s o l u t i o n spectrum showed no c a r b o n y l a b s o r p t i o n s . The p a l e y e l l o w r e s i d u e was almost i n s o l u b l e i n CHCl^, and i t s i n f r a r e d spectrum showed no c a r b o n y l bands, and t h e o t h e r a b s o r p t i o n s , m a i n l y i n t h e r e g i o n where phenyl groups absorb, were weak. The bands observed i n t h e i n f r a r e d spectrum ( N u j o l m u l l ) o f t h e complex are l i s t e d i n Table I V . 1 , t o g e t h e r w i t h those o f Ph C=NC(Cl)Ph f o r 2 comparison. A weak a b s o r p t i o n a t 3226 cm 1 i s assigned 2 t o a N-H stretching frequency, and c o n f i r m s t h e presence o f hydrogen on t h e n i t r o g e n . a b s o r p t i o n a t 1618 cm 1 i s assigned 1 i n Ph C=N-C(Cl)Ph2 a t 1623 c m " ) . 2 t o a C=N s t r e t c h i n g frequency An V ( c f . Q-^ The remainder o f t h e spectrum shows c o n s i d e r a b l e changes i n t h e p o s i t i o n s and numbers o f a b s o r p t i o n s , compared t o the spectrum o f t h e s t a r t i n g m a t e r i a l . A h i g h r e s o l u t i o n spectrum o f t h e complex i n CHCl^ shows c a r b o n y l 1 a b s o r p t i o n s a t 2 l 0 4 ( w ) , 2 0 3 5 ( s ) , 2 0 2 0 ( s h ) , 1 9 5 5 ( s ) , 1 9 2 3 ( s ) cm" . Group t h e o r e t i c a l t r e a t m e n t s o f Mn(CO)^LX o c t a h e d r a l m o l e c u l e s i n d i c a t e t h a t a c i s - t e t r a c a r b o n y l complex should have 4 a c t i v e CO s t r e t c h i n g modes i n t h e i n f r a r e d spectrum ( 3 s t r o n g and 1 weak) w h i l e t h e t r a n s isomer s h o u l d g i v e , . 281' 282 r i s e t o o n l y 2 a b s o r p t i o n s ( 1 weak and 1 s t r o n g ) . ' The c i s - and t r a n s - t r i c a r b o n y l compounds Mn(CO)^L X should g i v e r i s e t o 3 s t r o n g a b s o r p t i o n s , and 5 283 1 weak and 2 s t r o n g a b s o r p t i o n s , r e s p e c t i v e l y . Thus t h e s o l u t i o n spectrum of BrMnCCO^CPt^CNCPt^) i s c o n s i s t e n t w i t h t h e compound b e i n g a t e t r a c a r b o n y l -144- Table I V . 1 . I n f r a r e d S p e c t r a ( N u j o l m u l l ) o f BrMn(CO)^(Ph CNCPh ) and Ph C=NC(Cl)Ph 2 BrMn(CO) (Ph CNCPh ) 4 2 2 2 Ph-C=NC(Cl)Ph„ -1 cm 2 Assignment 2 268,273 L cm ^ 3226(w) 2032(s) 2022(s) 1942(s,sh) 1923(s) N-H 1623(m) 16l8(m) 1600(m) 1580(m) 1486(sh) 1453(sh) 1241(m) C=N C=N ? C=C ( o f a r o m a t i c C=C nuclei) 1597(m) 1575(m) 1490(sh) 1449(sh) 1314(w) 1280(m) 1269(m,sh) 1193' ) Phenyl n u c l e i 1164(m) 1080(m) 1031(w) (w) I n Plane Bending o f Phenyl Groups (m) 1004(m) (w) 973(vw) 935(m) 908Qn) 780 (s.split) 772 747(w) 730(s) 701(vs) 694(sh) 649(s) 627(vs) 614(w) 595(s) 570(vw) 527(s) 495(w,br) Out o f Plane Bending ( s s 724 | > P 696(vs) 667(m) 637(w) 628(w) 616(w) 600(e) 589(w) l j L t C-Cl > ) Out o f Plane Bending MC0 bend -145- d e r i v a t i v e w i t h t h e bromide i o n and l i g a n d i n m u t u a l l y c i s p o s i t i o n s . The p a t t e r n o f c a r b o n y l a b s o r p t i o n s i n the s o l i d s t a t e d i f f e r s s l i g h t l y from t h a t i n the s o l u t i o n ; t h e weak h i g h frequency band has disappeared, and t h e shoulder a t 2020 cm ^ i a more r e s o l v e d . These d i f f e r e n c e s c o u l d be due t o c r y s t a l packing e f f e c t s i n the s o l i d , o r might suggest a s l i g h t change i n 282 symmetry i n t h e s o l i d state. I n t h e f a r - i n f r a r e d spectrum o f the complex, a broad a b s o r p t i o n , c e n t r e d a t 214 cm ^ i s observed. A s i m i l a r band i s c e n t r e d a t 216 cm"^" ( l i t . 218 1 284 cm ) i n t h e spectrum o f Mn(C0),.Br and i s assigned t o t h e Mn-Br s t r e t c h i n g 284 frequency. There appear t o be no o t h e r r e p o r t e d t e t r a c a r b o n y l manganese h a l i d e complexes c o n t a i n i n g n i t r o g e n l i g a n d s . ( T a b l e I . 2 ( i i ) , p. 4 0 ) . R e a c t i o n o f Mn(C0)^X (X = C l , B r , I ) w i t h amines e.g. py, a n i l i n e , g i v e s t h e d i s u b s t i t u t e d d e r i v a t i v e MhCCO^LjX d i r e c t l y , w i t h no evidence f o r f o r m a t i o n 14 o f Mn(C0)^LX s p e c i e s . I t i s p o s s i b l e t h a t t h e b u l k y l i g a n d i n t h e complex B r M ^ C O ^ P l ^ C N C P l ^ ) makes t h e m e t a l s t e r i c a l l y crowded, so t h a t t h e monos u b s t i t u t e d complex i s more s t a b l e than t h e d i s u b s t i t u t e d one would be. 281 T e t r a c a r b o n y l d e r i v a t i v e s c o n t a i n i n g o t h e r l i g a n d s have been prepared , e.g. Mn(CO) (PPh )Br. 4 3 A p.m.r. spectrum o f BrMn(CO)^(Ph CNCPh ) i n CDClg ( w i t h TMS as i n t e r n a l 2 2 r e f e r e n c e ) was o b t a i n e d a f t e r 339 accumulations u s i n g a D i g i c o C.A.T. spectrum shows a s t r o n g peak a t 2*76 T, w i t h a l i t t l e f i n e The structure d i s c e r n i b l e due t o t h e p r o t o n s i n the. phenyl groups, and a weak peak a t 0*04 T -146- due t o t h e hydrogen on t h e n i t r o g e n . The approximate r a t i o o f peak areas i s 2 0 : 1 , as r e q u i r e d by t h e complex. Repeated a t t e m p t s were made t o o b t a i n a mass spectrum o f t h e complex, v i a t h e d i r e c t i n s e r t i o n probe. from room t e m p e r a t u r e t o from 8 eV t o 70 eV. The source t e m p e r a t u r e a t i n s e r t i o n was v a r i e d 150°C, and t h e a c c e l e r a t i n g v o l t a g e was v a r i e d I n each case, the o n l y peaks observed were due t o break- down o f t h e o r g a n i c l i g a n d , and no m e t a l - c o n t a i n i n g fragments c o u l d be detected. As i n t h e case o f t h e complex MnCcO^CPt^CNCPl^), t h e h i g h e s t 4- i n t e n s e peak was observed a t m/e 182, which corresponds t o [PhjCNHg] , a p a r t from a peak a t m/e 332, c o r r e s p o n d i n g t o [Pl^CCF!^]"*", which may a r i s e from thermal d e c o m p o s i t i o n o f t h e complex, or be p r e s e n t as an i m p u r i t y . No 1 peak was observed a t m/e 342, c o r r e s p o n d i n g t o [ Pl^CNCPt^]" ". M o l e c u l a r w e i g h t d e t e r m i n a t i o n s c o u l d n o t be made on t h e complex, as i t i s t o o u n s t a b l e i n s o l u t i o n f o r e b u l l i o s c o p i c o r osmometric measurements t o he made, and n o t s o l u b l e enough i n s u i t a b l e s o l v e n t s f o r c r y o s c o p i c measurements. The Mn-Br s t r e t c h i n g f r e q u e n c y i n t h e f a r - i n f r a r e d spectrum c o n f i r m s t h a t t h e bromine i s a t t a c h e d t o t h e m e t a l r a t h e r t h a n t h e o r g a n i c l i g a n d , and r u l e s o u t t h e p o s s i b i l i t y t h a t t h e complex i s o f t h e t y p e H + - [MnCCO^Pt^C-N-CPl^] Br , i n which t h e p o s i t i v e l y charged l i g a n d would be i s o e l e c t r o n i c w i t h [R C-C-CR ]. 7 9 I t seems l i k e l y , t h e n , t h a t t h e l i g a n d i n t h e complex i s n e u t r a l , d o n a t i n g 2 e l e c t r o n s t o t h e m e t a l . the hydrogen on t h e n i t r o g e n i s t h o u g h t t o be t h e s o l v e n t . The source o f -147- As f o r MnCCO^Pt^CNCPt^ ) , s e v e r a l types o f m e t a l l i g a n d bonding can be envisaged f o r BrMnCCO^CPt^CNCPl^) and some o f them a r e r e p r e s e n t e d schematically i n Fig.IV.1. x / H H y Mn N Mn (a) Mn (b) II Br ,H OC Mn OC i\c_>*r CPh CPh Mn or OC Br H Ph ft (c) (d) (e) Fig.IV.1. The f i r s t p o s s i b i l i t y , ( a ) r e p r e s e n t s scheme. a p s e u d o - a l l y l i c type o f bonding 2 The N atom i s sp h y b r i d i s e d , as a r e t h e two C atoms, and these o r b i t a l s form a-bonds. The p o r b i t a l s on each atom ( w i t h r e f e r e n c e t o the z axes drawn) can o v e r l a p t o form ir-bonds, b u t i n t h i s case, t h e p z o r b i t a l on the n i t r o g e n i s o c c u p i e d by 2 e l e c t r o n s and so t h e r e a r e 4 e l e c t r o n s t o occupy t h e i r - o r b i t a l s o f t h e CNC s k e l e t o n , whereas i n t h e n e u t r a l l i g a n d (Ph_CNCPh_), o n l y 3 e l e c t r o n s occupy t h e CNC rt-orbitals. Some o v e r l a p between -148- m e t a l o r b i t a l s and t h e i t - o r b i t a l s c o u l d occur t o g i v e m e t a l - l i g a n d bonding. Structure ( c ) represents t h e p o s s i b i l i t y o f bond f o r m a t i o n between t h e two carbon atoms t o g i v e a s u b s t i t u t e d a z i r i d i n e r i n g . T h i s would perhaps n o t 285 be u n r e a s o n a b l e , s i n c e Acheson describes t h e s y n t h e s i s o f a z i r i d i n e s from a l k y l o r a r y l magnesium h a l i d e s and k e t i m i n e d e r i v a t i v e s . Metal-ligand bonding i n ( c ) i s v i a the n i t r o g e n l o n e p a i r . S t r u c t u r e s ( d ) and ( e ) a r e s i m i l a r t o t h e c y c l i c a c y l s t r u c t u r e s 0 proposed by K i n g and B i s n e t t e ^ " ^ f o r t h e compounds (CH^ ) NCH CH COMn(CO)^ and 2 NC^H^C^COMnCcO)^. 2 2 2 They suggest t h a t i n i t i a l l y t h e a-complex forms e.g. (CH ) NCH CH Mn(CO) 3 2 2 5 ( f r o m NaMn(CO) and C l C H C H N ( C H ) ) which can then 5 2 2 3 2 undergo an i n t r a m o l e c u l a r rearrangement t o form t h e c y c l i c a c y l d e r i v a t i v e . A s i m i l a r pathway can be imagined f o r t h e complex BrMn(CO)^(Ph CNCPh ) i . e . 2 Ph C=N-C(Ph >Mn(CO) Br 2 2 °^ >- Ph C 4 2 2 ">Mn(CO) Br 3 N N~CPh!T H 2 Rearrangement o f t h e s k e l t o n would be r e q u i r e d t o g i v e s t r u c t u r e ( e ) . S t r u c t u r e ( b ) can p r o b a b l y be r u l e d o u t on s t e r i c grounds, when a model of the l i g a n d i s studied. for S t r u c t u r e s ( a ) and ( c ) a r e b o t h p o s s i b l e , b u t as t h e complex Mn(CO)^(Ph CNCPh >, no a b s o r p t i o n i n t h e 850-900 r e g i o n , due 2 2 262 to r i n g deformation , i s observed i n t h e i n f r a r e d spectrum o f 1 BrMn(CO)^(Ph CNCPh ). 2 2 The band a t 1618 cm" i n t h e spectrum o f t h e complex has been assigned t o a C=N s t r e t c h i n g frequency. This i s n o t i n c o n s i s t e n t w i t h t h e bonding d e s c r i p t i o n g i v e n f o r s t r u c t u r e ( a ) , s i n c e t h e r e a r e 4 -149- e l e c t r o n s i n t h e j t - o r b i t a l s o f t h e CNC s k e l e t o n and i t i s p o s s i b l e t h a t t h e CN bond o r d e r w i l l approach 2. The two a c y l s t r u c t u r e s ( d ) and ( e ) c o u l d a l s o perhaps account for t h e band a t 1618 cm \ since the a c y l carbonyl s t r e t c h i n g frequencies i n t h e compounds (CH,)-N(CH_)„COMn(CO). and NC H CH C0Mn(C0). occur a t 1660 3 2 2 2 4 5 4 2 4 c and 1668 cm , respectively.^"* / o However, t h e p a t t e r n o f c a r b o n y l a b s o r p t i o n s i n t h e spectrum o f t h e complex d i f f e r s from t h a t expected c i s - t r i c a r b o n y l manganese complex. fora A l s o , t h e 4 phenyl groups i n these two s t r u c t u r a l types would n o t be e q u i v a l e n t , and t h e p.m.r. spectrum o f BrMn(CO)^(Ph CNCPh ) shows t h a t they a r e . 2 2 Thus, s t r u c t u r e s o f type ( a ) o r ( c ) seem t h e most l i k e l y f o r t h e complex BrMn(CO)^(Ph CNCPh ), w i t h s t r u c t u r e ( a ) perhaps t h e most l i k e l y 2 2 possibility. I n o r d e r t o understand more f u l l y t h e type o f bonding between t h e m e t a l and l i g a n d i n t h e complex BrMn(CO)^(Ph CNCPh ), t h e p r e p a r a t i o n o f t h e l i g a n d 2 2 Ph C=N-C(H)(CH2) was a t t e m p t e d , i n t h e hope t h a t t h e analogous compound 2 2 BrMn(CO)^(Ph CNC(CH ) ) c o u l d be prepared v i a t h e l i t h i u m d e r i v a t i v e o f t h e 2 ligand. 