NMR of phospholipids and membranebound systems Michèle Auger Department of Chemistry Université Laval Québec, Canada USA-Canada Winter School on Biomolecular Solid State NMR January 20-25, 2008 Plasma membrane Site of important biological processes Fluid mosaic model More recently: "dynamic, yet structured” cell membrane model Singer and Nicolson (1972) Science, 175, 720. Vereb et al. (2003) PNAS, 100, 8053. 2 Structure of membrane proteins 30% of all proteins are membrane proteins Important functions – Signal transduction – Stabilisation of membrane potential – Etc... Less than 0.2% of resolved protein structures are membrane proteins Important targets for drug development 3 Strategy Strategy for the determination of protein structure by solid-state NMR under MAS conditions 4 Luca et al. (2003) Acc. Chem. Res. 36, 858. Oriented membranes Lipids mechanically oriented between glass plates Bicelle structures oriented in the magnetic field n B0 n Eu3+ 5 Helix orientation by 15N NMR Correlation between δppm and orientation 6 Bechinger et al. (2003) Concepts Magn. Reson. 18A, 130. Uniformly labeled samples PISEMA spectra Marassi (2002) Concepts Mag. Reson. 14, 212. Marassi (2001) Biophys. J. 80, 994. 7 Outline • Introduction • MAS spectra of lipid bilayers • Static 2H and – – – – – – – – – The plasma membrane Overview of methods to determine the structure of membrane proteins and peptides Overview, NMR of lipid molecules Phospholipids and lipid phases 31P, 1H and 13C MAS spectra 31P NMR H NMR • The quadrupolar interaction • Effects of axially symmetric motions • Lipid phases • Molecular voltmeter 31 P NMR • Effect of dynamics • Vesicle morphology • Order parameters • Lipid phases Application to the study of peptide-lipid interactions Lipid dynamics • Overview of motional time scales • Study of lipid domains by 2D exchange 31P NMR 2 8 Outline • Oriented membranes – Lipids oriented between glass plates • • – Bicelles • • • • • • Typical 31P NMR spectra Effect of peptides on 31P and 2H spectra Morphologies Characteristic spectra Order parameters Effect of peptides on bicelle orientation Fast-tumbling bicelles Conclusions 9 NMR of lipid molecules MAS spectra - Static powder spectra - 31P, 1H, 13C Polar head group: 31P NMR Acyl chains: 2H NMR Dynamics Oriented spectra - Lipids oriented between glass plates Bicelles 10 Phospholipid head groups 11 Phospholipid acyl chains DLPC DMPC DPPC C12 C14 C16 C18:1 DOPC Tm -1°C 23°C 41°C -20°C 12 Lipid phases Micelles Cubic phase Bilayers Normal or inverted hexagonal phases Bicelle Oriented bilayers Multilamellar vesicle 13 31P MAS NMR B0 54.7° Sample Shielding, deshielding effects Dynamics, FWHM 80% DMPC 20% DMPG 3 2 1 0 -1 -2 Chemical shift (ppm) -3 14 1H MAS NMR spectra of lipid bilayers Static MAS 15 Davis et al. (1995) Biophys. J. 69, 1917. Effect of intermediate time scale motions • Possible to obtain