Influence of Earthworms on Plant and Soil Invertebrate Communities

Cleveland State University
EngagedScholarship@CSU
ETD Archive
2013
Influence of Earthworms on Plant and Soil
Invertebrate Communities of the Cleveland
Metroparks
Anton F. Schermaier
Cleveland State University
How does access to this work benefit you? Let us know!
Follow this and additional works at: http://engagedscholarship.csuohio.edu/etdarchive
Part of the Environmental Sciences Commons
Recommended Citation
Schermaier, Anton F., "Influence of Earthworms on Plant and Soil Invertebrate Communities of the Cleveland Metroparks" (2013).
ETD Archive. Paper 771.
This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected].
INFLUENCE OF EARTHWORMS ON
PLANT AND SOIL INVERTEBRATE COMMUNITIES OF THE
CLEVELAND METROPARKS
ANTON F. SCHERMAIER
Bachelor of Electrical Engineering
Cleveland State University
June, 1989
submitted in partial fulfillment of requirements for the degree
MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE
at the
CLEVELAND STATE UNIVERSITY
May, 2013
This thesis has been approved for the
Department of BIOLOGICAL, GEOLOGICAL, and ENVIRONMENTAL SCIENCES
and the College of Graduate Studies
Thesis Committee Chairperson, B. Michael Walton, Ph.D.
Department of Biological, Geological, and Environmental Sciences
Cleveland State University
Date
Thesis Committee Member, Yung-Tse Hung, Ph.D.
Department of Civil Engineering
Cleveland State University
Date
Thesis Committee Member, Robert A. Krebs, Ph.D.
Department of Biological, Geological, and Environmental Sciences
Cleveland State University
Date
Thesis Committee Member, Julie A. Wolin, Ph.D.
Department of Biological, Geological, and Environmental Sciences
Cleveland State University
Date
ACKNOWLEDGEMENTS
This research was made possible with funding provided through an NSF ULTRAEx grant and the CSU Department of Biological, Geological, and Environmental
Sciences. I extend my deepest gratitude for the financial assistance provided without
which, this journey would have been much more difficult.
Many thanks to the Cleveland Metroparks, in particular, Terry Robison, Connie
Hausman, and all PCAP personnel involved in not only characterizing the soil and
vegetation of the study plots but also assisting in the collection of worm and litter
samples. It is through their efforts that the detail of this study was made possible. Thanks
also to Nidia Arguedas for furnishing a sample population of preserved Amynthas spp.
which was instrumental in developing the corresponding allometric equation and for
sharing her passion and knowledge of earthworms.
Thanks to graduate and undergraduate students Sarah Cutteridge, Courtney
Brennan, Kelly Thompson, Klaire Freeman, Anthony Rodgers, Susan Blair, and Paul
Santovin for their help with sample preparation and invertebrate identification.
Thanks to Mike Walton and Julie Wolin for the use of their laboratories,
resources, and expertise. My sincere appreciation goes to committee advisors, Bob
Krebs, Julie Wolin, and Yung-Tse Hung for their time, feedback, and helpful suggestions
in creating a better thesis.
Special thanks to Mike Walton for his guidance, insights, and unquenchable
passion for all things ecological.
I send my love and gratitude to Mom & Dad for their unconditional love and
moral support in pursuing my aspirations, even those that defy conventional wisdom.
Thanks to my partner, Deb, for her encouragement, understanding, and love, and to my
friends, for their support and encouragement, particularly Patrick, who planted the first
seed to pursue an advanced degree. Finally, my gratitude goes to Jeff Dean for giving me
the chance to prove myself.
INFLUENCE OF EARTHWORMS ON
PLANT AND SOIL INVERTEBRATE COMMUNITIES OF THE
CLEVELAND METROPARKS
ANTON F. SCHERMAIER
ABSTRACT
No native earthworms exist in the Great Lakes region of Ohio. All earthworms
found in previously glaciated areas of the United States either migrated from unglaciated
areas or were introduced as a result of human activities such as agriculture and sport
fishing. Non-native earthworms may facilitate dramatic changes in structure and function
of plant and invertebrate communities of forest ecosystems.
This study examined how the presence of non-native earthworms within the
Cleveland Metroparks may correspond with plant and soil invertebrate communities.
Special attention was given to the Asian earthworm, Amynthas spp., a recent arrival to
northeastern Ohio and a particularly aggressive colonizer.
Earthworms and leaf litter were sampled at a set of well-characterized study plots.
Length-based allometric equations available in the literature were applied to measure
earthworm biomass of most species, and here a new equation for Amynthas was derived.
A computer-based method was used to measure length and required less time and effort
and produced values of significantly lower variability than the traditional ruler method.
Higher abundances and biomasses of earthworms were associated with degraded
plant communities. Although decreased litter mass correlated with greater earthworm
activity, invertebrate communities were not degraded; in fact there appeared to be a
modest beneficial effect. Earthworm activity changed soil chemistry as demonstrated by
selective decreases in soil carbon, nitrogen, and phosphorus. Soil composition also
iv
affected earthworm communities as low pH favored an acid–tolerant species and was
associated with moderate earthworm densities. A strong negative interaction between
abundances of Amynthas and those of other exotic earthworms was found, yet Amynthas
did not exert a distinctive influence upon plant or invertebrate communities.
v
TABLE OF CONTENTS
ABSTRACT ....................................................................................................................... iv
LIST OF TABLES ............................................................................................................. ix
LIST OF FIGURES ............................................................................................................ x
CHAPTER
I.
GENERAL INTRODUCTION ............................................................................... 1
1.1 Historical Context ................................................................................. 1
1.2 Earthworms in Northeastern Ohio ........................................................ 3
1.3 Earthworm Ecological Groups .............................................................. 5
1.4 The Arrival of Amynthas ....................................................................... 6
1.5 Biomass Estimation and Allometry ...................................................... 7
1.6 Hypotheses ............................................................................................ 8
1.7 The Structure of this Thesis ................................................................ 10
II.
ALLOMETRY OF AMYNTHAS .......................................................................... 11
2.1 Methods............................................................................................... 12
2.1.1 ImageJ Verification .............................................................. 14
2.1.2 Statistics ............................................................................... 14
2.2 Results ................................................................................................. 15
2.3 Discussion ........................................................................................... 18
III.