3 2 The s i m p l i f i e d s p e c t r a o f t h i s complex may have been more r e a d i l y interpreted. However, the r e a c t i o n o f Ph C=NLi w i t h (CH.j) CCl, i n 2 2 r e f l u x i n g t o l u e n e , gave a p r e c i p i t a t e o f L i C l b u t no t r a c e o f t h e r e q u i r e d compound. I d e a l l y , s t u d i e s o f t h e r e a c t i o n s o f t h e l i g a n d R C=N-C(Cl)R , where R 2 2 i s H, o r a simple a l k y l group w i t h Mn(C0),.Br would have g i v e n s p e c t r a l data -150- w h i c h c o u l d p r o b a b l y be e a s i l y i n t e r p r e t e d . However, t h e r o u t e t o t h i s l i g a n d i n v o l v e s t h e use o f k e t i m i n o l i t h i u m compounds, and o n l y d i a r y l k e t i m i n e s were a v a i l a b l e a t t h e time ((t-Bu)2C=NH) has v e r y r e c e n t l y been i n these C. prepared laboratories^**). Conclusions S t u d i e s o f t h e l i g a n d Ph C=N-C(Cl)Ph 2 2 and i t s G r i g n a r d d e r i v a t i v e , w i t h t r a n s i t i o n m e t a l c a r b o n y l and n o n - c a r b o n y l compounds have y i e l d e d some interesting results. Two manganese c a r b o n y l complexes c o u l d be i s o l a t e d and c h a r a c t e r i s e d , a l t h o u g h b o t h appeared t o decompose r e a d i l y , e s p e c i a l l y in solution. I t i s t e n t a t i v e l y proposed t h a t these complexes b o t h c o n t a i n a p s e u d o - a l l y l i c o r r e l a t e d type o f s t r u c t u r e . The i n f o r m a t i o n o b t a i n e d on t h e n i c k e l systems s t u d i e d showed t h a t complex f o r m a t i o n between t h e m e t a l and some form o f t h e l i g a n d o c c u r r e d , b u t t h a t t h e r e s u l t i n g species were e x t r e m e l y u n s t a b l e and r a p i d l y decomposed. was i d e n t i f i e d as one o f t h e decomposition Attempted I n one case, t e t r a p h e n y l e t h y l e n e products. r e a c t i o n s between t h e l i g a n d and n - c y c l o p e n t a d i e n y l and i r o n c a r b o n y l h a l i d e s were u n s u c c e s s f u l . the l a c k o f r e a c t i o n molybdenum A possible explanation f o r between these compounds, (and between Nart-CpMo(CO).j and Ph2C=N-C(Cl)Ph2) i s t h a t t h e s t e r i c a l l y crowded l i g a n d p r e v e n t s t h e m e t a l , w i t h i t s b u l k y s u b s t i t u e n t s , from appraoching f o r m a t i o n t o occur. rt-CpM(C0) (Ph 9 near enough f o r bond The e x i s t e n c e o f t h e s t a b l e complexes CNCPh-) (M = M o 1 3 0 , W 2 6 1 ) i n which t h e l i g a n d i s t h o u g h t t o be -151- pseudo a l l y l i c seems t o c o n t r a d i c t t h i s i d e a . these d e r i v a t i v e s was However, the l i g a n d i n s y n t h e s i s e d " i n s i t u " from 2 moles o f Ph2C=NLi and i t s g e o m e t r i c a l arrangement i n the complex perhaps d i f f e r s from t h a t i n the l i g a n d , a l l o w i n g m e t a l - l i g a n d bonding t o occur. CHAPTER FIVE Some A z i r i d i n e D e r i v a t i v e s o f T r a n s i t i o n M e t a l Carbonyls -152- A. Introduction Since one o f t h e p o s s i b l e s t r u c t u r e s o f b o t h t h e complexes Mn(CO) (Ph CNCPh ) and BrMn(CO) (Ph CNCPh ) i n v o l v e s an a z i r i d i n e r i n g , some 4 2 2 4 2 2 p r e l i m i n a r y s t u d i e s o f a z i r i d i n e l i g a n d s i n m e t a l c a r b o n y l systems were undertaken. The aims o f the s t u d y were, f i r s t l y , t o see i f a z i r i d i n e would form complexes w i t h m e t a l c a r b o n y l s c o n t a i n i n g t h e three-membered r i n g , and secondly, t o see i f r i n g opening would l e a d t o p s e u d o - a l l y l type complexes. The use o f t e t r a p h e n y l a z i r i d i n e may have g i v e n compounds s i m i l a r t o those o b t a i n e d from Mn(CO),.Br and Ph C=NC(Cl)Ph , b u t t h i s a z i r i d i n e has been o n l y 2 2 287 t e n t a t i v e l y r e p o r t e d as an i m p u r i t y and so t h e u n s u b s t i t u t e d a z i r i d i n e , e t h y l e n e i m i n e , was s t u d i e d i n i t i a l l y . E t h y l e n e i m i n e has been r e p o r t e d t o form q u i t e s t a b l e complexes w i t h 275 278 I I I 275 several t r a n s i t i o n metals ~ , e.g. [Co Az^(N0 ) ]Br , 2 2 11 [ C r * A z , . H 0 ] C l . j ^ " ' and [ M n ^ A z ^ ] C l . T h e complexes a r e s i m i l a r t o those 2 2 275 276 ' , and t h e s t e r i c p r o p e r t i e s o f e t h y l 2 76 eneimine f a l l between those o f MeNH and EtNH The l i g a n d seems t o formed by NH^ and p r i m a r y amines 2 2 complex more s t r o n g l y than expected f o r a secondary amine o f comparable b a s i c i t y , and t h e r i n g i s q u i t e s t a b l e when bonded t o a m e t a l i n a s o l i d 2 76 complex. However, many u n s u c c e s s f u l a t t e m p t s have been made t o s y n t h e s i s e complexes w i t h a z i r i d i n e , which a r e w e l l known w i t h o t h e r amines and w i t h 275 pyridine. Spectroscopy showed t h a t r i n g cleavage had o c c u r r e d i n these reactions. Ring opening o f a z i r i d i n e s i s c a t a l y s e d by a c i d s , which p r o t o n a t e t h e -153- n i t r o g e n t o g i v e t h e immonium i o n , and subsequent a t t a c k by a n u c l e o p h i l e . . . , . . 288 w i t h simultaneous r i n g opening occurs. e.g. R 7\ RRC 2 3 — • CH + /\ H R R^C — 2 2 (Y If occur: — CH NHR, 2 = nucleophile) t h e n u c l e o p h i l e i s an uncharged will -> R-R_CCH_Y 2 3, 2 a z i r i d i n e m o l e c u l e , then p o l y m e r i s a t i o n 285 CH CH NH | N+ H H +N H A^ 2 0 2 A 0 2 H 0 2 A polymer B r a n c h i n g o f t h e polymer can o c c u r , t h e degree o f b r a n c h i n g depending upon 289 the c o n c e n t r a t i o n o f t h e c a t a l y s t ( i . e . t h e a c i d ) and on t h e temperature. A l t h o u g h r u p t u r e o f a C-N bond u s u a l l y occurs i n r i n g opening, p y r o l y t i c 290 i s o m e r i s a t i o n by r u p t u r e o f t h e C-C bond has been r e p o r t e d h P h >^y N 175-205°C» PhCH=N-CH Ph 2 \ H P t K / C H A7 Ph' \ / 2 175-205°C — * h P 2 C = N - C H 2 C H 3 , e.g. -154- D e r i v a t i v e s and polymers o f a z l r i d i n e s have wide i n d u s t r i a l and p h a r m a c e u t i c a l a p p l i c a t i o n s , and i n p a r t i c u l a r , some o f t h e t r a n s i t i o n m e t a l 275 complexes a r e p o t e n t i a l agents i n cancer chemotherapy. S t u d i e s o f e t h y l e n e i m i n e w i t h Mn(CO)^Br and t h e Group V I m e t a l were undertaken, s i n c e , besides carbonyls t h e p o s s i b l e r e l e v a n c e o f t h e manganese system t o t h e work d e s c r i b e d i n t h e two p r e v i o u s c h a p t e r s , these c a r b o n y l s a l l form s t a b l e d e r i v a t i v e s w i t h a v a r i e t y o f amines ( s e e Chapter I ) . B. Experimental 1. Mn(CO) Br + A z i r i d i n e 5 This r e a c t i o n was r e p e a t e d s e v e r a l t i m e s , and was m o n i t o r e d by i n f r a r e d spectroscopy. ( a ) E t h y l e n e i m i n e (0*2 m l . , 4 mmoles) i n c h l o r o f o r m ( 2 m l . ) was added t o a s o l u t i o n o f manganese p e n t a c a r b o n y l bromide ( 1 * 1 g., 4 mmoles) i n c h l o r o f o r m (40 m l . ) . E f f e r v e s c e n c e o c c u r r e d s l o w l y b u t a f t e r 24 h r s . a t room t e m p e r a t u r e , an a d d i t i o n a l amount o f e t h y l e n e i m i n e (0*2 m l . , 4 mmoles) was r e q u i r e d t o complete t h e r e a c t i o n . The y e l l o w s o l i d o b t a i n e d on removal o f v o l a t i l e s was r e c r y s t a l l i s e d from CHCl^/hexane t o g i v e y e l l o w c r y s t a l s o f complex I ( y i e l d , l g . ) . S u b l i m a t i o n a t 60-80°C, 0*001 mms/hg gave a v e r y s m a l l amount o f s u b l i m a t e . The b u l k o f t h e s o l i d d i d n o t sublime and a f t e r r e c r y s t a l l i s a t i o n , was shown t o be I . The i n f r a r e d spectrum M.Pt. 110-112°C. o f I i n CHCl^, b e f o r e s u b l i m a t i o n showed bands a t 1 2 l 0 5 ( v w ) , 2 0 3 7 ( s ) , 2 0 l 9 ( w , s h ) , 1976(vw) and 1 9 3 1 ( s , b r ) cm" . After sublimation, the r e c r y s t a l l i s e d r e s i d u e showed c a r b o n y l a b s o r p t i o n s a t 2 0 3 7 ( s ) , 1 9 3 2 ( s ) , -155- 1 9 1 6 ( s , s h ) cm s o l u t i o n was . The s m a l l amount o f s u b l i m a t e d i s s o l v e d i n CHCl^, b u t t h e t o o weak t o g i v e a A n a l y t i c a l d a t a f o r Complex I . spectrum. Found, ( b e f o r e s u b l i m a t i o n ) : C,39'9, 37*8; H,4«0; N.11'6, 10-6; B r , 20*2%; 30*7; H,2«6; N,6'9; B r , 25-7%. ( r e s i d u e , a f t e r s u b l i m a t i o n ) : C,31*9, M n ( C 0 ) ( C H N ) B r r e q u i r e s C,28'8; H,3'3; 3 2 5 2 N.9-2; Br,26'2%. ( b ) On r e p e t i t i o n o f t h e r e a c t i o n , u s i n g a 2:1 molar r a t i o o f C H^N:Mn(C0)^Br, r e a c t i o n was 2 was complete a f t e r 26 h r s . The solution spectrum s i m i l a r t o t h a t observed f o r I ( b e f o r e s u b l i m a t i o n ) b u t t h e p r e v i o u s l y weak bands a t 2105, 2019 and 1976 cm~^ were o f g r e a t e r i n t e n s i t y . 60°C, 0'001 mm/hg gave a y e l l o w s u b l i m a t e , I I , whose s o l u t i o n -1 showed a b s o r p t i o n s a t 2 l 0 0 ( m ) , 2020vs), 1 9 7 0 ( s ) c m . i n the spectrum Sublimation at spectrum Thus the weaker bands o f I a r e p r o b a b l y due t o I I . A n a l y t i c a l data f o r complex I I : C,51'8; H,5*0; Br,26*1%. ( c ) Manganese p e n t a c a r b o n y l bromide (0'3 g., 1*1 mrnoles) was t r e a t e d w i t h e t h y l e n e i m i n e ( 1 m l . , e x c e s s ) , and immediate v i g o r o u s e f f e r v e s c e n c e was observed, w i t h d i s s o l u t i o n o f t h e s o l i d t o g i v e a c l e a r dark orange s o l u t i o n . E f f e r v e s c e n c e ceased a f t e r —5 mins. and a f t e r s t i r r i n g f o r 30 mins., hexane (10 m l . ) was added. A t a r r y , y e l l o w s o l i d s l o w l y separated w h i c h , a f t e r washing w i t h hexane, was r e c r y s t a l l i s e d from CHCl^/ether ( Y i e l d , 0*18 g . ) . The s o l u t i o n spectrum o f the crude p r o d u c t was almost i d e n t i c a l t o t h a t of I (before s u b l i m a t i o n ) but a f t e r r e c r y s t a l l i s a t i o n , only absorptions a t 2 0 3 7 ( s ) and 1 9 2 7 ( s , b r ) cm"''" were observed, and the main p r o d u c t o f t h e -156- r e a c t i o n was i d e n t i f i e d as I . However, s u b l i m a t i o n o f t h i s sample ( a t 60 0*001 mms/Hg) gave a l i t t l e s u b l i m a t e , I I I , 2 0 3 7 ( s ) , 1946 residue I , and 1914 was - 1 ( s , s p l i t ) cm " ". unchanged. The C, w i t h carbonyl absorptions at spectrum o f the r e c r y s t a l l i s e d A n a l y t i c a l data f o r complex I . Found ( b e f o r e s u b l i m a t i o n ) ; C,35'5, 32*9, 36*0; H,4*6, 4'7; N,10'9; Br, 43*3, 25*6%. Residue a f t e r s u b l i m a t i o n : C,30*5; H,4'4%. ( d ) Manganese p e n t a c a r b o n y l t o -196°C and temperature, bromide (0*83 g., 3 mmoles) was t r e a t e d w i t h e t h y l e n e i m i n e (2 m l . ) . On warming t o room the s o l i d d i s s o l v e d to give a y e l l o w s o l u t i o n ; vigorous e v o l u t i o n o c c u r r e d and the r e a c t i o n v e s s e l became q u i t e h o t . orange gum o b t a i n e d was powder was o b t a i n e d , which was T h i s compound, I V , was n o t be r e c r y s t a l l i s e d . cooled The gas dark s t i r r e d w i t h e t h e r f o r 2 days, when a p a l e y e l l o w washed w i t h e t h e r and pumped d r y ( Y i e l d , 2*5 g. i n s o l u b l e i n a l l common o r g a n i c s o l v e n t s and could A n a l y t i c a l d a t a f o r complex IV. Found: C,32'5, 34-3, 33'0; H , 5 ' l , 5*4, 6*0; N , 8 ' l ; Br,43'7, 42*1%. 2. Mn(C0),.Br + lithiumaziridine ( a ) A suspension o f l i t h i u m a z i r i d i n e was Ethyleneimine and prepared (0*16 m l . , 3 mmoles) i n monoglyme (10 m l . ) was t r e a t e d w i t h n - b u t y l l i t h i u m i n hexane (3 mmoles). as follows. c o o l e d t o -196°C (MeLi can a l s o be . 