well-resolved 1H spectra from multilamellar lipid dispersions at spinning speeds of 3 to 4 kHz – • No identifiable peptide signals at spinning speeds of 3 to 4 kHz – – • Rapid axial diffusion of the phospholipid about its long axis Peptide reorientation fast enough? Yes, τc = 7 X 10-9 s for gramidicin A at 34°C Additional intermediate time scale motions – – – Wobble of the diffusion axis with respect to the local bilayer normal τc = 6 X 10-6 s for gramidicin A Higher spinning speeds required 16 Solid-state 1H NMR spectra D M PC 9 8 7 6 D M P C + gram icidin A (T F E ) 9 10 8 8 7 6 6 4 2 0 C hem ical shift (ppm ) 17 Bouchard et al. (1995) Biophys. J. 69, 1933. 13C MAS NMR 18 Bouchard al.. (1998) Biochim. Biophys. Acta 1415, 181. 13C MAS NMR Effect of gramicidin on DMPC dynamics, 1H T1ρ 19 Bouchard al.. (1998) Biochim. Biophys. Acta 1415, 181. Why static deuterium NMR? Static 1H spectrum Multilamellar vesicles 20 Why static deuterium NMR? 1H spectrum, MAS Chemical shift (ppm) 13C spectrum, MAS Chemical shift (ppm) Little information on the order of CH2 groups 21 Quadrupolar nuclei Spin=1 (2H) H0 H0 + HQ m=-1 ν0 + Δν/2 ν0 m=0 ν0 H0 ν0 - Δν/2 m=1 Δν ν0 ν0 22 Quadrupolar coupling Nuclei with spins greater than 1/2 Interaction between the quadrupolar moment (eQ) and the electric field gradient at the center of the nucleus [( )] ) ( 3 e 2 qQ 1 νQ = 3 cos 2 θ − 1 + η sin 2 θ cos 2φ 2 h 2 eQ 1 HQ = 3 I Z2 − I 2 ) ( 3 cos2 θ − 1) + (η sin 2 θ cos 2φ ) ( 4 I ( 2 I − 1) 2 [ e2qQ/h= quadrupolar coupling constant = ∼ 167 kHz (∼ 3700 ppm at 7 T) VZZ, VYY and VXX= principal components of electric field gradient tensor If Vyy = Vxx ( ) 3 e 2 qQ 1 νQ = 3 cos 2 θ − 1 2 h 2 η = ] (V xx − V yy ) V ZZ VZZ θ φ 23 Shape of the spectra 24 Acyl chains labeled with 2H CD2 Plateau region Terminal CD3 Quadrupolar splitting: Δν Q = 3e 2 qQ ⎛ 3 cos 2 θ − 1 ⎞ 3 cos 2 β − 1 ⎟⎟ ⎜ 2h ⎜⎝ 2 2 ⎠ 3 cos 2 α − 1 2 ↑ ΔνQ = order ↓ ΔνQ = disorder 30 Davis (1983) Biochim. Biophys. Acta 737, 117. 0 Frequency (kHz) -30 25 Effect of axially symetric motions n α β C- 2 H Rotation and oscillation n β C-2H C-2H 100 0 -100 kHz 3e 2 qQ ⎛ 3 cos 2 θ − 1 ⎞ 3 cos 2 β − 1 ⎟⎟ ⎜ Δν Q = 2h ⎜⎝ 2 2 ⎠ 3 cos 2 α − 1 2 Fast axial rotation No motion Angular brackets: Time average 26 Typical order profile 35 Quadrupolar splitting (kHz) 30 n 25 20 α β C- 2 H 15 10 ■ DMPC 5 DMPC/4-n-hexadecyl CEU DMPC/4-n-butyl CEU 0 0 2 4 6 8 10 12 Carbon position 14 3 ⎛ e 2 qQ ⎞ ⎟ × SCD Δν Q = ⎜⎜ 4 ⎝ h ⎟⎠ 16 3cos2 β −1 3cos2 α −1 SCD = 2 2 conformational orientational 27 Hexagonal phase δ Lafleur et al. (1990) Biochemistry 29, 8325. 