CLEVELAND METROPARKS COMMUNITY ASSESSMENTS .................... 23
3.1 Methods............................................................................................... 23
3.1.1 Plant Community and Soil Assessments.............................. 23
3.1.2 Earthworm Sampling ........................................................... 26
vi
3.1.3 Invertebrate Community Quantification .............................. 31
3.1.4 Statistical Analyses .............................................................. 33
3.1.4.1 Earthworm – Plant Interactions ........................................ 33
3.1.4.2 Earthworm – Invertebrate – Litter Interactions ................ 34
3.1.4.3 Earthworm – Earthworm Interactions ............................... 34
3.1.4.4 Earthworm – Soil Interactions .......................................... 35
3.2 Results ................................................................................................. 36
3.2.1 Plant Communities ............................................................... 37
3.2.2 Invertebrate Communities .................................................... 38
3.2.3 Earthworm Communities ..................................................... 39
3.2.4 Soil Chemistry ..................................................................... 45
3.2.5 Earthworm – Plant Interactions ........................................... 46
3.2.6 Earthworm – Invertebrate Interactions ................................ 47
3.2.7 Litter – Invertebrate/Earthworm Interactions ...................... 48
3.2.8 Earthworm – Earthworm Interactions .................................. 49
3.2.9 Earthworm – Soil Interactions ............................................. 51
IV.
DISCUSSION ....................................................................................................... 55
4.1 Hypotheses .......................................................................................... 55
4.2 Octolasion and Succession ................................................................. 58
4.3 The Dendrobaena Puzzle.................................................................... 59
4.4 Land Use History and Earthworm Influence ...................................... 60
4.5 The Influence of Amynthas ................................................................. 62
4.6 Sampling Methods and Weather Conditions ...................................... 63
vii
4.7 Future Work ........................................................................................ 65
4.8 Final Thoughts .................................................................................... 65
BIBLIOGRAPHY ............................................................................................................. 68
APPENDICES
A
Earthworm Allometry: Raw Data……………………………………………
81
B.
Earthworm Allometry: Source Equations……………………………………
85
C.
Earthworm Allometry: Ruler Method Subsample Data……………………... 86
D.
Metroparks Field Study: Plant Community Data……………………………. 87
E.
Metroparks Field Study: Soil Chemistry Data……………………………….
90
F.
Metroparks Field Study: Earthworm Raw Data……………………………..
92
G1.
Metroparks Field Study: Plot Profile, by Earthworm Species………………
123
G2.
Metroparks Field Study: Plot Profile, by Earthworm Genus……………….
127
H.
Metroparks Field Study: Litter Data…………………………………………
129
I.
Earthworm – Plant Community Interactions………………………………… 131
J.
Earthworm – Invertebrate Community / Litter Interactions…………………. 132
K.
Earthworm – Earthworm Community Interactions…………………………..
L.
Earthworm Community – Soil Chemistry Interactions……………………… 136
M.
Metroparks Field Study: Invertebrate Raw Data…………………………….
138
N.
Earthworm Identification Table……………………………………………...
141
viii
135
LIST OF TABLES
Table
Page
I.
AFDM Determination Using ImageJ Method ……………………............... 16
II.
Subsample Comparison of ImageJ vs. Ruler Methods……………………... 16
III.
Subsample Comparison of Actual vs. Predicted AFDM's………….............
IV.
Feature Comparison between ImageJ and Ruler Methods…………………. 21
V.
Earthworm Ecological Groups……………………………………............... 31
VI.
Earthworms of the Cleveland Metroparks………………………………….
ix
16
41
LIST OF FIGURES
Figure
Page
1.
Arc Approximation Comparisons…………………………………………… 13
2.
Ordinary Least Squares Regression for Amynthas spp……………………… 17
3.
Regression Comparing ImageJ and Ruler Methods………………………….18
4.
Comparison of Actual and Predicted AFDM‘s for
ImageJ and Ruler Methods…………………………………………………. 20
5.
PCAP Plot Locations for Earthworm and Litter Samples…………………... 25
6.
Typical PCAP Plot Module Layout………………………………………… 26
7.
Color Negative Digital Image of Earthworm Specimen…………………….. 28
8.
Plant Community Characteristics…………………………………………… 37
9.
Invertebrate Community Characteristics…………………………………… 38
10.
Relative Earthworm Abundance and Biomass by Plot ID………………….. 40
11.
Soil Chemistry Summary…………………………………………………... 45
12.
Significant Earthworm-Plant Interactions………………………………….. 46
13.
Significant Earthworm-Invertebrate Interactions…………………………… 47
14.
Significant Litter-Invertebrate/Earthworm Interactions……………………. 48
15.
Correlations between Aporrectodea, Lumbricus, and Octolasion…………... 49
16.
Earthworm Abundance by Genus for Plots with and without Amynthas ……50
17.
Earthworm Biomass for Plots with and without Amynthas ………………… 50
18.
Significant Earthworm-Soil Interactions……………………………………. 52
19.
Soil pH at Plots with Dendrobaena and Those without…………………….. 53
20.
Regression Lines for pH vs. Mg for Plots with and without Earthworms…... 53
x
CHAPTER I
GENERAL INTRODUCTION
1.1 Historical Context
Earthworms have not been native to the northern temperate forests of North
America since the end of the Wisconsinan glaciations 12,000 years ago. Their
reintroduction began in the 1700‘s with the arrival of European settlers and continues
today through human activities such as agriculture, sport fishing, road building, and
recreation (Hale et al. 2004; Hendrix 2006; Cameron et al. 2007).
Earthworms have long been recognized as beneficial agents in gardens because
they facilitate soil aeration and turn-over and increase availability of soil nutrients to
plants (Briones et al. 2011; Eriksen-Hamel & Whalen 2007; Schrader & Seibel 2001;
Bhadauria & Ramakrishnan 1996). However, in native forests of the Great Lakes region,
the effects of invasive earthworms are largely detrimental (Hale et al. 2005; Frelich et al.
2006). Non-native earthworms alter foodwebs and degrade plant and invertebrate
communities; they also change the structure and chemistry of the litter and soil layers of
1
the forest floor (Frelich et al. 2006; González et al. 2003; Bohlen et al. 2004; Dechaine et
al. 2005; Hale et al. 2005; Holdsworth et al. 2008; Costello & Lamberti 2008). Longterm impacts may include successional changes in both forest under- and overstories as
well increased nutrient loads in the surface water runoff, thus overwhelming the nitrogen
buffering capacity of riparian zones, ultimately altering the nutrient balances in
downstream aquatic ecosystems (Costello & Lamberti 2008).
Non-native earthworms compete with other organisms both directly and
indirectly. They compete directly for food (Snyder et al. 2008). Depending on their
ecological group, earthworms may consume litterfall or soil organic matter (Ernst et al.
2009; Sackett et al. 2013) and negatively influence seedling establishment (Asshoff et al.
2010). The forest floor food web is highly dependent upon this organic matter as both a
source of nutrition and environmental stability. Additionally, the litter serves as a
nursery for understory plants.