8 used). On warming t o room temperature s a l t was observed, and a f t e r a w h i t e suspension o f the l i t h i u m 1 h r . , t h i s was t r e a t e d w i t h a s o l u t i o n of manganese p e n t a c a r b o n y l bromide (0*75 g., 3 mmoles) i n monoglyme (40 m l . ) . E f f e r v e s c e n c e o c c u r r e d and a f t e r s e v e r a l h o u r s , the q u a n t i t y o f w h i t e -157- p r e c i p i t a t e had i n c r e a s e d . A s o l u t i o n i n f r a r e d spectrum o f t h e r e a c t i o n medium showed s e v e r a l a b s o r p t i o n s i n t h e c a r b o n y l r e g i o n , s u g g e s t i n g a m i x t u r e o f p r o d u c t s b u t a t t e m p t s t o o b t a i n a s o l i d gave o n l y a t a r , and a t t e m p t e d s e p a r a t i o n o f t h e m i x t u r e by chromatography was u n s u c c e s s f u l . ( b ) I n a r e p e a t o f t h e r e a c t i o n , a f t e r f i l t r a t i o n from t h e w h i t e p r e c i p i t a t e , t h e s o l u t i o n was r e f l u x e d f o r s e v e r a l h o u r s , when some o f t h e c a r b o n y l a b s o r p t i o n s i n t h e s o l u t i o n i n f r a r e d spectrum disappeared. Filtration, c o n c e n t r a t i o n o f t h e s o l u t i o n , a d d i t i o n o f e t h e r and c o o l i n g t o -20°C gave y e l l o w c r y s t a l s which were k e p t c o l d d u r i n g i s o l a t i o n , b u t on f i n a l l y pumping dry, they changed t o an o i l . A l l f u r t h e r a t t e m p t s t o o b t a i n a s o l i d were unsuccessful. An i n f r a r e d spectrum o f t h e o i l showed t h e presence o f co- o r d i n a t e d e t h y l e n e i m i n e , b u t a l s o bands due t o monoglyme. No r e a c t i o n c o u l d be d e t e c t e d between t h e o i l , and t r i p h e n y l p h o s p h i n e , i n monoglyme. 3. Group V I m e t a l c a r b o n y l s + A z i r i d i n e (a) Cr(CO) 6 + Aziridine No r e a c t i o n o c c u r r e d between chromium hexacarbonyl and e t h y l e n e i m i n e i n r e f l u x i n g hexane. Chromium hexacarbonyl (0*23 g., 1 mmole) was p l a c e d i n a t h i c k - w a l l e d g l a s s tube and c o o l e d t o -196°C. the tube was evacuated, A f t e r a d d i t i o n o f a z i r i d i n e ( 1 m l . , excess), s e a l e d , and a l l o w e d t o warm up t o room temperature. Some Cr(C0)g d i s s o l v e d t o g i v e a y e l l o w s o l u t i o n , and on warming t o 60-70°C, almost a l l t h e s o l i d d i s s o l v e d , and t h e c o l o u r darkened. The tube was sealed -158- i n t o a vacuum l i n e system, cooled t o -196 C and opened u s i n g a break s e a l . The carbon monoxide was c o l l e c t e d and measured (96 c c s . a t N.T.P.,^4 mmoles) and i t s i d e n t i t y c o n f i r m e d by i n f r a r e d spectroscopy and mass s p e c t r o m e t r y . The excess a z i r i d i n e was then vacuum t r a n s f e r r e d w i t h a f l a s k a t -196°C c o n t a i n i n g d i l . HCl and the tube f i n a l l y removed from the vacuum l i n e and the dark r e d t a r e x t r a c t e d w i t h c h l o r o f o r m . R e c r y s t a l l i s a t i o n gave a t a r , which on washing w i t h e t h e r , gave a p i n k s o l i d . spectrum The CHCl^ s o l u t i o n infrared o f t h e crude p r o d u c t showed a b s o r p t i o n s a t 1992 cm ^ ( C r ( C O ) g ) , -1 and a t 1 9 8 1 ( s ) , 1 8 7 6 ( s h ) and 1826(m) c m . spectrum, I n the s o l i d s t a t e i n f r a r e d the o n l y sharp bands were t h e c a r b o n y l a b s o r p t i o n s ( a t 1 8 9 8 ( s ) , I 8 6 2 ( s h ) and 1818(m) cm ^ ) . Other bands were broad and weak, b u t t h e r e was no band a t t r i b u t a b l e t o the r i n g d e f o r m a t i o n o f e t h y l e n e i m i n e . A n a l y t i c a l data. Found: C.39'6, 43*7, 42*7; H,5*5, 7*8, 7-1%. The compound d i d n o t m e l t , b u t the c o l o u r p a l e d t o grey on h e a t i n g t o 300°C, i n a sealed tube. A f t e r s t o r i n g f o r a few days a t -20°C, t h e compound would n o t r e d i s s o l v e i n CHC1 . 3 ( b ) Mo(CO), + A z i r i d i n e b The same r e a c t i o n procedure was used as d e s c r i b e d f o r Cr(CO)g. When molybdenum hexacarbonyl (0*66 g., 2*5 mmoles) and excess a z i r i d i n e ( 2 m l . ) were heated a t 100°C f o r s e v e r a l h o u r s , a dark y e l l o w s o l u t i o n was o b t a i n e d , which on c o o l i n g , s e t t o a gum. , (102 ccs a t NTP,'"4 5 mmoles). Carbon monoxide was c o l l e c t e d and measured The gum d i s s o l v e d i n CHCl„ b u t a l l a t t e m p t s -159- t o o b t a i n a s o l i d gave a dark y e l l o w t a r . Washing the t a r w i t h e t h e r f o r s e v e r a l days gave a s e m i s o l i d , whose i n f r a r e d spectrum showed o n l y weak, broad a b s o r p t i o n s and no band due to r i n g deformation. Carbonyl a b s o r p t i o n s i n t h e s o l u t i o n spectrum o f t h e crude s o l i d were observed a t 2016(w), 1 8 9 6 ( s ) , -1 1 8 6 9 ( s h ) , 1 8 8 1 ( s ) , 1 7 6 7 ( s ) , 1768(sh) c m , b u t a f t e r s t o r i n g f o r s e v e r a l days, the s e m i s o l i d would n o t r e d i s s o l v e i n CHCl^( c ) W(CO) + A z i r i d i n e 6 H e a t i n g t u n g s t e n hexacarbonyl (1*6 m l . ) i n a sealed tube a t 110°C (0*7 g., 2 mmoles) and aziridine gave a dark y e l l o w t a r , b u t a l l the c a r b o n y l d i d n o t r e a c t even a f t e r 3 days. On opening t h e tube, t h e CO c o l l e c t e d and measured (30 ccs. , **»1*3 mmoles). The gum was was insoluble i n THF and e t h e r , b u t gave a y e l l o w s o l u t i o n w i t h CHCl^j showing c a r b o n y l a b s o r p t i o n s a t 1 9 4 8 ( s ) (W(C0) 1 6 ? ) , 1883(m), 1 8 6 2 ( s h ) , 1812(w) cm" . Attempts t o o b t a i n a s o l i d from t h e CHCl^ s o l u t i o n y i e l d e d o n l y a t a r . R e s u l t s and Discussion Several new c a r b o n y l compounds were d e t e c t e d i n r e a c t i o n s o f manganese p e n t a c a r b o n y l bromide and a z i r i d i n e , b u t f u l l c h a r a c t e r i s a t i o n o f t h e products has n o t y e t proved p o s s i b l e , s i n c e r e p e t i t i o n o f the r e a c t i o n even under the same c o n d i t i o n s gave d i f f e r e n t r e s u l t s , and m i x t u r e s o f p r o d u c t s were u s u a l l y obtained. R e a c t i o n between Mn(C0)^Br ( 1 m o l e ) and a z i r i d i n e (2 m o l e s ) gave complex I as the major p r o d u c t , and another complex I I , obtainable only i n small y i e l d , -160- c o u l d be s e p a r a t e d from I by s u b l i m a t i o n . I n t h e absence o f a s o l v e n t , Mn(C0),.Br and excess a z i r i d i n e a g a i n gave complex I as the major p r o d u c t , b u t a t h i r d complex I I I , c o u l d be sublimed o u t o f t h i s sample o f I . However, r e p e t i t i o n o f t h i s r e a c t i o n on a l a r g e r s c a l e gave an i n s o l u b l e p r o d u c t I V . R e a c t i o n o c c u r r e d between l i t h i u m a z i r i d i n e and Mn(C0),-Br, b u t the m i x t u r e o f c a r b o n y l species o b t a i n e d c o u l d n o t be s a t i s f a c t o r i l y separated. On h e a t i n g a s o l u t i o n o f t h e p r o d u c t s , one o f t h e species d i s a p p e a r e d , b u t a t t e m p t s t o o b t a i n a s o l i d from the s o l u t i o n gave o n l y an o i l , c o n t a i n i n g t h e s o l v e n t , and no r e a c t i o n c o u l d be d e t e c t e d between t h i s p r o d u c t and triphenylphosphine. When the Group V I m e t a l c a r b o n y l s and excess a z i r i d i n e were heated i n a sealed t u b e , displacement o f c a r b o n y l groups o c c u r r e d . Only i n t h e case o f Cr(C0)g c o u l d a s o l i d be i s o l a t e d , b u t t h i s changed on s t a n d i n g and has n o t y e t been f u l l y c h a r a c t e r i s e d . Mo(C0)g and W(C0)g gave t a r s , which c o u l d n o t be r e c r y s t a l l i s e d . Complex I i s o b t a i n e d as a y e l l o w , m i c r o c r y s t a l l i n e s o l i d . I t decomposes s l o w l y i n a i r over s e v e r a l days, b u t more r a p i d l y i n s o l u t i o n . R e f l u x i n g a c h l o r o f o r m s o l u t i o n o f I f o r 3 h r s . caused v e r y l i t t l e change i n t h e s o l u t i o n i n f r a r e d spectrum o f t h e complex. On h e a t i n g i n a sealed I darkened a t 88°C and m e l t e d ( w i t h d e c o m p o s i t i o n ) tube, a t 110-112°C. I f e t h y l e n e i m i n e behaves as a normal weak base towards Mn(C0)^Br, then 1 t h e expected p r o d u c t ^ 1 o f t h e r e a c t i o n i s Mn(C0)^Az Br. ? Two moles o f l i g a n d were r e q u i r e d f o r complete r e a c t i o n o f Mn(C0),.Br ( 1 mole) i n CHCl.^. i n f r a r e d s o l u t i o n spectrum The o f I ( i n CHCl„) shows c a r b o n y l a b s o r p t i o n s a t -161- 2 0 3 7 ( s ) , 1 9 3 2 ( s ) , 1916(s,sh) cm" ( t h e shoulder i s n o t always r e s o l v e d ) and t h i s i s t h e expected p a t t e r n f o r an o c t a h e d r a l , c i s - d i s u b s t i t u t e d manganese 283 t r i c a r b o n y l bromide complex 1911 cm ^ i n CHCl^)• ( c f . cis-Mn(C0).jpy2Br, v The bands i n t h e i n f r a r e d spectrum a t 2031, 1950, o f complex I a r e l i s t e d i n Table V . l , t o g e t h e r w i t h those o f complex I I , and e t h y l e n e i m i n e itself. Of p a r t i c u l a r n o t e i s t h e v e r y s t r o n g band a t 884 cm ^ due t o t h e s y m m e t r i c a l r i n g d e f o r m a t i o n , and t h e N-H s t r e t c h i n g frequency a t 3115 cm ^ ( s h o u l d e r a t 3175 cm ^ ) . to The l a t t e r i s s h i f t e d t o lower f r e q u e n c y , compared i t s p o s i t i o n i n e t h y l e n e i m i n e i t s e l f , and t h i s i s c o n s i s t e n t w i t h e l e c t r o n w i t h d r a w a l from n i t r o g e n v i a t h e cr-bond upon c o - o r d i n a t i o n 32 s i m i l a r s h i f t s have been observed i n m o r p h o l i n e and o t h e r complexes. of t h e o t h e r bands i n t h e spectrum comparison w i t h the spectrum spectrum strongly suggests o f I can be assigned of ethyleneimine i t s e l f . Most t o C l ^ modes, by Thus, t h e i n f r a r e d t h a t complex I i s cis-Mn(C0).j(Az ^ B r , i n which t h e e t h y l e n e i m i n e c o - o r d i n a t e s t o t h e m e t a l v i a t h e n i t r o g e n l o n e p a i r , and t h e 3-membered r i n g s t r u c t u r e o f t h e l i g a n d i s r e t a i n e d i n t h e complex. The a n a l y t i c a l data o b t a i n e d on two samples o f complex I can be found i n Section B.l. The f i g u r e s o b t a i n e d on each sample a r e i n c o n s i s t e n t , b u t t h e y do suggest t h a t b e f o r e s u b l i m a t i o n , each sample has a h i g h e r carbon and n i t r o g e n c o n t e n t than Mn(C0),jAz2Br r e q u i r e s . A f t e r s u b l i m a t i o n , t h e carbon and n i t r o g e n c o n t e n t o f t h e r e c r y s t a l l i s e d r e s i d u e , I , i s lower. I a f t e r s u b l i m a t i o n : C,31*0; H,3*5; N,6'9; Br,25*7%. C,28'8; H,3'3; N,9'2; Br,26'27„). (Average f o r Mn(C0) Az Br r e q u i r e s : 3 2 However, t h e f i g u r e s a r e s t i l l n o t i n good -162- Table V . l . I n f r a r e d s p e c t r a o f complexes I and I I ( N u j o l m u l l ) and o f E t h y l e n e i m i n e (liquid (cm CHN II I 1 ) 3175(sh) 3115(s) 2 - 1 (cm ) 3300(m) 3012(w,sh) 2725(w) 2681(vw) 2033(vs) 1912(vs) 1613(vw) 1527(vw) 1447(s) 1353(m) 1344(m) 1264(w) 1232(s) llll(vw) 1103(m) 1086(s) 1026(w,br) smear) 5 Assignment. 1 (cm" ) 3236(s) 3067(m) 3003(s) 2899(vw) N-H s t . N-H s t . symmetrical and asymm. s t r e t c h CO s t . CO s t . CO s t . 