3e 2 qQ ⎛ 3 cos 2 θ − 1 ⎞ 3 cos 2 β − 1 ⎜ ⎟⎟ Δν Q = 2h ⎜⎝ 2 2 ⎠ 3 cos 2 α − 1 2 ⎛ 3 cos 2 δ − 1 ⎞ ⎜⎜ ⎟⎟ 2 ⎝ ⎠ 28 Hexagonal phase 29 Lafleur et al. (1990) Biochemistry 29, 8325. Gel phase 30 Asymmetry parameter Effect of the asymmetry parameter on the 2H NMR spectral lineshape V ( η= xx − Vyy VZZ ) η = 1.0 η = 0.5 η = 0.2 η = 0.0 31 Molecular voltmeter Information on the conformational order of polar head groups Bicellar system made with DMPC-d4 β β O D α D α O ⎯ P ⎯O ⎯ C ⎯ C ⎯ N+(CH3)3 α β O- D D 4 3 2 1 0 -1 -2 -3 -4 Frequency (kHz) PC head group sensitive to the surface charge: molecular voltmeter + charge (+) ⇒ ↓ Δνα ⇒ ↑ Δνβ + charge (-) ⇒ ↑ Δνα ⇒ ↓ Δνβ 32 Seelig et al. (1987) Biochemistry, 26, 7535. Molecular voltmeter + charge (+) + charge (-) ⇒ ↓ Δνα ⇒ ↑ Δνβ ⇒ ↑ Δνα ⇒ ↓ Δνβ 33 Marassi and Macdonald (1992) Biochemistry 31, 10031. Phospholipids and Natural abundance, 31P: 31P NMR 100% Spin: ½ DMPC σ11 (80 ppm) O σ22 (25 ppm) O - Polar head group P O O - Glycerol σ33 (-110 ppm) 34 31P NMR σ11 (80 ppm) O σ22 (25 ppm) O- Polar head group P O σ22 σ11 100 1 1 3 σ = (σ 11 + σ 22 + σ 33 ) + ∑ (3 cos 2 θ j − 1)σ jj 3 3 j =1 Isotropic O- Glycerol σ33 (-110 ppm) σ33 0 σ⊥ σ// Static σ’⊥ σ’// 0 100 -100 Anisotropic -50 Axial rotation 50 0 -50 Axial rotation / Oscillation σ // = σ 11 σ⊥ = (σ 22 + σ 33 ) 2 35 31P NMR order parameters Spectral width: dynamics / orientation of the polar head group δ S2 = δ ref Picard et al. (1999) Biophys. J. 77, 888. Picard et al. (2000) Can. J. Anal. Sci. Spectrosc. 45, 72. S2 = 1 → No change S2 = 0 → Isotropic system 36 31P NMR, vesicle morphology a c c r= a 37 Picard et al. (1999) Biophys. J. 77, 888. 31P NMR order parameters Morphology: degree of orientation of the system S1 = M 1 − δ iso δ Picard et al. (1999) Biophys. J. 77, 888. Picard et al. (2000) Can. J. Anal. Sci. Spectrosc. 45, 72. S1 = 1 → Lipid main axis // B0 S1 = - 0.5 → Lipid main axis ⊥ B0 38 S1 as a function of r 39 Picard et al. (1999) Biophys. J. 77, 888. 31P NMR, vesicle morphology DMPC spectra a r= c c a 40 Picard et al. (1999) Biophys. J. 77, 888. 31P NMR, lipid phases n n n 41 Novel peptides O O O BOC H N O N H H N O O O O O N H H N O O N H Boc-(L-EC21-7-LLL-EC21-7-L)n-COOH O O O O O O O • Helicoidal structure • Amphiphilic • Neutral O H N O OH O n 14-mer peptide 21-mer peptide • ↑ vesicle permeability • Monomolecular ion channel • Monoprotected peptide (Boc, COOH) slightly more active • No effect on vesicle permeability • Erythrocyte lysis • Length: 31.5 Å • Length: 21 Å Biron et al. (2004) Bioorg. Med. Chem. 12, 1279. Vandenburg et al. (2002) Chem. Comm. 16,1694. Meillon et al. (1997) Angew. Chem. Int. Ed. Engl. 36, 967. Biron et al. (2001) Biopolymers 55, 364. 42 2H NMR results —— Pure lipid —— 60:1 —— 20:1 14-mer SCD(P) (SCD(M)) Pure +14-mer +21-mer +14-mer +21-mer (0.03) 0.21 (0.03) 0.20 (0.03) 0.20 0.20 (0.03) 0.20 (0.03) 21-mer 40 30 20 10 0 -10 Frequency (kHz) Ouellet et al. (2006) Biophys. J. 90, 4071. -20 -30 -40 43 31P NMR results —— Pure lipid —— 60:1 —— 20:1 14-mer 21-mer 40 30 20 10 0 -10 Chemical shift (ppm) S1 Pure -0.17 -20 S2 +14-mer +21-mer -0.02 -0.06 -30 -0.01 -0.05 +14-mer +21-mer 0.91 0.98 0.86 0.94 44 NMR