Once organic material is processed through an earthworm, it is mineralized into a
highly water soluble form that is easily washed away by normal precipitation. The
benefit of nutrient processing in place becomes compromised thereby mobilizing
nutrients and increasing the riparian nutrient processing burden. Uncaptured nutrients
may then enter the watershed to cause additional damage (Burtelow et al. 1997; Costello
& Lamberti 2008; Howarth 1995).
Within a forest, the majority of all biological activity happens on the forest floor
and a healthy forest consists of a thick, protective, multi-year layer of duff which
provides protection from excessive drying, heat, and cold. By limiting moisture loss, it
maintains a high humidity within its layers.
2
Non-native earthworms, namely epigeic and anecic varieties, also compete
indirectly with other organisms through accelerated leaf litter consumption and thus
consume the physical environment that other forest floor organisms depend upon. In
some cases, excessive litter consumption will leave a forest floor bare, dry, and mineral
poor.
1.2 Earthworms in Northeastern Ohio
There are no native earthworms in the Great Lakes region of Ohio, yet due to
human activity, exotic earthworms are now widespread in northeastern (N.E.) Ohio. The
exotic earthworms of N.E. Ohio, as well as the rest of North America, are so-called
―peregrine‖ species that are able to colonize a broad range of environmental conditions.
Hence, these worms, originally of European and Asian origin, now occur on every
continent except Antarctica (Bohlen et al. 2004).
Although these non-native taxa, such as Lumbricus and Aporrectodea are wellestablished, their effects on local forests have received little study and are poorly
understood. Previous studies of the ecological impact of exotic earthworms have
primarily focused on the impacts of earthworms within largely undisturbed forests into
which earthworms were new arrivals (Hale et al. 2005; Frelich et al. 2006). The focus on
recent colonization is understandable from the perspective of the need to suppress the
spread of worms to protect sensitive and high-value forest resources. However, exotic
earthworms are likely to have been residents of the forests of N.E. Ohio for decades,
especially those within or near urban areas. Cities are centers of activities that promote
earthworm introductions (e.g., international commerce, lawn care and gardening), and
3
cities like Cleveland, have been the points of entry for earthworms into the Great Lakes
region, although actual dates of entry are difficult to discern (Steinberg et al. 2005;
Szlavecz et al. 2006). Therefore, the forest ecology of N.E. Ohio is likely to represent the
long-term effects of exotic earthworms. From this perspective, the study of earthworms
of N.E. Ohio is of interest, since the ecology of the region‘s forests may provide insight
into what is in store for locations at which earthworms have only recently arrived, and
may reveal the extent to which forests adjust to the long-term effects of earthworms. In
addition, earthworms have been demonstrated to interact with other stressors in
urban/suburban forests. Hence, N.E. Ohio provides opportunities for investigating
interactions of earthworm invasions with respect to land use history (Szlavecz et al. 2011;
Frelich et al. 2006), understory damage due to excessive deer browse (Cotè
2004;Holdsworth et al. 2007; Nuzzo et al. 2009), invasive plant competition (Aronson &
Handel 2011), and anthropogenic habitat degradation (Matlack 1993). Furthermore, N.E.
Ohio may be an especially important location for investigations of exotic earthworms
because it is currently undergoing the invasion of a particularly aggressive Asian exotic
earthworm, Amynthas spp., thus providing an opportunity to investigate the invasion
dynamics of a new arrival into a region where European exotics are already wellestablished. Amynthas is also colonizing some of the remaining forests of N.E. Ohio that
were devoid of earthworms (B. M. Walton, per. comm.) in the Cuyahoga Valley National
Park.
4
1.3 Earthworm Ecological Groups
Earthworms are generally categorized into ecological groups that reflect feeding
preferences and burrowing behaviors. Although there is not universal agreement on all
classifications, three major groups are delineated as follows. Epigeic earthworms are
surface dwellers; they both live in and feed on litter and do not burrow significantly.
Endogeic earthworms are found in the top layers of the soil horizon and consume the
organic matter contained within; they are known to create superficial burrows that run in
approximately horizontal directions. Anecic earthworms tend to be larger than other
groups; they create permanent vertical burrows that may extend as deeply as two meters,
yet return to the surface to feed on litter (Hale 2007; Asshoff et al 2010).
Additional classifications are beginning to come into wider usage to reflect the
continuum of behaviors observed in specific taxa. They are epi-endogeic, endo-anecic,
and epi-anecic. In each case, earthworms of these subcategories share characteristics of
both groups. For example, L. rubellus is classified as an epi-endogeic and is larger than
typical epigeics; it is often found near the surface yet still burrows in topsoil horizons and
consumes organic matter like other endogeics. L. terrestris is another example of a
mixed group; it is considered an epi-anecic, since as a juvenile, it behaves more like an
epigeic earthworm, feeding on and dwelling in the litter. Once mature, its behavior
reflects that of an anecic species, spending most of its time deep within its burrow, when
not foraging at the surface (Asshoff et al. 2010; Felten & Emmerling 2009).
5
1.4 The Arrival of Amynthas
Of great interest is the recent arrival of the Asian earthworm Amynthas; it is a
particularly aggressive colonizer with a high metabolic and reproductive rate.
Established populations were first documented in N.E. Ohio forests in 2009 by Nidia
Arguedas, Conservation Planner with the Cleveland Metroparks (unpublished data),
though their presence in the landscaped environment was observed since the late 1980s in
Summit County and early 1990‘s in Lake County (Arguedas 2012, email communication,
November 13th). Since Amynthas is a newcomer, its reproductive and feeding strategies
may be sufficiently novel to allow it to outcompete native or naturalized organisms as
was documented with other non-native species of earthworms by Tiunov et al. (2006).
The effects of Amynthas may be especially significant for forests that have experienced
few earthworm invasions and are likely to have ―at risk‖ native specialist organisms as
was found in one study in the Great Smoky Mountains National Park where densities of
Amynthas agrestis suppressed the abundance and diversity of native millipedes (Snyder
et al. 2008). In a stand of mature forest at the Smithsonian Environmental Research
Center, Amynthas hilgendorfi has been shown to have a stronger effect on forest floor
biogeochemistry than other non-native earthworms (Szlavecz et al. 2011).
The earthworms in this study that are identified as Amynthas spp., belong to the
Amynthas hilgendorfi species-complex as established by Blakemore (2003) and are
hereafter referred to as ―Amynthas spp.‖ or simply ―Amynthas‖, although the two most
likely representative members are Amynthas hilgendorfi and Amynthas agrestis. DNA
barcoding positively identified these two species from collection sites within the
Cleveland Metroparks (Arguedas 2010). The taxonomy of Japanese earthworms contains
6
many ambiguities and identification errors that are most likely due to their tendencies
toward parthenogenetic polymorphism, where some species names are based upon
degraded morphs (Blakemore 2008).