2092(w) 2000(vs,br) 1946(s) 1536(s) 1451(w) 1311(m) 1261(w) 1190(vw) 1140(s) 1129(s) I075(vw) 1020(vw) 970(m) 940(m) 890(sh) 884(vs) 804(m,br) 909(m) 881(w) 800(vw,br) 694(s) 641(vs) 719(vw,br) 661(vs) 535(vs) 602(w) 554(w) CH_ d e f o r m a t i o n 1266(w) 1218(s) CH t w i s t ring breathing 1136(w) CH wag 1089(m) 1021(w) CH wag and t w i s t N-<H d e f o r m a t i o n 2 0 2 926(m) assym. r i n g d e f o r m a t i o n 856(vs) symm. r i n g d e f o r m a t i o n 785(s) CH, r o c k z MCO bend MCO bend ? -163- agreement w i t h those r e q u i r e d by Mn(C0).jAz2Br and i t i s p o s s i b l e t h a t a l l t h e i m p u r i t i e s had not been removed, a l t h o u g h the i n f r a r e d s o l u t i o n spectrum o f t h e r e s i d u e , I , a f t e r s u b l i m a t i o n showed t h a t o n l y one c a r b o n y l species present. i s due was I t i s n o t known whether the i n c o n s i s t e n c y o f the a n a l y t i c a l data t o h e t e r o g e n i t y i n the samples, t o u n s a t i s f a c t o r y a n a l y t i c a l techniques f o r the type o f compound, or t o p o l y m e r i s a t i o n . The a n a l y t i c a l d a t a suggests t h a t t h e s u b l i m a t e s I I and I I I o b t a i n e d I must have a c o m p a r a t i v e l y h i g h carbon and n i t r o g e n c o n t e n t . o c c a s i o n was one s u f f i c i e n t q u a n t i t y o f one o f these species o b t a i n e d f o r measurements t o be made, and spectroscopy Only on from t h i s compound ( I I ) i s discussed later. Infrared showed t h a t I I and I I I were b o t h c a r b o n y l complexes, b u t i t i s p o s s i b l e t h a t the s u b l i m a t e s a l s o c o n t a i n some o r g a n i c polymer formed from e t h y l e n e i m i n e e i t h e r b e f o r e or a f t e r complex f o r m a t i o n . Attempts t o o b t a i n a p.m.r. spectrum o f I w i t h because o f the f o r m a t i o n o f a p r e c i p i t a t e when TMS TMS was . were u n s u c c e s s f u l , added as i n t e r n a l r e f e r e n c e t o a CDCl^ s o l u t i o n of I , and no peaks were observed i n the spectrum. The mass s p e c t r a o f t h e complex o b t a i n e d so f a r have n o t shown a p a r e n t peak. Peaks a t lower m/e difficult may be due t o breakdown o f Mn(C0).jAz2Br, b u t i t i s t o make d e f i n i t e assignments s i n c e manganese i s m o n o i s o t o p l c and no m e t a s t a b l e peaks were observed. Of t h e two s u b l i m a t e s o b t a i n e d i n t h e r e a c t i o n s between Mn(C0)^Br and a z i r i d i n e , the nature of I I I occasion i n very small y i e l d . i s unknown, s i n c e i t was o n l y i s o l a t e d on one I t s i n f r a r e d spectrum i n the c a r b o n y l r e g i o n i s s i m i l a r t o t h a t o f I , and i s a g a i n c h a r a c t e r i s t i c o f a cis-manganese -164- t r i c a r b o n y l bromide d e r i v a t i v e . On one o c c a s i o n , s u f f i c i e n t q u a n t i t y o f I I was i s o l a t e d t o a l l o w an i n f r a r e d spectrum t o be o b t a i n e d i n the s o l i d The s o l u t i o n i n f r a r e d spectrum o f I I ( i n CHCl^) shows c a r b o n y l bands a t state. 2 l 0 0 ( m ) , 2 0 2 0 ( v s ) , 1970(s) cm~\ and i s c h a r a c t e r i s t i c o f a t r a n s t r i c a r b o n y l 283 manganese bromide d e r i v a t i v e . The s o l i d s t a t e spectrum, shown i n Table V . I d i f f e r s c o n s i d e r a b l y from t h a t o f I , In particular, v N—H and a l s o from t h a t o f e t h y l e n e i m i n e . i s s h i f t e d t o h i g h e r f r e q u e n c y , and t h e r e i s o n l y a weak a b s o r p t i o n i n the 850-900 cm ^ range, where a s t r o n g a b s o r p t i o n due symmetrical r i n g d e f o r m a t i o n should occur. t o the The a n a l y t i c a l and i n f r a r e d data suggest t h a t complex I I i s a t r a n s - t r i c a r b o n y l manganese bromide d e r i v a t i v e c o n t a i n i n g t h e l i g a n d as a polymer. peaks t o h i g h m/e Mass s p e c t r a o f the complex showed (524) b u t no p a r e n t peak c o u l d be i d e n t i f i e d , and no d e f i n i t e assignments made. I n one r e a c t i o n between Mn(C0),.Br and excess e t h y l e n e i m i n e , i n the absence o f a s o l v e n t , a l a r g e y i e l d o f a complex, IV was obtained. I t seems t h a t a l l the e t h y l e n e i m i n e must have been used t o form t h e complex, t o account f o r the y i e l d , and p o l y m e r i s a t i o n o f the l i g a n d must have o c c u r r e d . A polymeric f o r m u l a t i o n f o r the compound i s supported by i t s i n s o l u b i l i t y i n a l l common o r g a n i c s o l v e n t s , and i t s s t a b i l i t y i n a i r . S u r p r i s i n g l y , the a n a l y t i c a l d a t a on the complex suggest a h i g h bromine, r a t h e r than a h i g h carbon c o n t e n t . The i n f r a r e d spectrum ( N u j o l mull.) shows s t r o n g c a r b o n y l a b s o r p t i o n s a t 2024 and 1919 - ( b r o a d ) cm ^ b u t o t h e r a b s o r p t i o n s a r e weak and broad, and no band a t t r i b u t a b l e t o t h e r i n g d e f o r m a t i o n was observed. -165- When l i t h i u m a z i r i d i n e was r e a c t e d w i t h Mn(CO),-Br, new c a r b o n y l species were d e t e c t e d , and L i B r was p r o b a b l y e l i m i n a t e d , b u t the m i x t u r e c o u l d n o t be separated. Heating the s o l u t i o n caused some o f t h e c a r b o n y l bands t o d i s a p p e a r , b u t a t t e m p t s t o i s o l a t e a s o l i d gave o n l y an o i l , c o n t a i n i n g t h e solvent. The s o l u t i o n s o f t h e complexes were v e r y a i r - s e n s i t i v e and r e a c t i v e ( t h e y a t t a c k e d t h e KBr p l a t e s used f o r i n f r a r e d s p e c t r o s c o p y ) . However, no r e a c t i o n between t h e p r o d u c t r e m a i n i n g a f t e r h e a t i n g and PPh^ was observed, when an a t t e m p t was made t o produce a more s t a b l e d e r i v a t i v e . Ring opening o f the l i g a n d o c c u r r e d i n the r e a c t i o n s between t h e Gp.VI m e t a l c a r b o n y l s and e t h y l e n e i m i n e . For t h e Mo and W c a r b o n y l s , new c a r b o n y l d e r i v a t i v e s were d e t e c t e d i n s o l u t i o n b u t o n l y t a r s c o u l d be i s o l a t e d . A s o l i d was o b t a i n e d from t h e r e a c t i o n s w i t h Cr(CO)g, b u t t h i s seemed t o change on s t a n d i n g , and t h e compound c o u l d n o t be f u l l y c h a r a c t e r i s e d . D. Conclusions Reproducible r e s u l t s were n o t o b t a i n e d i n the r e a c t i o n o f Mn(CO),-Br w i t h e t h y l e n e i m i n e , a l t h o u g h the main p r o d u c t seems t o be t h e expected d i s u b s t i t u t e d compound, Mn(C0)^Az2Br. satisfactorily purified. T h i s complex has n o t y e t been Other compounds were i s o l a t e d i n s m a l l y i e l d i n the r e a c t i o n , and one o f these c o n t a i n s the l i g a n d w i t h t h e r i n g opened. T h i s compound c o u l d form from Mn(C0),jAz2Br, or from r e a c t i o n o f Mn(CO)^Br w i t h some polymer p r e s e n t i n t h e e t h y l e n e i m i n e i t s e l f . The former r o u t e i s p r o b a b l y more l i k e l y , s i n c e i n another r e a c t i o n , e x t e n s i v e p o l y m e r i s a t i o n o f the l i g a n d o c c u r r e d t o g i v e a d i f f e r e n t p o l y m e r i c compound. This poly- -166- merisation must have been c a t a l y s e d f o r the d i f f e r e n c e s by t h e c a r b o n y l compound, b u t t h e reasons i n behaviour o f the l i g a n d towards Mn(CO)^Br a r e n o t clear. D i r e c t r e a c t i o n o f the Gp.VI m e t a l c a r b o n y l s w i t h some o t h e r amines a l s o 85 produced t a r s . D e r i v a t i v e s c o n t a i n i n g t h e amine were o b t a i n e d by r e a c t i o n + 85 o f t h e base w i t h R^N [M(CO),.X] d e r i v a t i v e s (M = Cr, Mo, W) and t h i s m i g h t provide a route t o e t h y l e n e i m i n e d e r i v a t i v e s o f the Gp.VI m e t a l c a r b o n y l s . CHAPTER SIX R e a c t i o n s o f N i t r i t e S a l t s w i t h T r a n s i t i o n M e t a l Carbonyls -167- A. Introduction T h i s c h a p t e r d e s c r i b e s a t t e m p t s t o i n t r o d u c e the n i t r i t e group i n t o t r a n s i t i o n m e t a l c a r b o n y l systems. are known, and Numerous n o n - c a r b o n y l n i t r i t e complexes + 2[Me^N] 2[Mn(N02)^] these are u s u a l l y i o n i c e.g. 293 or 294 J c o n t a i n o t h e r s t r o n g l i g a n d s e.g. N i [ 2 - ( a m i n o m e t h y l ) p i p e r i d i n e ] j C N O g ^ simple n i t r i t e s b e i n g r a r e . to the cyanide The n i t r i t e group i s a s t r o n g l i g a n d c o m i n g near ( a n i o n i n the s p e c t r o c h e m i c a l s e r i e s and s i n c e t h e r e are s e v e r a l s t a b l e c a r b o n y l complexes known c o n t a i n i n g the cyanide group, or the t h i o c y a n a t e and i s o t h i o c y a n a t e groups, t h e r e seemed no reason why metal n i t r i t e s should not e x i s t , e s p e c i a l l y , s i n c e the NC^ group possesses j t - bonding c a p a b i l i t i e s which are o f importance derivatives. transition i n f o r m a t i o n of s t a b l e c a r b o n y l I t was hoped t o study the n i t r o < — > n i t r i t o isomerism observed i n non-carbonyl often systems, and a l s o t o i n v e s t i g a t e the p o s s i b i l i t y o f r e d u c i n g the n i t r i t e group t o the n i t r o s y l group w h i l s t c o - o r d i n a t e d t o the metal. 140 Mn(C0)gN02 had p r e v i o u s l y been prepared was and c h a r a c t e r i s e d . 295 ' I t i s o l a t e d i n s m a l l amounts as a s i d e p r o d u c t i n t h e r e a c t i o n o f M ^ C C O ) ^ w i t h ^ 0 ^ , t h e main p r o d u c t b e i n g Mn(C0)^N0^. In addition, an i n s o l u b l e , p o l y m e r i c m a t e r i a l o b t a i n e d by the a c t i o n o f m o i s t n i t r i c o x i d e 207 on R u „ ( C 0 ) has been d e s c r i b e d as [Ru(C0) (N0„)„] on the b a s i s o f •j JLZ Z z / n in i n f r a r e d evidence. o Manganese c a r b o n y l compounds were i n v e s t i g a t e d as Mn(C0)^N02 had a l r e a d y been prepared initially and a l s o because maximum s t a b i l i t y of -168- t h e m e t a l c a r b o n y l h a l i d e s i s a t t a i n e d w i t h manganese compounds, and i t seemed likely of B. t h a t MnCCO),-!^ would be t h e most s t a b l e r e p r e s e n t a t i v e o f t h i s c l a s s compounds. Experimental 1. Mn(CO) Br + NaNO^ 5 Sodium n i t r i t e (0*07 g., 1 mmole) was d i s s o l v e d i n methanol (25 m l . ) and manganese p e n t a c a r b o n y l bromide (0*32 g., 0*8 mmoles) was added. s o l u t i o n darkened on s t i r r i n g The y e l l o w a t room t e m p e r a t u r e , and a f t e r s e v e r a l h o u r s , t h e s o l v e n t was removed under vacuum. The brown o i l r e m a i n i n g was e x t r a c t e d w i t h CHC1.J and new c a r b o n y l a b s o r p t i o n s were observed ( a t 2 0 5 1 ( s ) and 1 9 7 0 ( s ) cm •*") b u t a t t e m p t s t o r e c r y s t a l l i s e t h e compound l e a d t o decomposition. 