and dynamics 45 NMR and dynamics Rotational diffusion (10-8 s) Vertical motion (10-9 s) Trans-gauche isomerizations (10-10 s) Flip-flop (10-3-104 s) Oscillation (10-12 s) Lateral diffusion (10-7 s) Ondulations (10-6-1 s) 46 Gawrisch (2005) in The Structure of Biological Membranes, CRC Press LLC, pp.147-171 Lateral heterogeneities or domains Lipid-lipid interactions Lipid-protein interactions Protein-protein interactions Biological roles Passive transport of small molecules across the membrane Modulation of the activity of certain membrane proteins Vesicle fusion Kleinfeld (1987) Current Topics in Membranes and Transport, 29, 1. Mouristen and Jorgensen (1995) Mol. Membr. Biol., 12, 15. 47 Lipid rafts http://publications.nigms.nih.gov/insidethecell/images/ch2_lipidraft.jpg 48 Lateral heterogeneities or domains Mixture of two phospholipids: DMPC/DSPC DMPC n=14 Tm=23oC DSPC n=18 Tm=55oC 49 Phase diagram Phase diagram of the DMPC/DSPC mixture Temperature ( o C) 60 50 Fluid → 40 Fluid+Gel 30 Gel Partially miscible: coexistence of gel and fluid phases 20 0 0.2 0.4 0.6 0.8 1 XDSPC Tm Slow lateral diffusion Fast lateral diffusion 50 Shimshick and McConnell (1973) Biochemistry, 12, 2351. Adsorbed bilayer DMPC/DSPC (1:1) bilayer adsorbed on silica beads of well defined radius (320 nm) → → → Well defined radius Reduced membrane deformations No tumbling 51 Arnold et al. (2004) Biophys. J., 87, 2456. 2H NMR spectra DMPC DSPC 7 1 55 °C 45 °C 8 5 6 4 3 4 2 2 M2 DSPCd70 (x108 s-2) M2 DMPCd54 (x108 s-2) 6 1 0 0 Total gel fraction 37 °C 25 °C 15 °C 80 40 0 -40 -80 kHz 80 40 10 20 30 40 50 Temperature (oC) 60 1 0.75 0.5 0.25 0 0 -40 -80 kHz 5 15 25 35 45 Temperature (oC) 55 52 Exchange experiments 2D experiments to correlate the resonance frequency of one lipid at the beginning and at the end of a delay ν1 tm B0 Orientation change ν2 ↔ Frequency change 53 Exchange experiments • Spectres typiques: t =0s m tm=3ms tm=200μs tm=12ms 54 Autocorrelation function “Memory function" of the system C 2 (t m ) = 5 δ2 ∫∫ ν ν S (ν ,ν ; t )d ν d ν ∫∫ S (ν ,ν ; t )d ν d ν 1 2 1 1 2 2 1 m m 1 2 2 Evolution in the presence of diffusion ⎛ tm ⎞ C 2(tm ) = exp⎜⎜ − ⎟⎟ ⎝ td ⎠ R2 td = 6D Schmidt-Rohr and Spiess (1994) Multidimensional Solid State NMR and Polymers, Academic Press, London. Picard et al. (1998) Biophys. J., 74, 857. 55 Lateral diffusion in the presence of obstacles → When tm increases, the number of obstacles increases and the apparent diffusion coefficient decreases → Numerical simulations to quantify this effect 56 Random walk on a sphere in the presence of obstacles Change in percolation Increasing number of obstacles = Decreasing size of obstacles Gel Fluid 57 Arnold et al. (2004) Biophys. J., 87, 2456. Spectral simulations Concentration of point obstacles Number (size) of discoidal immobile domains Number (size) of fluid discoidal domains -50 ppm -25 0 25 C=0.0 R=500 nm R=330 nm C=0.3 R=60 nm R=180 nm C=0.6 R=20 nm R=80 nm 50 -50 ppm -25 0 25 50 -50 ppm -25 0 25 50 50 25 0 -25 -50 ppm 50 25 0 -25 -50 ppm Constant obstacle area fraction of 0.5 50 25 0 -25 58 -50 ppm Simulations 32 discoidal domains Different total obstacle areas 0.0 -0.5 -1.0 ln(C2) (a.u.) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -1.5 -2.0 -2.5 -3.0 0 2 4 6 8 texch (ms) 10 12 59 Simulations Different numbers of discoidal immobile domains Constant obstacle fraction (0.5) 0.0 -0.5 -1.0 ln(C2) (a.u.) -1.5 no domain 1 domain 64 domains 512 domains 4096 domains point domains -2.0 -2.5 -3.0 0 2 4 6 8 texch (ms) 10 12 60 Simulations Different numbers of fluid discoidal domains Constant obstacle fraction (0.5) 0.0 -0.5 -1.0 ln(C2) (a.u.) -1.5 no domain 1 domain 2 domains 4 domains 6 domains 32 domains -2.0 -2.5 -3.0 0 2 4 6 8 texch (ms) 10 12 61 Simulations Evolution of Drel as a function of: Total immobile fraction Different numbers of domains Domain radius Different immobile fractions 1.0 0.9 0.9 Percolation properties 0.8 0.8 0.7 0.7 Drel Drel 0.6 0.5 0.6 0.4 0.5 0.3 4 domains 32 domains 4096 domains 0.2 0.1 0.0 0.4 0.5 0.6 0.4 0.3 0 0.2 0.4 0.6 0.8 Immobile fraction 1 0 100 200 300 400 500 Domain radius (nm) 600 62 Fit of the experimental spectra (30°C) Experimental spectra 32 discoidal obstacles Diameter: 140 nm 2 confined fluid areas Diameter: 760 nm -50 ppm -25 0 500 μs 25 50 -50 ppm -25 0 3 ms 25 50 -50 ppm -25 0 12 ms 25 50 50 25 0 -25 -50 ppm 50 25 0 -25 -50 ppm 50 25 63 0 -25 -50 ppm Comparison with other techniques Technique Domain phase Diameter EPR1 fluid 20 nm NMR (2H)2 gel >200 nm Neutron3 gel 10 nm Monte Carlo4 Gel >200 nm FRAP5 Fluid 80 nm NMR (31P) Gel 140 nm 1. Sankaram et al. (1992) Biophys. J., 63, 340. 2. Dolainsky et al. (1997) Phys. Rev. E, 55, 4512. 3. Gliss et al. (1998) Biophys. J., 74, 2443. 4. Jorgensen et al. (1995) Biophys. J., 95, 942. 5. Almeida et al. (1992) Biochemistry, 31, 7198. 64 Fit of the autocorrelation functions 0 Disk obstacles -0.1 ln (C2) (a.u.) Disconnected fluid domains -0.2 Each curve fitted with a fast and a slow diffusing components -0.3 -0.4 -0.5 0.5 24°C 30°C 37°C 2.5 4.5 6.5 8.5 texch (ms) Arnold et al. (2004) Biophys. J., 87, 2456. 10.5 12.5 65 Oriented membranes Lipids mechanically oriented between glass plates Bicelle structures oriented in the magnetic field n B0 n Eu3+ 66 Bilayers oriented between glass plates 67 Bilayers oriented between glass plates Parallel orientation Perpendicular orientation B0 0o 90o B0 40 20 0 -20 ppm δppm = ƒ (Lipid orientation) Chemical shift (δppm) Full width half maximum (FWHMppm) Powder spectra 1° Head group conformation 2° Bilayer alignment 68 Effect on membrane alignment Pure lipid With 14-mer DLPC 50 40 DMPC 30 20 10 0 -10 -20 -30 δ31P (ppm) 50 40 δ (ppm) DLPC DMPC DPPC Pure 31.2 31.1 32.0 14-mer 29.7 30.1 30.1 DPPC 30 20 10 0 -10 -20 -30 δ31P (ppm) FWHM (ppm) Pure 14-mer 1.9 2.3 1.7 1.9 1.5 3.6 50 40 30 20 10 0 -10 -20 -30 δ31P (ppm) % Loss of alignment -15 % -17 % -36 % ⇒ Orientation distribution → Effect more pronounced for DPPC Ouellet et al. (2007) Biochemistry, 46, 6597. 