1.5 Biomass Estimation and Allometry
Biomass is a relative indicator of the amount of matter and energy that is being
drawn from an environment by an organism (Begon et al. 2006). If the biomass of an
invading community is known, its potential impact can be estimated. The fresh weight of
an organism, however, is unreliable as a measure, particularly for earthworms, since their
water content is highly variable. Ash-free dry mass (AFDM) is therefore, the preferred
method of biomass estimation (Hale et al. 2007). AFDM also has the additional
advantage of being the approximate equivalent of carbon that is bound within an
earthworm population. Unfortunately, AFDM is a laborious and time-consuming process
wherein the specimen is ultimately destroyed. Allometry provides a reasonable
alternative at a fraction of the time and resources and does not require destruction of the
specimen. An allometric equation is one that predicts the measurement of one body
characteristic based upon the actual measurement of another. In this case, the length of
an earthworm is used to predict its ash-free dry mass. To derive this equation, a
representative sample set is required, where the actual AFDM is known. Afterward, a
simple centerline measurement of subsequent specimens produces a reasonably good
estimate of biomass.
To date, only a few papers have been published that provide allometric equations
for biomass estimation of a number of species (Hale et al. 2004; Greiner et al. 2010).
7
Greiner et al. (2010) developed an allometric equation for A. hilgendorfi from a
population of earthworms collected in southeastern Michigan. In this thesis, I present an
allometric equation for biomass estimation of Amynthas, based upon a collection of
specimens from N.E. Ohio forests that spans a wider range of body lengths. This
equation also provided a test for the applicability of allometric equations of Amynthas
obtained from geographically different populations. In addition, I developed a computerbased method for length measurement that uses digital imagery and image analysis
software. This method of length measurement is faster and easier than the traditional
ruler method and has the added benefit that a specimen can be re-measured any number
of times even after it is no longer physically available. I also repeated the length
measurements using the ruler method on a subsample (n=30) of the dataset and present a
statistical comparison between the two methods. Both the similarity of means and the
variability of measurements were examined to demonstrate that the computer-based
method is capable of producing more consistent, higher quality measures of length.
1.6 Hypotheses
During the summer of 2010, the Cleveland Metroparks initiated a multi-year Plant
Community Assessment Program. They conducted an extensive survey of 108 randomly
selected study plots within the park system of N.E. Ohio. The survey included
parameters such as soil composition, plant habitat quality, and plant community
composition. Afterward, 63 of these plots were randomly selected and sampled for both
earthworms and leaf litter. This was a unique opportunity to leverage extensive plant
community data against corresponding earthworm abundance and diversity.
8
The majority of my work focused on characterizing earthworm abundance and
diversity at those 63 study plots, to determine how they correlated with plant and soil
invertebrate community composition. Special attention was given to Amynthas to
determine if it exerted any measureable effects upon the ecosystems it invaded, and to
identify those characteristics corresponding to an invasion.
The central question is: Do earthworms exert a measurable influence on forest
ecosystems within the Cleveland Metroparks as indicated by measures of soil chemistry
and plant and soil invertebrate community composition? I address this question by
proposing these five hypotheses:
1. Higher abundances and/or biomass of non-native earthworms are associated with
degraded plant communities.
2. Higher abundances and/or biomass of non-native earthworms are associated with
degraded soil invertebrate communities.
3. Higher abundances and/or biomass of Amynthas are associated with degraded
plant communities.
4. Higher abundances and/or biomass of Amynthas are associated with degraded soil
invertebrate communities.
5. Earthworm activity and soil composition mutually influence one another.
9
1.7 The Structure of this Thesis
This thesis consists of two interconnected themes. The first focuses on deriving
an allometric equation for Amynthas to be incorporated into the second theme, that of
determining the influence of earthworms on plant and invertebrate communities.
Chapter II, ALLOMETRY OF AMYNTHAS, is self-contained; it consists of
methods, results, and discussion. In addition to the derived equation, I also present a new
procedure for specimen length determination. After this chapter, no further references
are made to allometry or its procedures beyond the equations used for predicting biomass.
Chapter III, CLEVELAND METROPARKS COMMUNITY ASSESSMENTS,
focuses the methods and results used to characterize the influence of earthworms within
the Cleveland Metroparks. The methods sections present techniques used to collect data
and to characterize each community and potential interactions. The results sections
follow with community summaries and respective interactions.
Chapter IV, DISCUSSION, concludes with my insights on the results from the
previous chapter.
10
CHAPTER II
ALLOMETRY OF AMYNTHAS
In this chapter, I describe new procedures for developing allometric equations for
estimating earthworm biomass and illustrate the use of this procedure for estimating
AFDM for the invasive earthworm, Amynthas spp. found in N.E. Ohio. In addition, I
present analyses of the accuracy and precision of the new method compared to the
traditional method.
There are a number of potential sources that contribute to the error of predicted
AFDM. One such error originates during length measurement. Limitations in eye
discrimination and in measurement tools make manual measurements more prone to error
as object size decreases. The ImageJ and ruler methods were compared to determine if
such limitations exist. A significant correlation would indicate that the precision of a
given method was limited by the size of the specimen.
Another possible source of length error may be the degree of curviness (sinuosity)
of a specimen. This could be expected since the centerline of a perfectly straight
specimen is much easier to determine than one that sharply curved. I quantify specimensinuosity and test for a relationship with the magnitude of predicted AFDM error.
11
2.1 Methods
A set of 160 preserved earthworms were used for the allometry study. The
earthworms were collected from N.E. Ohio forests managed by Cleveland Metroparks
during 2009 and identified as members of the Amynthas hilgendorfi species-complex.
Specimens were set in 10% formalin for a minimum of 24 hours then transferred to 80%
isopropanol for long-term storage.
Earthworm specimens were photographed using a Canon EOS Digital Rebel XT
camera body and an EF-S18-55mm f3.5-5.6 lens. Images were stored as 12 megapixel,
monochrome, high-resolution data files. Files were subsequently transferred to a
computer system installed with ImageJ (v1.42q) image analysis software that was
downloaded from http://imagej.nih.gov/ij/. Length measurements were made for each
specimen using its corresponding digital image. The process was similar to the ruler
method except that with ImageJ, the image was typically magnified to 12 times its
original size and then measured using a 2 µm resolution virtual ruler by clicking down a
series of line segments along the centerline to yield the total length. Just as the total
length of 3 line segments used to approximate an arc will be shorter than 12 line
segments used to approximate the same arc, a better approximation of centerline length is
accomplished using shorter, more numerous segments (Fig. 1). This is especially true
when measuring a specimen that has sharp curves along its length.