2. Mn(C0) Br + (Me N)N0 5 (a) /| 2 Manganese p e n t a c a r b o n y l bromide (0*2 g., 0*72 mmoles) i n methanol (15 m l . ) was heated w i t h a methanol s o l u t i o n (20 m l . ) o f t e t r a m e t h y l ammonium n i t r i t e stirring ( 0 * 1 g., 0*85 mmoles). a t room temperature The y e l l o w s o l u t i o n darkened on and a f t e r s e v e r a l h o u r s , t h e s o l v e n t was removed under vacuum, and t h e yellow-brown r e s i d u e e x t r a c t e d w i t h CHCl^. New c a r b o n y l a b s o r p t i o n s were d e t e c t e d and a d d i t i o n o f hexane t o t h e CHCl^ s o l u t i o n gave a s m a l l amount o f impure s o l i d , w h i c h had no n i t r i t e a b s o r p t i o n s i n t h e i n f r a r e d spectrum. When Mn(C0)^Br and (Me^lOlK^ were r e f l u x e d i n diglyme f o r 4 h r s . , gas e v o l u t i o n was observed and a brown s o l i d p r e c i p i t a t e d . F i l t r a t i o n of the hot s o l u t i o n gave a c o l o u r l e s s f i l t r a t e and t h e r e s i d u e c o n t a i n e d no c a r b o n y l s p e c i e s , as d e t e r m i n e d by i . r . spectroscopy. -169- 3. Mn(CO) Br + AgNO^ 5 Manganese p e n t a c a r b o n y l bromide (0*2 g. , 0*72 mmoles) i n THF (20 m l . ) was heated w i t h excess s i l v e r n i t r i t e . p r o t e c t e d from the l i g h t , of The A f t e r s t i r r i n g o v e r n i g h t a t room temperature, no change was observed, b u t f i l t r a t i o n and removal s o l v e n t gave a yellow-orange s o l i d , contaminated w i t h black p a r t i c l e s . s o l i d was r e c r y s t a l l i s e d t w i c e from CHCl^/hexane, but y i e l d e d a m i x t u r e o f y e l l o w and b l a c k s o l i d s . The y e l l o w s o l i d decomposed t o t h e b l a c k solid, even a t -20°C. R e p e t i t i o n o f t h e r e a c t i o n i n the more i n e r t s o l v e n t , t o l u e n e gave t h e same contaminated p r o d u c t , but a l l a t t e m p t s t o o b t a i n a pure sample o f t h e y e l l o w compound, by r e c r y s t a l l i s a t i o n from t o l u e n e , CHCl^, o r e t h e r , were u n s u c c e s s f u l , and attempted 4. s u b l i m a t i o n caused r a p i d it-CpFe(C0) X + AgN0 2 2 decomposition. (X = C l , I ) No r e a c t i o n o c c u r r e d between jr-CpFe(C0) Cl and AgN0 2 Silver n i t r i t e 2 i n water. (0*38 g., 2*5 mmoles) was added t o a dark y e l l o w - b l a c k THF s o l u t i o n (20 m l . ) o f j t - c y c l o p e n t a d i e n y l i r o n d i c a r b o n y l i o d i d e (0*3 g., 1 mmole) and the suspension s t i r r e d f o r 14 h r s . i n darkness. and a f t e r f i l t r a t i o n No change was o b s e r v e d , the r e s i d u e was shown t o be a n o n - c a r b o n y l compound ( b y i n f r a r e d spectroscopy). Removal o f v o l a t i l e s from t h e orange-brown f i l t r a t e gave a b l a c k t a r , which on e x t r a c t i o n w i t h e t h e r , gave an orange brown s o l i d , contaminated pet. w i t h black p a r t i c l e s . R e c r y s t a l l i s a t i o n from CHCl_ o r t o l u e n e e t h e r m i x t u r e s gave a b l a c k powder and orange c r y s t a l s . Attempted s u b l i m a t i o n ( a t room t e m p e r a t u r e ) , 0*001 mms/Hg onto a c o l d f i n g e r a t -78°C) -170- gave no s u b l i m a t e and caused t h e orange c r y s t a l s t o t u r n b l a c k . R e p e t i t i o n o f the r e a c t i o n i n t o l u e n e gave the same orange p r o d u c t , contaminated w i t h b l a c k p a r t i c l e s , but i n f r a r e d spectroscopy presence o f a c a r b o n y l n i t r i t e compound, as w e l l as c a r b o n y l species were separated by chromatography. alumina; suggested the rt-CpFeCCO^I. The (Grade I I a c i d Woelm However, on removal of s o l v e n t from the s o l u t i o n , a d a r k e n i n g i n c o l o u r was contaminated latter observed, and the y e l l o w s o l i d w i t h black p a r t i c l e s . When t h e p r o d u c t was obtained chromatographed a second t i m e , some dark s o l i d remained a t the t o p o f the column and of two e l u t i o n w i t h ( i ) 5:1 CHCl^ihexane gave m a i n l y j t - C p F e ^ O ^ I , ( i i ) CHCl^ gave t h e p r o d u c t ) . was still s o l v e n t from the s o l u t i o n a t 0°C still removal gave an impure p r o d u c t . A d d i t i o n o f t r i p h e n y l p h o s p h i n e t o a t o l u e n e s o l u t i o n o f the p r o d u c t , i n an a t t e m p t t o produce a more s t a b l e d e r i v a t i v e , caused e x t e n s i v e decomposition. Attempts were made t o f o r c e the r e a c t i o n between j f - C p F e ^ O ^ I and AgN©2 t o go t o c o m p l e t i o n . rt-CpFe^O^I After s t i r r i n g a toluene s o l u t i o n of and AglTC^ f o r 14 h r s . , t h e suspension was f i l t r a t e heated w i t h another p o r t i o n o f AgN0 2 f i l t e r e d and the R e p e t i t i o n o f t h i s procedure gave no i n c r e a s e i n y i e l d of t h e p r o d u c t , and a s m a l l amount of n - C p F e ^ O ^ I remained i n s o l u t i o n . 5. [Rh(C0) Cl] 2 2 + Ba(N0 ) 2 2 and AgN0 2 No r e a c t i o n o c c u r r e d between rhodium d i c a r b o n y l c h l o r i d e dimer and n i t r i t e , nor between t h e c a r b o n y l and s i l v e r n i t r i t e , i n t o l u e n e a t room temperature. barium -171- 6. Group V I m e t a l c a r b o n y l s + (Me^N)NO,, (a) No r e a c t i o n o c c u r r e d between chromium h e x a c a r b o n y l and tetra- m e t h y l ammonium n i t r i t e i n r e f l u x i n g diglyme over 14 h r s . (b) A diglyme s o l u t i o n (60 m l . ) o f molybdenum hexacarbonyl (3*5 g. , 1*3 mmoles) and tetramethylammonium n i t r i t e (1*4 g., 1 mmole) was heated a t 110-120°C f o r 5 h r s . colour. Gas e v o l u t i o n was observed and t h e m i x t u r e darkened i n F i l t r a t i o n o f t h e h o t s o l u t i o n gave a non-carbonyl r e s i d u e (as shown by i n f r a r e d s p e c t r o s c o p y ) , b u t a d d i t i o n o f p e t r o l e u m e t h e r (40-60°, 160 to the c o o l e d f i l t r a t e gave a b l a c k t a r . E x t r a c t i o n o f t h i s t a r w i t h f i l t r a t i o n and removal o f s o l v e n t gave a brown s o l i d which was ml.) THF, recrystallised f r o m m e t h a n o l / e t h e r , t o g i v e an orange powder, whose i n f r a r e d spectrum showed c a r b o n y l a b s o r p t i o n s . A n a l y t i c a l d a t a on d i f f e r e n t samples o f t h i s complex: C,25-l, 26*6, 21*2; H,3*9, 4*9, 4-0; N,5'4, 6*7, 5'5%. ( c ) R e a c t i o n between t u n g s t e n hexacarbonyl and n i t r i t e i n d i g l y m e , a t 80°C f o r 3 h r s . , produced b l a c k s o l i d , which was tetramethylammonium t o t a l decomposition t o a i n s o l u b l e i n a l l common o r g a n i c s o l v e n t s , or i n w a t e r , and whose i n f r a r e d spectrum showed no a b s o r p t i o n s due t o CO or N0£ groups. R e s u l t s and D i s c u s s i o n S e v e r a l m e t a l c a r b o n y l systems have been s t u d i e d i n a t t e m p t s t o i s o l a t e t r a n s i t i o n metal carbonyl n i t r i t e d e r i v a t i v e s . I n the r e a c t i o n s o f Mn(C0),.Br w i t h n i t r i t e s a l t s , new c a r b o n y l species were d e t e c t e d i n s o l u t i o n b u t a t t e m p t s t o o b t a i n a s o l i d from the s o l u t i o n s caused d e c o m p o s i t i o n o f the c a r b o n y l compound. A y e l l o w p r o d u c t from the r e a c t i o n between Mn(C0) Br and -172- AgN02 was i s o l a t e d , b u t was always contaminated product. No detected i n these r e a c t i o n s . MnCCO^NC^ was s c o p y showed t h a t i r - C p F e ( C O ) I and A g N 0 2 was separated from i n s o l u t i o n and decomposition Ba(NO) the iodide by i n the s o l i d products. No i t s black s t a t e and reaction 2 Infrared 2 spectro- and 2 t h e compound was c o u l d n e v e r be occurred 6 decomposition g a v e some i t - C p F e ( C O ) ( N 0 ) w h i c h 2 chromatography, but or AgN0 , nor between C r ( C O ) 2 with i s o l a t e d free of i t s between [ R h ( C O ) C l ] 2 (Me^N)N0 . and 2 However, (Me^N)N0 2 r e a c t e d w i t h Mo(CO)g t o g i v e a c a r b o n y l p r o d u c t , b u t w i t h W(CO)g, decomposition to a grey, c a r b o n y l or n i t r i t e The product insoluble material from i n CHCl^ s o l u t i o n . (v 2059 a n d the r e a c t i o n cm 1 state ) , 1 The fill1 that the N0 b u t no slightly 2 295 , v . O T and 840 higher frequencies no a t 1388, 1 cm" ). further information and 817 cm Thus, the product c o u l d be than the group. The at bands i n t h e i n Table VI.1 together a t 1341, -1 . two spectrum, group i s more e f f i c i e n t with s i m i l a r to that 1266 complexes are assigned 1327 showed 2 t h a n jt-CpFe(CO)„Cl ( v spectrum o f t h e complex i s v e r y absorptions AgN0 i n the i n f r a r e d than i s the c h l o r i d e by c o m p a r i s o n w i t h o t h e r n i t r i t e o 1 are at higher suggesting 2 1170 2028 cm and i r - C p F e ( C O ) C l , a p a r t f r o m new 1270, and spectrum ( N u j o l m u l l ) are l i s t e d assignments. Mn(C0),.N0 2 2008 c m " ) removing charge from the metal solid total occurred, which contained b e t w e e n j t - C p F e ( C O ) I and These a b s o r p t i o n s 2047 and 2018 2 groups. s t r o n g c a r b o n y l a b s o r p t i o n s a t 2071 iodide unstablt and 818 cm t o the N0 [Ru(C0)„(N0 )J i f b e l i e v e d t o be - 1 , of which, group 2 207 o (e.g , v„„ at ir-CpFe(CO) N0 obtained, since the i n s t a b i l i t y 2 of the 2 -173- compound p r e v e n t e d i t s p u r i f i c a t i o n . Table Infrared VI.1. s p e c t r u m ( N u j o l m u l l ) o f it-CpFe(CQ) N0 o Position -1 cm Position -1 cm Assignment 3062(w) it-C H 2057(s) . . 296 Assignment 853 ( m ) rt-C H -M CO 835(w) it-C H -M 2015(s) CO 818(s) N0 I426(w) rt-C H -M 614(s) it-C H -M 1341(s) N0 2 596(sh) it-C H -M 1266(m) N0 2 588(ms) n-C H -M 1099(w) Jt-C H -M 546(ms) Jt-C^-M I066(w) it-C H -M 532(m) n-C H -M 1003(w) Jt-C H,.-M 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 C I n t h e r e a c t i o n s o f Mn(C0),-Br w i t h N a N 0 , new c a r b o n y l s p e c i e s w e r e 2 d e t e c t e d i n s o l u t i o n , b u t a l l a t t e m p t s t o i s o l a t e them l e a d t o d e c o m p o s i t i o n . It i s possible that t h e s p e c i e s formed were sodium s a l t s , w i t h solvent 297 molecules c o - o r d i n a t e d t o the c a t i o n . Farona a l k a l i metal s a l t s i n methanol reports that reaction of o r d i g l y m e w i t h Mn(C0)^Br l e a d t o solvent 298 insertion t o give salts. Abel and co-workers found t h a t o c c u r r e d w i t h Group V I m e t a l c a r b o n y l s , b u t a l l e f f o r t s s a l t s caused d e c o m p o s i t i o n . similar t o obtain These-authors r e p o r t , however, t h a t (Y = h a l o g e n , R = a l k y l ) w i t h Mn(C0),.X compounds ( X = h a l o g e n ) according t o the equation: reactions crystalline (R^N)Y react salts -174- + Mn(CO) X + R.N Y~ 5 f + diglyme^ o R N [Mn(CO),XY]~ n 1 2 Q No e v i d e n c e c o u l d be o b t a i n e d f o r a n a l o g o u s b e h a v i o u r carbonyl species d e r i v a t i v e s o f metal carbonyls, 18 2 derivatives of - and Fe(CO) . 5 cm" 1 and a band a t 1 7 1 7 ( s ) c m h a s v„ a t 1713 cm NO -1 n 2046(s), 1990(sh), 1 1 This 2 t o v„. ( M n ( C 0 ) _ ( N 0 ) ( P P h _ ) NO 3 3 isolated s p e c t r u m showed c a r b o n y l a b s o r p t i o n s a t 2 0 5 8 ( s h ) , 1 9 6 1 ( s h ) and 1 9 4 2 ( s ) cm" 2 < 1 and a l s o bands a t 1266(m) and However, t h e r e were s e v e r a l o t h e r bands i n r e g i o n o f t h e s p e c t r u m , w h i c h c o u l d n o t be a s s i g n e d , a n d the nature o f t h i s unstable product [Rh(CO) Cl] , attributable r e g i o n o f t h e spectrum o f t h e impure s o l i d 8 0 l ( m s ) , p o s s i b l y due t o N 0 t h e 1550-600 cm - 1 1980 a n d 1 9 6 1 ( m s , -1 , v„„ a t 2 0 3 4 , 1 9 7 1 , 1926 cm ) . H o w e v e r , no b a n d was CO o b s e r v e d i n t h e 1 7 0 0 cm thereaction. I n the a s o l u t i o n spectrum o f t h e crude m i x t u r e i n showed c a r b o n y l b a n d s a t 2063 a n d 2049 ( s , s p l i t ) , 3 metal [ C o ( C 0 ) ^ ] ~ a n d NO,, e . g . CoCNOXCO)^ f r o m 3 split) from 2 nitrosyl a c e t i c a c i d , and [Fe(NO)(CO) ]~ from n i t r i t e s r e a c t i o n o f Mn(CO),-Br w i t h A g N 0 CHCl f o r Y = N 0 , and no c o u l d be i s o l a t e d , f r o m t h i s r e a c t i o n . The n i t r i t e i o n h a s b e e n u s e d t o p r e p a r e and X, Y = C l , B r , I « 2 i s unknown. r e a c t s w i t h AgNO^, A g S 0 ^ a n d AgSCN t o g i v e b i n u c l e a r 2 216 complexes c o n t a i n i n g l i g a n d b r i d g e s , a l t h o u g h AgCN a n d AgF do n o t r e a c t . No r e a c t i o n c o u l d be d e t e c t e d b e t w e e n t h e c a r b o n y l a n d e i t h e r A g N 0 o r 2 Ba(N0 ) 2 under s i m i l a r c o n d i t i o n s . 