69 2H NMR spectra Pure lipid With 14-mer 0° orientation 90° orientation DMPC 40 20 0 kHz DMPC DPPC -20 ↑ ∆νQ: Order -40 40 20 0 kHz -20 -40 40 20 0 -20 kHz DPPC -40 40 20 0 -20 kHz ↓ ∆νQ: Disorder Ouellet et al. (2007) Biochemistry, 46, 6597. Mani et al. (2004) Biochemistry 43, 13839. 70 -40 Bicelles Mixture of long chain (DMPC) DMPC and short chain (DHPC) DHPC lipids: Discoidal vesicles Perforated lamellae Ribbons Spontaneous orientation between 30 and 45°C B0 Study of proteins at physiological temperatures n Planar section mimics the surface of the cells Vs curved surface of micelles Preservation of enzymatic activity Variable size Change in the molar ratio q Sanders and Landis (1995) Biochemistry, 34, 4030. Czerski and Sanders (2000) Anal. Biochem., 284, 327. Raffard et al. (2000) Langmuir, 16, 7655. q = [long chain lipids] [short chain lipids] 71 Characteristic spectra, oriented bicelles 31P NMR Phospholipid head group 90o 30 20 10 0 -10 -20-30 Chemical shift (ppm) 2H Terminal CD3 NMR Deuterated acyl chains CD2 near the polar head group ↓ ΔνQ = disorder ↑ ΔνQ = order 30 0 Frequency (kHz) -30 72 Bicelle spectra as a function of temperature 73 Picard et al. (1999) Biophys. J. 77, 888. Order parameters 74 Picard et al. (1999) Biophys. J. 77, 888. Bicelle phase diagrams Temperature-composition diagrams of DMPC/DHPC 80% (w/w) D2O 100 mM KCl 80% (w/w) D20 75 Raffard et al. (2000) Langmuir, 16, 7655. Mixed bicelles ε = mole fraction of DHPC in the bilayer section 76 Triba et al. (2005) Biophys. J. 88, 1887. Bicelle morphologies Isotropic bicelles B0 +La3+ Θ=0° +Sample spinning Θ=54.74° Θ=90° 77 Zandomeneghi et al. (2003) J. Biomol. NMR 25, 113. Bicelles flipped with lanthanides 78 Angelis and Opella (2007) Nature Protocols, 2, 2332. Effect of gramidicin on bicelle alignment (lipid:peptide 25:1) 79 Marcotte et al. (2006) Chem. Phys. Lipids 139, 137. Effect of gramidicin on bicelle alignment (lipid:peptide 10:1) 80 Marcotte et al. (2006) Chem. Phys. Lipids 139, 137. Fast tumbling bicelles Fast tumbling bicelles Small (∼ 100 Å) Discoidal morphology Fast rotation motion in solution Isotropic peaks in NMR Luchette et al. (1997) Biochim. Biophys. Acta 1513, 83. 81 Conclusions Solid-state NMR is well suited to investigate the effects of membrane peptides and proteins on lipid bilayers Several techniques available – MAS – Static spectra – Oriented samples Understanding the effects of membrane peptides and proteins on lipid bilayers can provide useful and complementary information of the biological process investigated 82 In Canada… www.nmr900.ca 83 Thank you for your attention! 84
© Copyright 2025 Paperzz