Each individual was measured three times and the mean taken. Individuals were
placed in a drying oven for a minimum of 48 hours at 65 ˚C. Upon removal, dry weights
were immediately recorded (± 0.1 mg). Dried individuals were placed in ceramic
12
crucibles and ashed at 500˚C for a minimum of 4 hours then removed and cooled in a
desiccator. Subsequent ash weights were recorded. Ash-free dry mass (AFDM) was
determined by subtracting ash mass from dry mass for each individual to yield a
standardized mass of organic matter per individual.
Figure 1. Arc Approximation Comparisons. The top arc is approximated by 3 line segments. Its
reproduction is a crude representation and obviously shorter than the original. The bottom arc is
approximated by 12 line segments. Its reproduction is a significant improvement over the 3 segment arc
and is also slightly longer since it is a more faithful approximation.
13
2.1.1 ImageJ Verification
I compared the performance of ImageJ-based length measurements to the standard
method of length measurement using a ruler. A subset of individuals was selected to be
re-measured using the ruler method. Selection of individuals proceeded as follows. The
span between the shortest and longest individuals (n=160) was divided into three equal
ranges, designated as small, medium, and large. Ten individuals were randomly selected
from each of the size ranges (Appendix C) using random numbers generated by
random.org. To ascertain whether ImageJ yielded comparable results, the sub-sampled
individuals (n=30) were measured with a ruler along the centerline and recorded to the
nearest 0.5 mm. Each individual was measured three times and the mean taken.
2.1.2 Statistics
Microsoft Excel 2007, version 12.0.4518.1014, was used to perform all t-tests and
regressions. Systat MYSTAT 12 for Windows, version 12.02.00, was used for all
Pearson correlations.
Ordinary least squares regression was performed for overall length vs. AFDM.
Predicted AFDM‘s were calculated for the ―Schermaier‖ equation (presented in section
2.2) using both ImageJ and ruler methods along with the equation published by Greiner et
al. (2010):
,
R2 = 0.85
Two-tailed t-tests and percent errors were calculated for comparisons between
actual and predicted values (Schermaier equation using ImageJ method, Schermaier
14
equation using ruler method, and Greiner equation using ruler method). Percent error
was calculated as follows:
A Pearson correlation was performed for both ImageJ and ruler methods for mean
lengths and coefficients of variation (C.V.) to determine if the specimen size was related
to the variability of its measured length.
The formula for sinuosity index was adapted to earthworm specimens:
A Pearson correlation was performed on sinuosity vs. the percent error for ImageJ
Predicted AFDM to test for a relationship.
2.2 Results
Overall length, dry mass, ash, and AFDM values are summarized in Table I.
Figure 2 represents the allometric equation (subsequently referred to as the Schermaier
equation) relating overall length to AFDM of Amynthas spp. from N.E. Ohio.
The ruler method produced a length that was an average of 3.4% less than the
ImageJ method. Predicted AFDM‘s were determined using the Schermaier equation for
both ruler and ImageJ length measurements and subsequent percent errors calculated.
The ImageJ method (-0.2% error) was better than the ruler method (7.5% error) at
predicting AFDM across the entire sample.
15
Table I: AFDM Determination Using ImageJ Method. Following equations determined using ordinary
least squares method.
Length (mm)
Dry mass (mg)
Ash mass (mg)
AFDM (mg)
N=160
Mean S.E.
58.8
2.5
225.8 22.7
131.5 14.8
94.3
8.2
Min
13.3
1.7
0.2
1.0
Max
145.7
1127.4
760.5
469.7
Table II: Subsample Comparison of ImageJ vs. Ruler Methods. P-Values are for two-tailed t-tests
between ImageJ and ruler methods for quantities of length and C.V.
ImageJ Method
Mean
S.E.
Min
Max
Length (mm) 63.4
5.5
20.6 109.1
C.V. 0.003 0.0002 0.001 0.006
N=30 of 160
Ruler Method
Mean
S.E.
Min Max
61.4
5.4
19.3 105.5
0.013 0.0019
0
0.035
P
0.8
<0.001
Table III: Subsample Comparison of Actual vs. Predicted AFDM's. P-values determined using twotailed t-tests between actual AFDM and each of the predicted AFDM‘s. The Schermaier and Greiner
equations are being compared to establish that they are comparable. The ImageJ and ruler methods are
being compared to determine if the two techniques for ascertaining length are equivalent. The intent is to
establish that the Schermaier / ImageJ combination is at least as precise and accurate as the alternatives.
Actual
Schermaier / ImageJ Method, Predicted
Schermaier / Ruler Method, Predicted
Greiner / ImageJ Method, Predicted
N=30 of 160
Mean
108.7
104.5
97.2
128.0
AFDM (mg)
S.E. Min
18.7 6.6
17.1 5.3
15.9 4.5
21.3 5.7
Max
P
320.6
280.0 0.87
258.5 0.64
349.9 0.50
The mean lengths obtained with ImageJ did not differ significantly from lengths
measured using a ruler (Table II). However, lengths obtained by ruler were much more
16
variable than those obtained with ImageJ (Table II). The coefficient of variation (C.V.)
for ruler measures was 5-fold greater than the C.V. for ImageJ length measures.
For the ruler method, length and C.V. are related (r=-0.61, P=0.001) but not for
the ImageJ method (r=-0.17, P=0.36). This reveals that the precision the ImageJ method
is not significantly affected by specimen size (Fig. 3).
The curviness of a specimen does not appear to contribute to length error when
using the ImageJ method since a correlation between sinuosity and percent error of
predicted AFDM produced no significant relationship (r=0.09, P=0.63).
Each predicted AFDM (Schermaier/ImageJ method, Schermaier/ruler method,
and Greiner/ImageJ method) was compared to the actual AFDM using a t-test; no
significant differences were found (Table III).
0.00
-1.00
AFDM (ln g)
-2.00
ln(AFDM) = 2.38*ln(Length) - 12.45
-3.00
R2 = 0.96
-4.00
-5.00
-6.00
-7.00
-8.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
Length (ln mm)
Figure 2. Ordinary Least Squares Regression for Amynthas spp. The trendline represents the
allometric relationship between earthworm length and its corresponding biomass.
17
0.040
0.035
ImageJ
By Ruler
Linear (ImageJ)
Linear (By Ruler)
0.030
C.V.