2 The d i f f e r e n c e i n r e a c t i v i t y (Me^N)N0 2 i ssurprising, since o f t h e Gp.VI m e t a l hexacarbonyls + t h e y a l l r e a c t w i t h R^N X salts towards t o give -175- R,N [ M ( C O ) X ] ( X = h a l o g e n ) 298 A new c a r b o n y l c o n l y i n t h e r e a c t i o n o f Mo(CO)g w i t h (Me^lONC^. properties of a salt compound c o u l d be i s o l a t e d The p r o d u c t had t h e ( s o l u b l e i n a c e t o n e , 1^0, MeOH, EtOH, d i g l y m e , THF, CH^NC^; i n s o l u b l e i n h y d r o c a r b o n s , t o l u e n e , PhNOg, e t h e r ) a n d i t s i o n i c nature in was c o n f i r m e d by a c o n d u c t i v i t y measurement 10 m l . a c e t o n i t r i l e solvent infrared itself, gave a r e a d i n g -4 o f 4*3 x 10 mhos, c o m p a r e d t o t h e w h i c h h a d a c o n d u c t i v i t y o f 7*2 x 10 spectrum o f t h e s o l i d 2016(s,broad), 1932(sh), ( N u j o l m u l l ) showed c a r b o n y l absorptions a t 1 + 2 a n d b a n d s a t 1 4 8 8 ( s h ) and 9 5 2 ( m ) , due t o Me^N . a d d i t i o n , t h e r e were s t r o n g a b s o r p t i o n s due t o a n i t r o s y l mhos ) . The 1908 a n d 1 9 8 7 ( s , s p l i t ) c m " , bands a t 1 2 6 6 ( s ) a n d 8 0 0 ( s ) , p o s s i b l y due t o N 0 In ( 0 * 0 0 5 g. o f t h e compound, s t r e t c h i n g frequency, a t 1748 a n d 1626 cm \ possibly b u t s e v e r a l u n a s s i g n e d bands a p p e a r e d i n t h e s p e c t r u m , a n d no m e a n i n g f u l i n t e r p r e t a t i o n o f t h e d a t a o n t h i s compound has been p o s s i b l e . Conclusions In detected most o f t h e m e t a l c a r b o n y l i n s o l u t i o n , b u t attempts decomposition. too unstable I n other t o be f u l l y nitrite s y s t e m s s t u d i e d , new s p e c i e s w e r e t o i s o l a t e compounds c a s e s , new compounds characterised. c o u l d be i s o l a t e d , b u t w e r e A t l e a s t one o f t h e s e rt-CpFeCcO^NOg c o u l d be c h a r a c t e r i s e d a s a n i t r i t e spectroscopy. Some i n d i c a t i o n o f t h e f o r m a t i o n derivatives often lead t o i n some o f t h e r e a c t i o n s , was d e r i v a t i v e , by i n f r a r e d of nitrosyl obtained. compounds, carbonyl (i) Appendix 1 E x p e r i m e n t a l D e t a i l s and S t a r t i n g M a t e r i a l s M o s t o f t h e r e a c t i o n s d e s c r i b e d w e r e c a r r i e d o u t i n an a t m o s p h e r e o f pure, d r y n i t r o g e n e i t h e r Air i n two-necked f l a s k s or i n double Schlenk tubes. s e n s i t i v e m a t e r i a l s were h a n d l e d i n a Glove Box, o r i f i n s o l u t i o n , were t r a n s f e r r e d f r o m one v e s s e l t o a n o t h e r by s y r i n g e a g a i n s t a counter current of nitrogen. Nitrogen Supply "White Spot" n i t r o g e n d i r e c t f r o m t h e c y l i n d e r was d r i e d b y p a s s a g e t h r o u g h a t r a p m a i n t a i n e d a t -196°C a n d d e l i v e r e d system. A constant pressure c o n n e c t i n g one o u t l e t to a multiple outlet o f n i t r o g e n was m a i n t a i n e d i n t h e s y s t e m b y t o an o i l b u b b l e r . G l o v e Box The n i t r o g e n a t m o s p h e r e recycling i n t h e G l o v e Box was p u r i f i e d i t t h r o u g h a t r a p a t -196°C, t h r o u g h t w o f u r n a c e s a t 400°C, c o n t a i n i n g copper w i r e and back Bench n i t r o g e n was u s e d , a f t e r transfer by c o n t i n u o u s l y tube. A l l external t o t h e box v i a a second passage t h r o u g h t h i s by t h i s system, t o f l u s h o u t t h e t u b i n g was o f c o p p e r o r g l a s s , a n d t h e g l o v e s u s e d w e r e made o f " B u t a s o l " r u b b e r . was m a i n t a i n e d t r a p a t -196°C. system. An oxygen l e v e l o f l e s s t h a n 50 p.p.m. (ii) Solvents Solvents w e r e u s u a l l y d e g a s s e d o n t h e vacuum l i n e b e f o r e c a r b o n s o l v e n t s were d r i e d o v e r s o d i u m w i r e . s t o r e d over C a C l 2 and d i s t i l l e d from CaCl and THF w e r e u s e d f r e s h l y d i s t i l l e d Starting 2 Chloroform use. and d i g l y m e o r P ^5 b e f o r e 2 under n i t r o g e n from use. were Monoglyme LiAlH^. Materials The m a j o r i t y o f t r a n s i t i o n m e t a l d e r i v a t i v e s u s e d as s t a r t i n g a r e r e a d i l y a v a i l a b l e by methods Mn(CO) Br, r e f . 2 7 2 , 5 using Hydro- t h e methods described ( P h P ) N i C l , ref.257. 3 2 2 i n the l i t e r a t u r e , materials i n t h e l i t e r a t u r e , e.g. The l i g a n d s u s e d w e r e made e.g. P h C = N C ( C l ) P h , 2 2 ref.268. C o m m e r c i a l e t h y l e n e i m i n e ( f r o m K o c h - L i g h t L a b o r a t o r i e s ) was s t o r e d o v e r NaOH pellets, t o prevent p o l y m e r i s a t i o n and used w i t h o u t f u r t h e r T e t r a m e t h y l a m m o n i u m n i t r i t e was p r e p a r e d f r o m Me^NBr a n d K N 0 pumping a t o 50 C f o r s e v e r a l hours. purification. 2 and d r i e d by (iii) Appendix 2 Instrumentation Infrared Spectra Infrared s p e c t r a i n t h e r a n g e 2*5-25 m i c r o n s were u s u a l l y r e c o r d e d on a S p e c t r o m a s t e r , a l t h o u g h a G r u b b - P a r s o n s GS2A p r i s m g r a t i n g was spectrophotomer sometimes used. Spectra of solid between KBr p l a t e s , Liquid samples were r e c o r d e d i n t h e f o r m o f N u j o l mulls t h e s a m p l e s b e i n g made up i n t h e G l o v e Box. samples ( g e n e r a l l y s o l u t i o n s ) were i n s e r t e d into a solution cell ( t h i c k n e s s 0 * 1 mm) b y s y r i n g e a n d g a s p h a s e s a m p l e s w e r e r e c o r d e d u s i n g a 10 cm. c e l l . B o t h c e l l s h a d KBr w i n d o w s , a l t h o u g h CaF2 w i n d o w s w e r e t i m e s used f o r t h e s o l u t i o n Far Infrared Far cell. Spectra infrared s p e c t r a ( 2 1 - 5 0 f i ) w e r e r e c o r d e d as N u j o l m u l l s b e t w e e n C s l p l a t e s u s i n g a G r u b b - P a r s o n s DM2/DB3 p r i s m g r a t i n g Nuclear M a g n e t i c Resonance Nuclear Spectra o p e r a t i n g a t 60 Mc/sec. using tetramethylsilane under spectrophotometer. m a g n e t i c resonance s p e c t r a were r e c o r d e d spectrometer, were f i l l e d some- o n a P e r k i n - E l x n e r RIO Samples w e r e u s u a l l y i n CDCl^ (T.M.S.) a s i n t e r n a l r e f e r e n c e . The s a m p l e by s y r i n g e a g a i n s t c o u n t e r c u r r e n t n i t r o g e n , and were nitrogen. solution, tubes sealed (iv) Mass Spectra Mass s p e c t r a w e r e r e c o r d e d on a n A . E . I . MS9 mass s p e c t r o m e t e r a t 70 eV and an a c c e l e r a t i n g p o t e n t i a l and 300°C, a n d e l e c t r o m a g n e t i c s c a n n i n g . direct insertion of 8 kv, with i n t o t h e i o n source. a source t e m p e r a t u r e b e t w e e n 60 Compounds w e r e i n t r o d u c e d b y (v) Appendix 3 Analytical Methods C a r b o n and H y d r o g e n C a r b o n and h y d r o g e n d e t e r m i n a t i o n s w e r e c a r r i e d o u t b y t h e microanalyst using conventional combustion techniques. determined iodate. also acid, The CC^ was m e a s u r e d i n t h e u s u a l Samples c o n t a i n i n g n i t r o g e n w e r e a n a l y s e d Oxford, C a r b o n was by o x i d a t i o n t o CC^ u s i n g a m i x t u r e o f o l e u m , p h o s p h o r i c c h r o m i c a c i d and p o t a s s i u m of departmental b y D r s . W e i l e r and o r i n t h e d e p a r t m e n t , n i t r o g e n was d e t e r m i n e d way. Strauss using the Kjeldahl method. Halogens A n a l y s e s f o r c h l o r i n e and b r o m i n e were c a r r i e d o u t by t h e microanalyst by c o n v e n t i o n a l p o t a s s i u m - f u s i o n and t i t r a t i o n departmental methods. Nickel N i c k e l was d e t e r m i n e d g r a v i m e t r i c a l l y , by p r e c i p i t a t i o n w i t h d i m e t h y l - glyoxime from a n e u t r a l s o l u t i o n . first The o r g a n i c m a t t e r i n t h e compound r e m o v e d b y o x i d a t i o n w i t h b o i l i n g A.R, c o n c e n t r a t e d nitric acid. was REFERENCES 1. J . C h a t t , P.L. P a u s o n a n d L.M. V e n a n z i , " O r g a n o m e t a l l i c ( H . Z e i s s , e d . ) , p.468. R e i n h o l d , New Y o r k , 1 9 6 0 . 2. E.W. A b e l , Q u a r t . 3. F. C a l d e r a z z o , R. E r c o l i a n d G. N a t t a , R e f . 1 6 , 4. W. H i e b e r , W. Beck a n d G. B r a u n , Angew. Chem., 1 9 6 0 , 72, 795. 5. R.B. K i n g , "Adv. i n O r g a n o m e t . Chem.", (F.G.A. S t o n e a n d R. W e s t , e d . ) 1964, Rev. ( L o n d o n ) Chemistry", 1 7 , 133 ( 1 9 6 3 ) . p.l. 2, 1 5 7 . 6. M.A. B e n n e t , Chem. R e v s . , 1 9 6 2 , 6 2 , 6 1 1 . 7. R.G. Guy a n d B.L. Shaw, "Adv. i n I n o r g . a n d R a d i o c h e m . " , 1 9 6 2 , 4 , 77. 8. P.M. T r e i c h e l a n d F.G.A. S t o n e , "Adv. i n O r g a n o m e t . Chem.", (F.G.A. S t o n e a n d R. W e s t , e d . ) , 1 9 6 4 , 1, 143. 9. E.O. F i s c h e r a n d H.P. F r i t z , "Adv. i n I n o r g . a n d R a d i o c h e m . " , 1 9 5 9 , ^1, 5 6 . 10. G. W i l k i n s o n a n d F.A. C o t t o m , P r o g r . I n o r g . Chem., 1 9 5 9 , _1, 1 . 11. T.A. M a n u e l , "Adv. i n O r g a n o m e t . Chem.", (F.G.A. S t o n e a n d R. W e s t , e d . ) 1965, 3, 1 8 1 , a n d r e f e r e n c e s t h e r e i n . 12. E.W. A b e l a n d B.C. C r o s s e , 13. G.R. D o b s o n , I.W. S t o l z a n d R.K. S h e l i n e , "Adv. I n I n o r g . 1966, O r g a n o m e t . Chem. R e v s . , 1 9 6 7 , 2 4 4 3 . t and Radiochem." 8, 1 . 14. W. S t r o h m e i e r , Angew. Chem. I n t . E d . , 1 9 6 4 , 3, 730. 15. R.J. A n g e l i c i , O r g a n o m e t . Chem. R e v s . , 1 9 6 8 , 3_» 173. 16. " O r g a n i c S y n t h e s e s v i a M e t a l C a r b o n y l s " , ( I . Wenderand a n d P. P i n o , e d . ) I n t e r s c i e n c e , V o l . 1 , 1968 ( V o l . 2 t o b e p u b l i s h e d ) , a n d r e f e r e n c e s therein. B.F.G. J o h n s o n a n d J.A. M c C l e v e r t y , P r o g . I n o r g . Chem., 1 9 6 6 , 7_ 2 7 7 . W.P. G r i f f i t h , A d v . i n O r g a n o m e t . Chem., (F.G.A. S t o n e a n d R. W e s t , e d . ) 1968, 7, 2 1 1 . 17. 18. t 19. C.S. K r a i h a n z e l a n d F.A. C o t t o n , I n o r g . Chem., 1 9 6 3 , 2, 5 3 3 . 20. W. H i e b e r a n d K. R i e g e r , Z. A n o r g . 21. W. H i e b e r , K. E n g l e r t a n d K. R i e g e r , Z. A n o r g . A l l g e m . Chem., 1 9 5 9 , 3 0 0 , 2 8 8 . A l l g e m . Chem., 1 9 5 9 , 300, 295. 22a. W. H i e b e r a n d W. B e c k , Z. A n o r g . 22b. L.F. D a h l a n d C.H. W e i , I n o r g . Chem., 1 9 6 3 , 2, 3 2 8 . 23. P.L. Pauson a n d A.R. Q a z i , J . O r g a n o m e t . Chem., 1 9 6 7 , _7J 24a. V. F r e y , W. H i e b e r a n d O.S. M i l l s , Z. N a t u r f orsch., 1 9 6 8 , 23B, 1 0 5 . 24b. L.F. D a h l , W. C o s t e l l o a n d R.B. K i n g , J . Amer. Chem. Soc., 1 9 6 8 , 9 0 , 5422. 25. S. O t s u k a , 26. L.E. O r g e l , "An I n t r o d u c t i o n t o T r a n s i t i o n M e t a l C h e m i s t r y : F i e l d T h e o r y " , W i l e y , New Y o r k , 1 9 6 0 . 27. F.A. C o t t o n , " C h e m i c a l T. Y o s h i d a A l l g e m . Chem., 1 9 6 0 , 3 0 5 , 2 6 5 . 3 2 1 - a n d A. Nakamura, I n o r g . Chem., 1 9 6 7 , 6, 2 0 . A p p l i c a t i o n s o f Group T h e o r y " , Ligand Wiley ( i n t e r s c i e n c e ) , New Y o r k , 1 9 6 3 . 28. E. P i t c h e r a n d F.G.A. S t o n e , 29. R.J. A n g e l i c i , J . I n o r g . N u c l . Chem., 1 9 6 6 , 2 8 , 2627. 30. A. L u t t r i n g h a u s a n d W. K u l l i c k , T e t r a h e d r o n L e t t e r s , 1 9 5 9 , 1, 1 3 . 31. B.L. R o s s , J.G. G r a s s e l l i , W.M. R i t c h e y a n d H.D. K a e s z , I n o r g . 1963, S p e c t r o c h i m . A c t a , 1 9 6 2 , lfi, 5 8 5 . Chem., 2, 1 0 2 3 . 32. G.W.A. F o w l e s a n d D.K. J e n k i n s , I n o r g . Chem., 1 9 6 4 , 3, 2 5 7 . 