Supporting information for Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101) Abbin Antony(a), Aravind Asthagiri(b) and Jason F. Weaver(a)* (a) Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA (b) William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA Table 1 summarizes the DFT-D3 binding energies of methane and ethane states on PdO(101) surface and the corresponding zero point corrected energies and activation barriers assuming 3N and 3N-2 harmonic modes. Zero point energies are evaluated employing the vibrational mode frequencies in Equation (i) where the number of modes for chemisorbed alkane is 3N if all are treated harmonic, 3N-2 if two modes are treated free and 3N-6 for isolated alkane (gas). Based on the definition of binding energy in the section titled “Computational Details, (Equation (2))” section, zero point corrected binding energy is evaluated as shown in Equation (ii). (i) (ii) State Methane 2 Ethane (+) 2 Ethane (-) 2 Ethane 1 IS TS FS IS TS FS IS TS FS IS TS FS E (kJ/mol) 40.5 -24.1 82.8 55.2 -22.4 99.0 190.6 179.4 194.9 190.1 179.1 194.9 Er (kJ/mol) 64.6 77.6 67.6 63.0 3N Harmonic modes 3N-2 Harmonic modes E (ZPC) (kJ/mol) 39.1 -16.1 75.1 55.3 -12.6 94.7 56.4 -0.1 95.8 53.5 1.5 95.5 55.2 E (ZPC) (kJ/mol) 40.2 -14.9 77.6 56.1 -11.8 67.8 67.6 57.1 0.6 56.5 63.0 54.0 2.1 51.9 Er (ZPC) (kJ/mol) Er (ZPC) (kJ/mol) 55.1 Table 1: Binding energies, zero point corrected binding energies evaluated by treating 3N and 3N-2 modes harmonics and corresponding activation barriers. Tables 2 and 3 lists the normal mode vibrational frequencies computed for isolated methane and methane 2 complex on PdO(101) using DFT and DFT-D3. Table 4 and 5 lists the vibrational frequencies for isolated ethane and the three ethane σ-complexes on PdO(101) determined using DFT-D3. The tag ‘i’ stands for an imaginary mode and the highlighted modes corresponds to motions that reflects the change in geometry going from reactants to products. Note that the non-highlighted imaginary modes are observed due to the relatively flat potential energy surface about the cus-Pd atom. This feature of the potential energy surface results in configurations relaxing onto another saddle point when performing imaginary mode calculations (imc) where the configuration is pushed along the imaginary mode. Binding energies, geometries and vibrational modes of the newly relaxed configurations are very similar to the configurations prior imc. Vibrational modes identified as free motions for micro kinetic analysis have been tagged as ‘(fm)’ Isolated CH4 Mode No. νj (cm-1) DFT DFT-D3 3102 3097 1 3101 3096 2 3095 3095 3 2982 2981 4 1512 1512 5 1503 1502 6 1285 1285 7 1284 1285 8 1274 1274 9 Table 2: Vibrational mode frequencies of isolated methane molecule predicted by DFT and DFT-D3. CH4 2(+) νj (cm-1) DFT DFT-D3 IS TS FS IS TS FS 3134 3109 3595 3137 3103 3591 1 3057 3044 3077 3054 3037 3058 2 2888 2954 3038 2853 2951 3041 3 2816 1604 2948 2778 1609 2945 4 1490 1376 1392 1493 1374 1391 5 1466 1354 1389 1459 1352 1380 6 1294 1147 1143 1297 1150 1144 7 825 1276 1089 829 1277 1089 8 740 1168 698 738 1157 701 9 714 10 220 544 718 242 543 694 158 478 698 197 482 11 499 157 209 494 179 210 12 185 87 107 176 (fm)148 (fm) 108 13 116 52 92i 111 52 (fm) 87i 14 95 15 31 1244i 41i (fm) 38 1245i Table 3: Vibrational mode frequencies of the initial, transition and final states of methane 2 complex predicted by DFT and DFT-D3. Mode No. Mode No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 3055 3054 3029 3028 2976 2974 1456 1455 1446 1446 1368 1353 1173 1172 996 798 796 285 Ethane 2(-) Ethane 2(+) Isolated C2H6 IS TS FS 3072 3059 3038 2990 2798 2672 1469 1455 1434 1410 1358 1283 1171 1126 1003 828 782 305 214 140 (fm) 98 57 (fm) 27 57i 3070 3047 3046 2989 2978 1635 1440 1436 1377 1349 1206 1142 1097 952 942 872 541 436 230 195 107 (fm) 67 (fm) 72i 1324i 3600 3027 3002 2981 2947 2932 1431 1426 1406 1343 1186 1125 1009 918 881 816 691 680 481 247 222 144 64 24 IS TS 3059 3032 3058 3010 3041 3001 2984 2951 2775 2931 2700 1615 1466 1438 1447 1433 1435 1355 1407 1336 1365 1199 1279 1161 1178 1058 1122 987 1003 892 836 877 776 584 286 442 214 227 134 204 (fm) 89 147 75 (fm) 68 (fm) 31 (fm) 37i 95i 1290i FS 3591 3017 2997 2988 2937 2934 1428 1425 1407 1337 1186 1133 1012 917 883 817 690 685 479 241 222 139 70 41 Table 4: Vibrational mode frequencies of isolated ethane molecule and ethane 2(+) and 2(-) complexes on PdO(101) predicted by DFT-D3. Ethane 1 Mode No. IS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 3086 3061 3016 3003 2782 2656 1442 1423 1403 1387 1335 1304 1158 1101 997 795 750 410 266 118 104 97 (fm) 47 (fm) 35i TS 3050 3013 2997 2947 2901 1620 1430 1425 1351 1341 1196 1156 1057 988 887 869 589 445 224 207 144 (fm) 72 (fm) 25 1280i FS 3600 3027 3002 2981 2947 2932 1431 1426 1406 1343 1186 1125 1009 918 881 816 691 680 481 247 222 144 64 24 Table 5: Vibrational mode frequencies of ethane 1 complexe on PdO(101) predicted by DFT-D3.
© Copyright 2026 Paperzz