0.025
0.020
0.015
0.010
0.005
0.000
20.6
28.7
44.3
60.4
Length (mm)
89.7
99.0
Figure 3. Regression Comparing ImageJ and Ruler Methods. Ordinary least squares
regression. The horizontal line of the ImageJ method indicates no relationship between
specimen size and variability in the measures of length. The declining line of the ruler method
indicates that length variability decreases as specimen size increases.
2.3 Discussion
Figure 2 represents the resultant allometric relationship between overall length
and AFDM. The predictive power for this dataset, as represented by R2 (the coefficient
of determination) is very good, indicating that nearly 96% of the variation can be
explained by the statistical model. This suggests that the equation will be highly
applicable to subsequent sample populations of Amynthas spp. that are derived from
comparable environments. Using the Schermaier equation to predict AFDM yields a
mean error of -4.1%.
Although any individual prediction is susceptible to error, a sufficiently large
sample set is likely to produce a very reasonable estimate of AFDM for Amynthas spp.
18
Applying the Greiner equation to the same study population yields a mean error of 21.7%.
Table III demonstrates that there are no statistically significant differences
between the Schermaier and Greiner equations or the ImageJ and ruler methods. This
verifies that both the Schermaier and Greiner equations are comparable for
geographically separate Amynthas populations. It also confirms that length measurement
using ImageJ is a suitable alternative to the ruler method.
Although sinuosity does not appear to contribute to length errors, death and
preservation may still be a source of error. For example, the proboscis is sometimes
fixed while fully extended in some individuals, whereas, it is contracted in others.
Similarly, various regions along the length of an earthworm might also be non-uniformly
relaxed or contracted, thus causing some fraction of error in the allometric relationship.
The ruler method produced consistently shorter and more variable measures of
length than did the ImageJ method. One factor that contributed to this was that the
measuring tool used by ImageJ was of a higher resolution (2 µm vs. 500 µm for the ruler
method); another factor was that the effective specimen size was much larger due to
image magnification, thus permitting shorter line segments to be used to measure overall
length.
Note that in 23 out of 30 samples, the predicted AFDM‘s were closer to each
other in value than they were to the actual AFDM (Fig. 4). This suggests that the two
length measurement methods were not only reliable and comparable but that the error
was caused by a variation in AFDM that was not accounted for in the actual AFDM
determination.
19
350.00
Actual AFDM
300.00
Schermaier Predicted AFDM / ImageJ Method
Schermaier Predicted AFDM / Ruler Method
AFDM (mg)
250.00
200.00
150.00
100.00
50.00
0.00
Ascending Length
Figure 4. Comparison of Actual and Predicted AFDM's for ImageJ and Ruler Methods. Actual
AFDM refers to values determined through ash-free dry mass determination. The Schermaier Predicted
AFDM‘s are estimated values of AFDM using the Schermaier allometric equation. In one case,
lengths determined using the Image-J method were used as inputs to the allometric equation, in the
other, ruler-based lengths were used.
20
Table IV: Feature Comparison between ImageJ and Ruler Methods. Maximum resolution is a
function of the original magnification of the camera lens. Greater image resolution is possible using a lens
with higher magnification.
ImageJ Method
Ruler Method
Required Equipment
Digital camera, stand, lighting,
computer, ImageJ, labels, and ruler
Ruler, specimen probes
Setup
Moderate: requires camera setup,
photographing, and transfer to
computer
None, though may use
dissecting scope
Measurement
Re-measurability
Time-consuming and
Quick and easy since measuring is
laborious; accuracy may
done using a pointing device and a suffer due to worker fatigue;
magnified specimen image;
specimen subject to drying
minimal handling of specimen (only and mechanical damage.
when photographing)
Longer worker exposure to
chemical preservatives
Unlimited: multiple digital copies
of specimen may be stored and
distributed
Only possible if original
specimen is still available
and intact
Maximum Image
Magnification
60 : 1
1:1
**Maximum
Resolution
2 µm
500 µm
Length Stability:
Mean C.V.
0.00262
0.0131
Applicability
Especially good for large datasets
or where high archival integrity is
desired
Best for small or ad hoc
measurements or when
specialized equipment is not
available
Gut contents are the most likely source of error between actual and predicted
values, and may also account for disagreement between the equations, since they were
derived from different sample populations. Studies reveal that the contents of an
earthworm‘s gut can constitute as much as 20% of its AFDM (Edwards & Bohlen 1996;
21
Lee 1985). Therefore soil composition and feeding state exerts a direct influence upon
AFDM through the quantity of non-organismal carbon contributed by the gut. Although
not performed for this study, gut flushing prior to drying has been proposed as a method
to minimize this source of variation (Hale et al. 2004).
I propose that the ImageJ method of specimen measurement be an addition to, not
a replacement for, the ruler method. There are situations where either method may be
more appropriate, Table IV.
22
CHAPTER III
CLEVELAND METROPARKS COMMUNITY ASSESSMENTS
3.1 Methods
The Cleveland Metroparks launched a long-term vegetation monitoring program
during the summer of 2010 to develop a baseline dataset of terrestrial natural resources.
The Plant Community Assessment Program (PCAP) was based upon hundreds of
randomly selected geographic locations distributed throughout the Cleveland Metroparks
holdings at which study quadrats were established for quantification of a standardized
suite of plant community and soil measures. During the first year of the PCAP, park
technicians surveyed 108 plots distributed among 14 park reservations.
3.1.1 Plant Community and Soil Assessments
Once Cleveland Metroparks personnel completed the plant community
assessments for the initial 108 plots, they assisted me in sampling earthworms and litter
from a subset of these plots. This sampling was performed between September and
October of 2010, where 63 of the 108 plots were randomly selected and sampled (Fig. 5).
Plant community data provided by the Cleveland Metroparks was used to evaluate the
interactions between earthworms and plant community structure and quality. Plant
23
community measures used in this thesis were: percent coverage by sensitive plants,
percent coverage by tolerant plants, percent bare ground, and Floristic Quality
Assessment Index (FQAI), an aggregated index of plant habitat quality.
Standard measures of diversity, such as Shannon-Weiner Diversity Index, cannot
discriminate between disturbed and healthy communities, whereas FQAI is calibrated to
local native plant communities to provide a measure of the quality of a given plant
community based upon the taxa identified and the area each covers (Andreas et al. 2004).
It is therefore suitable for quantifying ecological disturbances as well as diversity
(Andreas et al. 2004).