33. H. B e h r e n s a n d J . V o g l , B e r . , 1 9 6 3 , 9 6 , 2 2 2 0 . 34. R.J. A n g e l i c i , O r g a n o m e t . Chem. R e v s . , 1 9 6 8 , 3^, 1 7 3 , a n d r e f e r e n c e s therein. 35. R.G. P e a r s o n , 36. A. R o s e n t h a l J . Amer. Chem. S o c . , 1 9 6 3 , 8 5 , 3 5 3 3 . and I . Wender, R e f . 1 6 , p . 4 0 5 , a n d r e f e r e n c e s therein. 37. H. B e h r e n s a n d K. L u t z , Z. A n o r g . 38. W. H i e b e r , J . P e t e r h a u s 39. H. B e h r e n s a n d K. L u t z , Z. A n o r g . 40. H. B e h r e n s , H. B r a n d l a n d K. L u t z , Z. N a t u r f o r s c h . , 1 9 6 7 , 2 2 B , 9 9 . 41. H. B e h r e n s a n d H. B r a n d l , Z. N a t u r f o r s c h . , 1 9 6 7 , 2 2 B , 1 2 1 6 , a n d references A l l g e m . Chem., 1 9 6 7 , 354 ( 3 - 4 ) , 1 8 4 . a n d E. W i n t e r , B e r . , 1 9 6 1 , 9 4 , 2572. A l l g e m . Chem., 1 9 6 8 , 3 5 6 , 2 2 5 . therein. 42. H. B e h r e n s a n d N. H a r d e r , 43. W. H i e b e r , K. E n g l e r t a n d K. R i e g e r , Z. A n o r g . A l l g e m . Chem., 1 9 5 9 , 300, 304. W. H i e b e r , W. A b e c k a n d H.K. P l a t z e r , Z. A n o r g . A l l g e m . Chem., 1 9 5 5 , 44. Ber., 1 9 6 4 , 97_, 4 3 3 . 280, 252. 45. H. B e h r e n s a n d D. H e r r m a n n , Z. A n o r g . 46. H.D. M u r d o c h a n d R. H e n z i , J . O r g a n o m e t . Chem., 1 9 6 6 , j > , 4 6 3 . 47. H. B e h r e n s a n d W. K l e k , Z. A n o r g . 48. H. B e h r e n s a n d W. H a a g , Z. N a t u r f o r s c h . , 1959, 14B, 6 0 0 . 49. R.J. A n g e l i c i a n d M.D. M a l o n e , I n o r g . Chem., 1 9 6 7 , 6, 1 7 3 1 . 50. H. W e r n e r a n d R. P r i n z , B e r . , 51. R.J. A n g e l i c i a n d C M . 52. W. S t r o h m e i e r , J.F. G u t t e n b e r g e r , H. B l u m e n t h a l a n d G. Ber., A l l g e m . Chem., 1 9 6 7 , 3 5 1 , 2 2 5 . A l l g e m . Chem., 1 9 5 7 , 2 9 2 , 1 5 1 . 1 9 6 7 , 100,. 265. I n g e m a n s o n , I n o r g . Chem., 1 9 6 9 , 8, 8 3 . Albert, 1966, 99, 3419. 53. R.P. S t e w a r t a n d P.M. T r e i c h e l , I n o r g . Chem., 1968, _7, 1942. 54. CM. 55. H. B e h r e n s a n d J . K o h l e r , Z. A n o r g . 56. W. S t r o h m e i e r a n d K. G e r l a c h , Z. N a t u r f o r s c h . , 1 9 6 0 , 15B, 4 1 3 . 57. W. S t r o h m e i e r , K. G e r l a c h a n d G. M a t t h i a s , Z. N a t u r f o r s c h . , 15B, 6 2 1 . I n g e m a n s o n a n d R.J. A n g e l i c i , I n o r g . Chem., 1968, _7> 2646. A l l g e m . Chem., 1 9 5 9 , 3 0 0 , 5 1 . 1960, 58. W. S t r o h m e i e r a n d G. S c h o e n a u e r , B e r . , 1 9 6 2 , 9 5 , 1 7 6 7 . 59. H. B e h r e n s a n d W. Haag, B e r . , 1 9 6 1 , 9 4 , 3 1 2 . 60. W. S t r o h m e i e r , K. G e r l a c h a n d D. v o n Hobe, B e r . , 1 9 6 1 , 9 4 , 1 6 4 . 61. F.A. C o t t o n , I n o r g . Chem., 1 9 6 4 , 3, 7 0 2 . 62. W.A.G. Graham, I n o r g . Chem., 1 9 6 8 , 7, 3 1 5 . 63. W. S t r o h m e i e r a n d K. G e r l a c h , B e r . , 1 9 6 0 , 9 3 , 2087. 64. G. N a t t a , R. E r c o l i , F. C a l d e r a z z o a n d E. S a n t a m b r o g i o , Chim. Ind. ( M i l a n ) , 1958, 4 0 , 1003. 65. W. H i e b e r a n d F. M u h l b a u e r , Z. A n o r g . A l l g e m . Chem., 1 9 3 5 , 2 2 1 , 3 3 7 . 66. W. H i e b e r a n d F. M u h l b a u e r , Z. A n o r g . A l l g e m . Chem., 1 9 3 5 , 2 2 1 , 3 4 9 . 67. W. S t r o h m e i e r , G. M a t t h i a s a n d D. v o n Hobe, Z. N a t u r f o r s c h . , 1 9 6 0 , 15B, 8 1 3 . 68. E. A b e l , M. B e n n e t t a n d G. W i l k i n s o n , J . C h e m . S o c , 1 9 5 9 , 2323. 69. J.D. M u n r o a n d P.L. P a u s o n , J . Chem. Soc., 1 9 6 1 , 3484. 70. H. B e h r e n s a n d W. Haag, B e r . , 1 9 6 1 , 9 4 , 3 2 0 . 71. H. B e h r e n s a n d N. H a r d e r , B e r . , 1 9 6 4 , 9 7 , 4 2 6 . 72. H. B e h r e n s , E. L i n d n e r a n d J . R o s e n f e l d e r , B e r . , 1 9 6 6 , 9 9 , 2 7 4 5 . 73. M.H.B. S t i d d a r d , J . Chem. S o c , 1 9 6 2 , 4 7 1 2 . 74. H. B e h r e n s a n d J . K o h l e r , Z. A n o r g . 75. F. Z i n g a l e s , M. G r a z i a n i a n d U. B e l l u c o , J . Amer. Chem. Soc., 1 9 6 7 , A l l g e m . Chem., 1 9 6 0 , 3 0 6 , 9 4 . 89, 256. 76. M. G r a z i a n i , F. Z i n g a l e s a n d U. B e l l u c o , I n o r g . Chem., 1 9 6 7 , 6, 1 5 8 2 . 77. D.P. T a t e , K.R. K n i p p l e a n d J.M. A u g l , I n o r g . Chem., 1 9 6 2 , I, 4 3 3 . 78. W. S t r o h m e i e r a n d G. S c h o n a u e r , B e r . , 1 9 6 1 , 9 4 , 1 3 4 6 . 79. W. S t r o h m e i e r a n d K. G e r l a c h , Z. N a t u r f o r s c h . , 1 9 6 0 , 15B, 6 2 2 . 80. G.R. D o b s o n , M.F.A. E l - S a y e d , I.W. S t o l z a n d R.K. S h e l i n e , I n o r g . 1 9 6 2 , 1 , 526. Chem., 81. I.W. S t o l z , G.R. Dobson a n d R.K. S h e l i n e , I n o r g . Chem., 1 9 6 3 , 2, 3 2 3 . 82. A.G. M a s s e y , J . I n o r g . N u c l . Chem., 1 9 6 2 , 2 4 , 1 1 7 2 . 83. D.P. T a t e , J.M. A u g l a n d A. B u s s , I n o r g . Chem., 1 9 6 3 , 2, 4 2 7 . 84. H.D. M u r d o c h , R. H e n z i 7, 4 4 1 . a n d F. C a l d e r a z z o , J . O r g a n o m e t . Chem., 1 9 6 7 , 85. B.W. Cook, R. J a c k s o n , R.G.T. M i l l e r a n d D.T. Thompson, J.Chem.Soc., 1969, 25. 86. F.A. C o t t o n a n d R.M. W i n g , I n o r g . Chem., 1 9 6 5 , 4 , 3 1 4 . 87. F.A. C o t t o n a n d D. R i c h a r d s o n , I n o r g . Chem., 1 9 6 6 , _5, 1 8 5 1 . 88. G.R. Dobson a n d L.W. Houk, I n o r g . Chim. A c t a , 1 9 6 7 , 1, 2 8 7 . 89. H. S a i t o , J . F u j i t a 90. M.B.H. S t i d d a r d , 91. L.W. Houk a n d G.R. D o b s o n , J . Chem. S o c . , 1 9 6 6 , 3 1 7 . 92. L.W. Houk a n d G.R. D o b s o n , I n o r g . Chem., 1 9 6 6 , 5, 2119. 93. L.G. H u l l a n d M.H.B. S t i d d a r d , 94. J . F . G u t t e n b e r g e r a n d W. S t r o h m e i e r , B e r . , 1 9 6 7 , 1 0 0 , 2807. 95. R.J. A n g e l i c i a n d J.R. Graham, I n o r g . Chem., 1 9 6 7 , 6, 9 8 8 . 96. J.R. Graham 97. G.C. F a b e r a n d G.R. Dobson, I n o r g . Chim. A c t a , 1 9 6 8 , 2, 4 7 9 . 98. R. C o t t o n a n d I . B . T o m k i n s , A u s t . J . Chem., 1 9 6 7 , 2 0 , 13. 99. H. B e h r e n s a n d J . R o s e n f e l d e r , Z. A n o r g . a n d K. S a i t o , B u l l . Chem. Soc. J a p a n , 1 9 6 8 , 4 1 , 3 5 9 . J . Chem. S o c . , 1 9 6 3 , 7 5 6 . J . Chem. S o c . , 1 9 6 8 , 710. a n d R.J. A n g e l i c i , I n o r g . Chem., 1 9 6 7 , 6, 9 9 2 . A l l g e m . Chem., 1 9 6 7 , 3 5 2 , 6 1 . 100. R. Kummer a n d W.A.G. Graham, I n o r g . Chem., 1 9 6 8 , 7, 3 1 0 . 101. R.B. K i n g a n d M.B. B i s n e t t e , J . Amer. Chem. Soc., 1 9 6 4 , 8 6 , 5 6 9 4 . 102. R.B. K i n g a n d M.B. B i s n e t t e , I n o r g . Chem., 1 9 6 6 , 5, 3 0 0 . 103. M.L.H. G r e e n , T.R. S a n d e r s a n d R.N. W h i t e l e y , Z. N a t u r f o r s c h . , 1 9 6 8 , 23B, 1 0 6 . 104. D.C. B r a d l e y a n d A.S. K a s e n a l l y , Chem. Comm., 1 9 6 8 , 1 4 3 0 . 105. R.B. K i n g a n d M.B. B i s n e t t e , I n o r g . Chem., 1 9 6 6 , 5, 2 9 3 . 106. E.O. F i s c h e r a n d E. M o s e r , J . O r g a n o m e t . 107. P.M. T r e i c h e l , K.W. Chem., 1 9 6 4 , 2, 2 3 0 . B a r n e t t a n d R.L. S h u b k i n , J . O r g a n o m e t . Chem., 1 9 6 7 , 7, 4 4 9 . 108. H. B e h r e n s a n d N. A n d e r s , Z. N a t u r f o r s c h . , 1 9 6 4 , JL9B, 767. 109. A. W o j c i c k i a n d M.F. F a r o n a , J . I n o r g . N u c l . Chem., 1 9 6 4 , 2 6 , 2289. 110. W. Beck a n d U.S. S m e d a l , Angew. Chem. I n t . E d . , 1 9 6 6 , 5, 2 5 3 . 111. H. B e h r e n s , R. Schwab a n d D. H e r r m a n n , Z. N a t u r f o r s c h . , 1 9 6 6 , 2 1 , 5 9 0 . 112. H. B e h r e n s a n d D. H e r r m a n n , Z. N a t u r f o r s c h . , 1 9 6 6 , 2 1 , 1 2 3 4 . 113. H. B e h r e n s a n d D. H e r r m a n n , Z. N a t u r f o r s c h . , 1 9 6 6 , 2 1 , 1 2 3 6 . 114. W. B e c k , R.E. N i t z s c h m a n n a n d H.S. S m e d a l , J . O r g a n o m e t . Chem., 1 9 6 7 , 8, 5 4 7 . 115. J.F. G u t t e n b e r g e r , B e r . , 1968, 1 0 1 , 403. 116. J . F . G u t t e n b e r g e r , Angew. Chem. I n t . E d . , 1 9 6 7 , 6, 1 0 8 1 . 117. J.K. R u f f , I n o r g . Chem., 1 9 6 9 , 8, 86. 118. T.E. S l o a n a n d A. W o j c i c k i , I n o r g . Chem., 1 9 6 8 , 7_, 1 2 6 8 . 119. E. L i n d n e r a n d H. B e h r e n s , S p e c t r o c h i m . A c t a , 1 9 6 7 , 23A, 3 0 2 5 . 120. W. S t r o h m e i e r a n d H. H e l l m a n n , Z. N a t u r f o r s c h . , 1 9 6 3 , JJ3B, 769. 121. W. S t r o h m e i e r a n d H. H e l l m a n n , B e r . , 1 9 6 3 , 9 6 , 2859. 122. W. S t r o h m e i e r a n d H. H e l l m a n n , B e r . , 1 9 6 4 , 9 7 , 1 8 7 7 . 123. H. Bock a n d H. torn D i e c k , Z. A n o r g . A l l g e m . Chem., 1 9 6 6 , 3 4 5 , 9. 124. H. torn D i e c k a n d H. F r i e d e l , 125. H. B o c k a n d H. torn D i e c k , Angew. Chem. I n t . E d . , 1 9 6 6 , 5, 5 2 0 . 126. H. B o c k a n d H. torn D i e c k , B e r . , 1 9 6 7 , 1 0 0 , 2 2 8 . 127. H. B o c k a n d H. torn D i e c k , Z. N a t u r f o r s c h . , 1 9 6 6 , 21B, 739. 128. E.O. F i s c h e r a n d R. Aumann, Angew Chem. I n t . E d . , 1 9 6 7 , JS, 1 8 1 . 129. E.O. F i s c h e r a n d R. Aumann, B e r . , 1 9 6 8 , 1 0 1 , 9 6 3 . 130. K. F a r m e r y a n d M. K i l n e r , J . O r g a n o m e t . Chem., 1 9 6 9 , 1 6 , p . 5 1 . 131. R. C o t t o n , G.R. 132. D.C. B r a d l e y a n d A.S. K a s e n a l l y , Chem. Comm., 1 9 6 8 , 1 4 3 0 . 133. W-. H i e b e r a n d W. S c h r o p p , 134. W. H i e b e r , W. B e c k a n d G. Z e i t l e r , Angew. Chem., 1 9 6 1 , 7 3 , 3 6 4 . 135. H. B e h r e n s , 1967, Scollary J . O r g a n o m e t . Chem., 1 9 6 8 , 1 2 , 1 9 6 8 , 1 7 3 . a n d I . B . T o m k i n s , A u s t . J . Chem., 1 9 6 8 , 21, 1 5 . Z. N a t u r f o r s c h . , 1 9 6 0 , 15B, 2 7 1 . E. R u y t e r a n d H. Wakamatsu, Z. A n o r g . A l l g e m . Chem., 349, 241. 136. T. K r u c k a n d M. H o f f l e r , B e r . , 1 9 6 3 , 9 6 , 3 0 5 3 . 137. T. K r u c k a n d M. H o f f l e r , B e r . , 1 9 6 4 , 9 7 , 2289. 138. W. H i e b e r a n d W. S c h r o p p , 139. E.W. 140. C.C. A d d i s o n a n d M. K i l n e r , 141. R.J. A n g e l i c i 142. K.A. K e l b y s a n d A.H. F i l b e y , 143. R.J. Mawby, F. B a s o l o a n d R. P e a r s o n , 144. C.S. K r a i h a n z e l a n d P.K. M a p l e s , 145. R.J. A n g e l i c i 146. W. S t r o h m e i e r , J.F. G u t t e n b e r g e r a n d H. H e l l m a n n , Z. N a t u r f o r s c h . , 1964, 19B, 353. Z. N a t u r f o r s c h . , 1 9 5 9 , 14B, 4 6 0 . A b e l a n d G. W i l k i n s o n , J . Chem. S o c . , 1 9 5 9 , 1 5 0 1 . J . Chem. S o c . ( A ) , 1 9 6 6 , 1 2 4 9 . a n d F. B a s o l o , J . Amer. Chem. S o c . , 1 9 6 2 , 8 4 , 2495. J . Amer. Chem. S o c . , 1 9 6 0 , 8 2 , 4 2 0 4 . a n d D.L. D e n t o n , J . Amer. Chem. Soc. , 1 9 6 4 , 8 6 , 3 9 9 4 . Inorg. Inorg. Chem., 1 9 6 8 , ] _ , 1 8 0 6 . Chim. A c t a , 1 9 6 8 , 2, 3. 147. W. Strohmeier and H. Hellmann, Z. N a t u r f o r s c h . , 1964, 19B, 164. 148. W. Strohmeier and K. G e r l a c h , Z. N a t u r f o r s c h . , 1960, 15B, 675. 149. W. Strohmeier and J.F. G u t t e n b e r g e r , Ber., 1963, 96, 2112. 150. W. Strohmeier and J.F. G u t t e n b e r g e r , Ber., 1964, 97, 1256. 151. W. S t r o h m e i e r , J.F. G u t t e n b e r g e r , H. Blumenthal and G. A l b e r t , Ber. , 1966, 99, 3419. 152. E.O. F i s c h e r and M. G e r b e r h o l d , E x p e r i e n t i a Suppl., 9, 1964, 259, (Chem. A b s t r a c t s , 1965, 62, 5 7 9 f ) . 153. W. Strohmeier and J.F. G u t t e n b e r g e r , Z. N a t u r f o r s c h . , 1963, 18B, 80. 154. E.W. A b e l , M.A. Bennet and G. W i l k i n s o n , J . Chem. Soc., 1959, 2323. 155. A. W o j c i c k i and M.F. Farona, I n o r g . Chem., 1964, 3_, 151. 156. M.F. Farona and A. W o j c i c k i , I n o r g . Chem., 1965, 4, 857. 157. M.F. Farona and A. W o j c i c k i , I n o r g . Chem., 1965, 4, 1402. 