Soil composition was also analyzed as part of the PCAP. Measures that were of
particular interest included total carbon, total nitrogen, organic matter, and pH, since they
can affect and be affected by earthworm activity (Addison 2009; Sackett et al. 2013;
Eisenhauer et al. 2000; Edwards & Bohlen 1996). The following measures were obtained
from the PCAP data to test for interactions with earthworm activity: total carbon (%),
total nitrogen (%), organic matter (%), pH, phosphorus Bray-P1 (ppm), phosphorus BrayP2 (ppm), potassium (ppm), magnesium (ppm), and calcium (ppm). Soil plot data were
grouped by presence or absence of earthworms to identify those characteristics that
potentially either deter or facilitate colonization. Such grouping could also capture soil
characteristics that changed in the presence of earthworm activity.
24
Figure 5. PCAP Plot Locations for Earthworm and Litter Samples. By study plot ID.
25
3.1.2 Earthworm Sampling
At each plot, the study area was typically organized into a 2 x 5 grid of 0.1
hectare modules (10 m x 10 m) where the centerline was oriented to keep the plots within
the same plant community (Fig. 6). Four of the ten modules (02, 03, 08, and 09) were
more intensively studied; these were the modules where earthworm and litter sampling
was performed. At each plot, litter was only collected from one of the intensive modules;
this was typically the lowest numbered one (02). Some plots could not be laid out with
the standard 2 x 5 grid due to topographic limitations such as an intervening cliff or river.
In such cases, a smaller grid was used to accommodate the circumstances.
Figure 6. Typical PCAP Plot Module Layout. Wherever study plots were large enough to accommodate
a 2 x 5 grid, intensively studied modules were always assigned to modules 02, 03, 08, and 09 for
consistency.
Each of the four intensive modules was sampled for earthworms using a ⅓ meter
frame constructed from PVC pipe. The location within a module was randomly selected
by tossing the square over one‘s shoulder into the perimeter of the module. Collection
was performed wherever the square landed. In the event that an obstruction such as a
26
large branch or rock prevented effective sampling, the square was repositioned to the
nearest adjacent suitable location.
Earthworms were collected using the mustard extraction method (Hale, 2007). I
prepared a solution of 10 grams regular yellow mustard powder (purchased at
penzeys.com) per liter of water. Since it was impractical to transport as much as 32
gallons of solution into the field, a concentrated premix was prepared. On the day prior
to collection, 453 grams of dry mustard powder were placed into a container and filled
with warm water to the volume of one gallon (3.79 liters). The contents were shaken
until reasonably mixed then refrigerated until the following day. Once in the field, the
concentrate was shaken again prior to use. The quantity of 355 milliliters of concentrate
was poured into an empty container and then filled with water to the volume of one
gallon (3.79 liters). This dilution yielded a mixture with a mustard concentration of
approximately 10 g / L.
The top layer of litter or grass was removed so that only bare ground remained.
Approximately 4 liters of liquid mustard mix was poured slowly over the sample area.
All earthworms that emerged within the area during 10 minutes were collected.
Specimens were fixed in 10% formalin within 24 hours of collection for at least 24 hours
and then transferred to ethanol for long-term storage.
During the first several collections, 90% isopropyl alcohol was used to
anesthetize and transport the earthworms since it was readily available, but I found that
the preserved specimens lost noticeable water content and suffered in quality, so I
switched to 95% ethanol for subsequent sample collections. Specimens were fixed in
27
10% formalin within 24 hours of collection for at least 24 hours and then transferred to
ethanol for long-term storage.
Earthworm specimens were wet-weighed to 0.1 mg then photographed using a
Canon EOS Digital Rebel XT camera body and an EF-S18-55mm f3.5-5.6 lens. Images
were stored as 12 megapixel, color, high-resolution data files. Files were transferred to a
computer system installed with ImageJ (v1.42q) image analysis software that was
downloaded from http://imagej.nih.gov/ij/. Length measurements were made along the
centerline for each specimen using its corresponding digital image. Each individual was
measured three times and the mean taken. The images were converted to digital
negatives at the time of measurement to sharpen the specimen boundaries and to facilitate
speedier measurements (Fig.7).
Figure 7. Color Negative Digital Image of Earthworm Specimen. Adult endogeic species,
Octolasion tyrtaeum; length: 43mm; wet weight: 462mg.
28
Each sample was identified to genus or, if sexually mature, to species, using a
dissecting microscope and an earthworm identification guide (Hale 2007; Appendix F;
Appendix N). One of the features used to identify earthworm species is the arrangement
of setae patterns, tiny bristle-like projections used for locomotion. These landmarks can
often be difficult to discern, especially for small individuals. I found that illumination
with an ultraviolet light causes the bristles to fluoresce, making identification much
easier.
AFDM was estimated for each individual using the Schermaier equation and other
previously published equations (Hale et al. 2004; Greiner et al. 2010; Appendix B).
Corresponding biomasses by genus, species, and community as well as plot biodiversity
and relative earthworm densities were then determined.
Sample collection occurred between September 20, 2010 and October 15, 2010.
The weather conditions for the first two weeks of collection were uncommonly hot and
dry. We (Cleveland Metroparks personnel and I) suspected that such conditions might
have been suppressing the sample counts below typical field conditions. Two plots were
therefore re-sampled (1025 and 1072) in an attempt to establish more representative
levels. For any given plot visit, 4 samples were taken and averaged. To remain
consistent with this strategy I chose to average the values from the first and second visits
rather than simply replacing the original data. Within the dataset, the plots were
identified as 1025M and 1072M, respectively, to indicate that they consisted of merged
values.
Of the 922 individuals originally collected, 16 were excluded from the dataset for
a number of reasons. The majority of exclusions, numbering 11, were actually
29
earthworm fragments; even if the genus or species could have been identified, the
biomass would still have been indeterminate. The reason for partial earthworm samples
was most likely due to the zeal of collectors trying to capture earthworms that were intent
upon escaping. An additional 3 individuals were not earthworms at all. One individual
was a perfect specimen but had been inadequately labeled and could not be placed. The
final excluded sample was lost before it could be processed. It was a tiny individual that
accidentally shot across the lab from the end of a teasing needle and could not be located.
I performed analyses of both earthworm abundance and biomass using specimens
that were grouped either by genus or by ecological group. Although genus grouping is
expedient and more mathematically precise, it fails to quantify the effects of earthworms
in terms of ecological behavior. The difficulty with using ecological groups is that L.
rubellus and L. terrestris, while of the same genus, belong to different groups yet are
physically indistinguishable as juveniles. This potentially confounds any analysis based
upon ecological groups. In a study by Asshoff et al. (2010), L. terrestris juveniles
behaved as epigeic earthworms. For their study, hatchlings (fresh body weight < 0.5g)
were treated as epigeics.