158. W. H i e b e r and L. S c h u s t e r , Z. Anorg. A l l g e m . Chem., 1956, ^ 8 7 , 214. 159. E.W. A b e l , G.B. Hargreaves 160. W. H i e b e r and H. Fuchs, Z. Anorg. A l l g e m . Chem., 1941, 248, 269. 161. W. H i e b e r , W. Oparsky and W. Rohm, Ber., 1968, 101, 2244. 162. T. Kruck and M. Noack, Ber., 1964, 97, 1693. 163. F. Z i n g a l e s . M. G r a z i a n i , F. Faraone and U. B e l l u c o , I n o r g . Chim. A c t a 1967, 172. F. Z i n g a l e s , U. S a r t o r e l l i , F. C a n z i a n i and M. R a v e g l i a , I n o r g . Chem., 164. and G. W i l k i n s o n , J . Chem. S o c , 1968, 3149 1967, 6, 154. 165. F. Z i n g a l e s , U. S a r t o r e l l i and A. T r o v a t i , I n o r g . Chem., 1967, 6, 1246 166. W. H i e b e r and G. F l o s s , Ber., 1957, 90, 1617. 167. W. H i e b e r and N. K a h l e n , Ber., 1958, 9 1 , 2223. 168. W. H i e b e r and A. L i p p , Ber., 1959, 92, 2075. 169. W. H i e b e r and W. B e u t n e r , Z. N a t u r f o r s c h . , 1960, 15B, 324. 170. W. H i e b e r and W. Beutner, Z. Anorg. Allgem. Chem., 1962, 312, 63. 171. W. H i e b e r and W. Beutner, Angew. Chem. I n t . Ed., 1962, 1, 116. 172. W. H i e b e r and W. Beutner, Z. Anorg. A l l g e m . Chem., 1962, 319, 285. 173. R.A. Plowman and F.G.A. Stone, I n o r g . Chem., 1962, 174. E.O. F i s c h e r and E. Moser, J . Organomet. Chem., 1965, 3, - 175. K.K. J o s h i and P.L. Pauson, Proc. Chem. S o c , 1962, 326. 176. K.K. J o s h i , P.L. Pauson, A^jfa. Qazi and W.H. Stubbs, J . Organomet. 518. 16 Chem., 1964, 1 , 4 7 1 . 177. T.A. Manuel, I n o r g . Chem., 1964, 3, 1703. 178. W. F l a n n i g a n , G.R. Knox and P.L. Panson, Chem. and I n d . , 1967, 1094. 179. J.A. . J a r v i s , B.E. Job, B.T. K i l b o u r n , R.H.B. Mais, P.G. Owston and P.F. Todd, Chem. Comm., 1967, 1149. J . P i r o n , P. P i r e t and M. Van Meerssche, B u l l . Soc. Chim..Beiges, 1967, 76, 505. 180. 181. M.M. Bagga, P.E. B a i k i e , O.S. M i l l s and P.L. Panson, Chem. Comm., 1967, 1106. 182. P.E. B a i k i e and O.S. M i l l s , Chem. Comm., 1967, 1228. 183. P.E. B a i k i e and O.S. M i l l s , Chem. Comm., 1966, 707. 184. P.E. B a i k i e and O.S. M i l l s , I n o r g . Chim. A c t a . 1967, 1 , 55. 185. D. B r i g h t and O.S. M i l l s , Chem. Comm., 1967, 245. 186. M. Dekker and G.R. Knox, Chem. Comm., 1967, 1243. 186a. R.J. Doedens, I n o r g . Chem., 1968, ] _ , 2323. 186b. R.J. Doedens, I n o r g . Chem., 1969, 8, 570. 187. A. DeCian and R. Weiss, Chem. Comm., 1968. 6^ 348. 188. S. Otsuka, A. Nakamura and T. Y o s h i d a , J . Organomet.-Chem., 1967, 7, 339. 189. R.B. K i n g and M.B. B i s n e t t e , I n o r g . Chem., 1966, 190. R.B. K i n g and K.H. P a r n e l l , J . Amer. Chem. Soc., 1968, 191. T.A. Manuel and T.J. 192. I . Rhee, M. Ryang and S. T s u t s u m i , Chem. Comm., 1968, 455. 193. E. K o e r n e r , V. G u s t o r f and M.J. Jim, Z. N a t u r f o r s c h . , 1965, 194. E.K. G u s t o r f , M.C. Henry, R.E. Sacher and C. D i p i e t i o , 1966, Meyer, I n o r g . Chem., 1964, 5, 306. 90, 3984. 3, 1049. 20B, 521. Z. N a t u r f o r s c h , 21B, 1152. 195. H. Behrens and W. A q u i l a , Z. N a t u r f o r s c h . , 196. L. B u s e t t o and R.J. A n g e l i c i , I n o r g . Chim. A c t a , 1968, 197. W.F. E d g e l l , M.T. Young, B.J. B u l k i n , R. Bayer and N. K o i z u m i , J. Amer. Chem. Soc., 1965, 1967, 22B, 454. 2, 3 9 1 . 87, 3080. 198. W.F. E d g e l l and B.J. B u l k i n , J . Amer. Chem. S o c , 1966, 88, 4839. 199. B.J. B u l k i n and J.A. Lynch, I n o r g . Chem., 1968, 200. R.J. I r v i n g , J . Chem. S o c , 1956, 201. W. H i e b e r and H. Hensinger, J . I n o r g . N u c l . Chem., 1957, 202. L.A.W. Hales and R.J. I r v i n g , J.Chem.Soc.(A), 1967, 1933. 203. M.I. 204. J.V. K i n g s t o n , J.W.S. Jamieson and G. W i l k i n s o n , 7_, 2654. 2879. 4, 179. Bruce and F.G.A. Stone, J.Chem.Soc.(A), 1967, 1238. 1967, J . I n o r g . N u c l . Chem., 29, 133. 205. T.A. Stephenson and G. W i l k i n s o n , J . I n o r g . N u c l . Chem., 1966, 206. R. C o t t o n and R.H. F a r t h i n g , A u s t . J . Chem., 1967, 207. J.P. C h a n d l i n , K.K. J o s h i and D.T. Thompson, Chem. and I n d . , 1966, 208. H. Behrens and H. Wakamatsu, Ber., 209. W. H i e b e r and J . E l l e r m a n , Ber., 210. W.D. H o r r o c k s and R.C. T a y l o r , I n o r g . Chem., 1967, 1966, 1963, 28, 945. 20, 1283. 99, 2753. 96, 1643. 6, 1663. p.1960. 211. E.P. Ross and G.R. Dobson, I n o r g . Chem., 1967, 6, 1256. 212. H. Behrens and W. A q u i l a , Z. Anorg. Allgem. Chem., 1967, 356, 8. 213. S. Otsuka, A. Nakamura and T. Yoshida, I n o r g . Chem., 1968, _7 2 6 1 . 214. Y. Matsu-ura, N. Yasuoka, T. U e k i , N. K a s a i and M. Kakudo, Chem. 5 Comm., 1967, 1122. 215. W. H i e b e r , H. Hensinger and 0. V o h l e r , Ber., 1957, 90, 2425. 216. D.N. Lawson and G. W i l k i n s o n , J . Chem. Soc., 1965, 1900. 217. R. Ugo and F. B o n a t i , Rend. I n s t . Lombardo S c i . L e t t . A, 1964, 98, 548, (Chem. A b s t r a c t s , 1967, 66, 34346V). 218. R. Ugo and F. B o n a t i , I n o r g . Chim. A c t a , 1968, 2, 463. 219. M.A. Jennings and A. W o j c i c k i , I n o r g . Chem., 1967, t>, 1854. 220. 221. W. H i e b e r and V. F r e y , Ber., 1966, 99, 2607. M. A n g o l e t t a , Gazz. Chim. I t a l . , 1959, 89, 2359, (Chem. A b s t r a c t s , 1961, 55, 7136e). M. A n g o l e t t a , Gazz. Chim. I t a l . , 1960, 90, 1021, (Chem. A b s t r a c t s , 1961, 222. 55, 25565i). 223. L. M a l a t e s t a 224. F. B o n a t i and R. Ugo, J . Organomet. Chem., 1967, ] _ , 167. 225. R. Ugo, G.L. Monica and S. C e n i n i and F. B o n a t i , J . Organomet. Chem., 1968, 1 1 , 159. I . I . Chernyaev and Z.M. Novozhenyuk, Zh. Neorg. Khim., 1966, 11, 2603, 226. and L. N a l d i n i , Chem. A b s t r a c t s , 1963, 58, 224c. (Chem. A b s t r a c t s , 1967, 66, 4 3 2 8 9 f ) . 227. V.G. Albano, P.L. B e l l o n and M. Sansoni, I n o r g . Chem., 1969, 8, 298. 228. W. H i e b e r , J . Ellermann and E. Zahn, Z. N a t u r f o r s c h . , 1963, 18B, 589. 229. W. H i e b e r , F. Muhlbauer and E.A. Ehmann, Ber., 1932, 65, 1090. 230. H. Bock, Angew. Chem. I n t . Ed., 1962, 1, 550. 231. H. Bock and H. torn D i e c k , Ber., 1966, 99, 213. 232. K. Krogman and R. M a t t e s , Angew. Chem. I n t . Ed., 1966, 5, 1046. 233. J . B u r i a n o r a and Z. B u r i a n e c , C o l l e c t i o n Czech. Chem. Comm., 1963, 28, 2138. 234. A.D. Hel'man and M. Banman, Compt. Yend. Acad. S c i . U.S.S.R., 1939, 68, 645. 235. R.J. I r v i n g and E.A. Magnusson, J . Chem. Soc., 1956, 1860. 236. R.J. I r v i n g and E.A. Magnusson, J . Chem. Soc., 1957, 2018. 237. A.R. Brause, M. Rycheck and M. O r c h i n , J . Amer. Chem. Soc., 1967, 89, 6500. 238. E.A.V. Ebsworth, Chem. Comm., 1966, 530. 239. L-H. Chan and E.G. Rochow, J . Organomet. Chem., 1967, 9, 2 3 1 . 240. I . P a t t i s o n and K. Wade, J.Chem.Soc.(A), 1967, 1098. 241. P.L. P i c k a r d and T.L. T o l b e r t , J . Org. Chem., 1961, 26, 4886. 242. B. Bogdanovic, Angew 243. P.L. P i c k a r d and G.W. J o l l y , J . Amer. Chem. Soc., 1954, _76, 5169. 244. K. Wade and B.K. W y a t t , Personal Communication. 245. I . P a t t i s o n , Ph.D. T h e s i s , U n i v e r s i t y o f Durham, 1967, p.81. 246. L.R. Ocone, J.R. Soulen and B.P. B l o c k , J . I n o r g . N u c l . Chem., 1960, t Chem. I n t . Ed., 1965, 4, 9544. 15, 76. 247. D.E. B i l l i n g and A.E. U n d e r h i l l , J.Chem.Soc.(A) , 1968, 29. 248. F.A. C o t t o n and G. W i l k i n s o n , "Advanced I n o r g a n i c C h e m i s t r y " , Interscience. N.S. G i l l , R.S. Nyholm, G.A.Barclay, T . I . C h r i s t i e and P.J. P a u l i n g , 249. J. I n o r g . N u c l . Chem., 1961, 18, 88. 250. A. Misona, T. Osa and S. Koda, B u l l . Chem. Soc. Japan, 1968, 4 1 , 373. 251. K. Farmery, Ph.D. T h e s i s , U n i v e r s i t y o f Durham, 1968. 252. K. Farmery and M. K i l n e r , Personal Communication. 253. J.R. J e n n i n g s , I . P a t t i s o n , K. Wade and B.K. Wyatt, J.Chem.Soc.(A), 1967, 1608. 254. B.K. Wyatt, Ph.D. T h e s i s , U n i v e r s i t y o f Durham, 1968. 255. C. Summerford and K. Wade, Personal Communication. 256. S.M. Nelson and T.M. Shepherd, J . Chem. Soc., 1965, 3276, and references therein. 257. G. G a r t o n , D.E. Henn, H.M. Powell and L.M. Venanzi, J . Chem. Soc., 1963, 3625. 258. R . J . Kern, J . I n o r g . N u c l . Chem., 1962, 24, 1105. 259. R . J . Kern, J . I n o r g . Chem., 1963, 25, 5. 260. L.M. V a l l a r i n o , W.E. H i l l and J.V. Q u a g l i n o , I n o r g . Chem., 1965, 4, 1598, and r e f e r e n c e s t h e r e i n . 261. M. K i l n e r and C. M i d c a l f , Personal Communication. 262. M. Pankowski and M. B i g o r g n e , C.R! Acad. Sc. P a r i s , 1967, 264, 1382. 263. Y.L. Baay and A.G. MacDiarmid, I n o r g . N u c l . Chem. L e t t e r s , 1967, 3_, 159. 264. A.P. Hagen and A.G. MacDiarmid, I n o r g . Chem., 1967, ( i , 686. 265. W. H i e b e r , J . Sedlmeier and W. Abeck, Ber., 1953, 86, 700. 266. W. Hieber and J . Sedlmeier, Ber., 1954, ^ 7 , 25. 267. B. Samuel and K. Wade, Chem. Comm., 1968, 1081. 268. B. Samuel and K. Wade, J . Chem. Soc.(A), 1969, I n Press. 269. M.L.H. Green and P.L.I. Nagy, "Adv. i n Organomet. Chem.", (F.G.A. Stone and R. West, e d . ) , 1964, 2, 325. 270. G. W i l k i e e t a l . , Angew. Chem. I n t . Ed., 1966, _5, 1 5 1 . 271. M.L.H. Green i n " O r g a n o m e t a l l i c Compounds", ( V o l . I I ) , by G.E. M.L.H. Green and K. Wade, p.39. Coates, 272. R.B. K i n g , " O r g a n o m e t a l l i c Syntheses", ( J . J . E i s c h and R.B. K i n g , e d . ) , V o l . 1 , " T r a n s i t i o n M e t a l Compounds" 273. K. N a k a n i s h i , " I n f r a r e d A b s o r p t i o n Spectroscopy Holden-Day, I n c . , San F r a n c i s c o . 274. W.R. M c C l e l l a n , H.H. Hoehn, H.N. C r i p p s , E.L. M u e t t e r t i e s and B.W. - Practical", Howk, J . Amer. Chem. Soc., 1961, 83, 1601. 275. T.B. Jackson and J.O. Edwards, I n o r g . Chem., 1962, 276. T.B. Jackson and J.O. Edwards, J . Amer. Chem. Soc., 1961, 83, 355. 277. T.B. Jackson, M.J. Baker, J.O. Edwards and D. T u t a s , I n o r g . Chem., 1966, 5, 2046. J . Scherzer, P.K. P h i l l i p s , L.B. Clapp and J.O. Edwards, I n o r g . Chem., 1966, 5, 847. 278. 279. 1, 398. C.R. Hanson, W.R. Brason, P.S. S k e l l , S.W. Kantor and A.E. Brodhag, J. Amer. Chem. Soc., 1956, 78, 1653. 280. C.E. C o f f e y , J . Amer. Chem. Soc., 1961, 83, 1623. 281. W. H i e b e r , G. Faulhaber and F. Theubert, Z. Anorg. Allgem. Chem., 1962, 314, 125. 282. R.J. A n g e l i c i , Inorg.. Chem., 1964, 3, 1099. 283. R.J. A n g e l i c i , F. Basolo and A.J. Poe, J . Amer. Chem. Soc., 1963, 85, 2215. V. V a l e n t i , F. C a r i a t i , C. Forese and G. Z e r b i , I n o r g . N u c l . Chem. L e t t . , 1967, 3, 237. R.M. Acheson, "An I n t r o d u c t i o n t o t h e Chemistry o f H e t e r o c y c l i c Compounds" 284. 285. ( I n t e r s c i e n c e ) , 1960, p.14. 286. R. S n a i t h and K. Wade, Personal Communication. 287. C-H. Wang and S.G. Cohen, J . Amer. Chem. S o c , 1957, _7?_, 1924. 288. J.E. E a r l e y , C.E. O'Rourke, L.B. Clapp, J.O. Edwards and B.C. Lawes, J . Amer. Chem. Soc., 1958, 80, 3458. H.G. Konnecke and M. H e i s e , J . P r a k t . Chem., 1959, 9, 232. 289. 290. H.W. Heine, Angew. Chem. I n t . Ed., 1962, 1 , 528. 291. A.F. Graefe and R.E. Meyer, J . Amer. Chem. Soc. , 1958, 80, 3939 292. W. P o t t s , Spectrochim. A c t a , 1965, 21, 5 1 1 . 293. D.M.L. Goodgame and M.A. Hitchman, J . Chem. Soc.(A), 1967, 612. 294. L. El-Sayed and E.O. Ragsdale, 295. M. K i l n e r , Ph.D. T h e s i s , U n i v e r s i t y o f Nottingham, 1963. 296. R.S. P i p e r , F.A. C o t t o n and G. W i l k i n s o n , J . I n o r g . N u c l . Chem. I n o r g . Chem., 1967, 6, 1640. 1955, 1 , 165. 297. M.F. Farona, A.C.S. 152nd M e e t i n g , 0, 092. 298. E.W. A b e l , I.S. B u t l e r and J.G. R e i d , J . Chem. S o c , 1963, 2068
© Copyright 2026 Paperzz