Using the simplified classifications of epigeic, endogeic, and anecic, I grouped all
L. rubellus adults as well as all Lumbricus juveniles as epigeics. Only L. terrestris adults
were classified as anecic (Table V). Admittedly, a number of the Lumbricus juveniles
identified in my dataset were significantly larger than 0.5 g and were therefore engaging
in some burrowing activities not indicative of epigeics, yet both epigeic and anecic
earthworms consume litter. One of the major differences between them is that anecic
earthworms are potent translocators of organic matter and mineral soils within the soil
30
horizon; epigeic earthworms have little direct effect on soil. By using this categorization,
I expected that the influence of epigeic earthworms on litter consumption could be
overestimated, whereas that of anecic earthworms could be underestimated.
Additionally, any potential soil-mixing and soil chemistry changes caused by L. terrestris
juveniles would be attributed to either epigeic or endogeic categories. In summary, the
desired interactions would be captured; however, their attribution to L. terrestris would
likely be underestimated.
Table V: Earthworm Ecological Groups. The ―Native Ecological Group‖ refers to how earthworm
species are often identified in published papers. ―Grouping for Analysis‖ is how the taxa were organized to
facilitate analysis based on ecological influence.
Expanded Ecological Groups
Dendrobaena octaedra
Epigeic
Dendrodrilus rubidus
Eisenia fetida
Lumbricus rubellus
Epi-endogeic
Amynthas spp.
Endogeic
Aporrectodea calignosa
Aporrectodea rosea
Octolasion cyaneum
Octolasion tyrtaeum
Endo-anecic
Aporrectodea longa
Epi-anecic
Lumbricus terrestris
Basic Ecological Groups
Dendrobaena octaedra
Dendrodrilus rubidus
Eisenia fetida
Epigeic
Lumbricus rubellus adults
Lumbricus juveniles
Amynthas spp.
Aporrectodea calignosa
Aporrectodea rosea
Endogeic Octolasion cyaneum
Octolasion tyrtaeum
Aporrectodea longa
Anecic
Lumbricus terrestris adults
3.1.3 Invertebrate Community Quantification
Leaf litter collection was performed just prior to earthworm extraction. All litter
found within the ⅓ meter PVC frame was collected down to bare ground and placed in a
large Ziploc bag. Litter was collected from only one of the intensive modules at each
31
plot, typically the lowest numbered module (02). Sample bags were labeled on their
exteriors or with a label placed inside the bag.
The total wet weight of the sample was recorded. A portion of each sample was
sub-sampled, weighed, and placed in a Berlese extractor until the litter was completely
dry, but always for a minimum of 36 hours. Specimens were stored in 95% ethanol.
Dried litter was promptly reweighed to determine percent moisture and dry mass of each
sample.
Invertebrates were counted and identified using a dissecting microscope and
identification guides. Specimens were classified to the most specific taxonomic level
possible, typically family or order. Data collected included abundance (m-2), species
richness (S), Shannon-Weiner Diversity Index (H'), and evenness (E):
In previous studies, microarthropods, particularly the taxa of Acari and
Collembola, were most heavily influenced by earthworm activity (Eisenhauer, 2010;
Cameron et al. 2013; González et al. 2003) I therefore calculated species richness and
diversity indices (Figure 9) where specimens were grouped at the taxonomic level of
Order to pool the significance of potential effects. I also determined diversity using
morphospecies without grouping taxa, but values did not differ significantly from those
shown in Figure 9.
Finally, I tested abundance (m-2) against both dry litter mass (g/m2) and Evenness
using Pearson correlation. Since litter mass may depend upon the intensity of earthworm
32
foraging, only plots (N=49) containing both earthworms and litter were included in the
correlations. Plots 1011, 1045, 1063, 1064, and AT02 contained earthworms but no
litter, whereas plots 1009, 1014, 1038, 1053, 1074, 1136, 1376, 3484, and 3737 contained
litter but no earthworms.
3.1.4 Statistical Analyses
Microsoft Excel 2007, version 12.0.4518.1014, was used to calculate all ordinary
least squares regressions and t-tests. Systat MYSTAT 12 for Windows, version 12.02.00,
was used for all Pearson correlations.
The data for all correlations, regressions, or t-tests were transformed as follows,
unless otherwise specified. All proportions and percentages were arcsine square root
transformed to stabilize the variance with respect to the mean; for statistical tests, FQAI
was divided by 100 and treated as a percentage. Logarithmic functions such as pH were
not transformed. All other quantities such as mass, length and abundance were natural
log transformed to establish log-normal distributions.
3.1.4.1 Earthworm – Plant Interactions
Both abundance (m-2) and biomass (AFDM mg/m2) for all earthworm genera
(Aporrectodea, Dendrobaena, Dendrodrilus, Eisenia, Lumbricus, Octolasion, and
Amynthas) were tested against plant community metrics (FQAI, Sensitive Plants,
Tolerant Plants, and Bare Ground) using Pearson correlations. In a similar manner,
earthworm biomass by ecological group (Epigeic, Endogeic, and Anecic) was tested
against the same plant community metrics.
33
3.1.4.2 Earthworm – Invertebrate – Litter Interactions
Analysis of these interactions includes a number of permutations. First,
abundance (m-2) and biomass (AFDM mg/m2) for all previously listed earthworm genera
were set against aggregated invertebrate community metrics (Abundance and Evenness)
using Pearson correlations. I chose not to include diversity (H') in the analysis since
Evenness provides better insight into the equitability of resource use within the
invertebrate community and a degraded community is likely to display more unevenness
than one that is intact. Dry litter mass (g/m2) was then compared against earthworm
abundance and biomass by genus as well as earthworm biomass by ecological group, as
previously listed.
Finally, the top five most numerous invertebrate orders in the dataset (Acari,
Arachnida, Coleoptera, Collembola, Hymenoptera) were tested, by abundance, against
both the abundance and biomass of earthworms that were grouped by genus, using
Pearson correlations. In the same way, the above invertebrate orders were also tested
against earthworm biomass, sorted by ecological group.
3.1.4.3 Earthworm – Earthworm Interactions
All genera of earthworms, as listed above, were tested for interactions with one
another, first by abundance and then by biomass, using Pearson correlations. This testing
was repeated with earthworms sorted by ecological group but only for biomass.
Earthworm abundances by genus were compared between plots containing
Amynthas (N=12) and those containing other earthworms (N=42), using a t-test assuming
34
unequal variances. A similar set of comparisons was performed for plots containing
Dendrobaena (N=12) and those containing other earthworms (N=42).
The final analysis for this section examined Abundance vs. Biomass at plots
containing Amynthas and those containing other earthworms, using ordinary least squares
regressions, where trendlines and R2 values were determined.
3.1.4.4 Earthworm – Soil Interactions
Earthworm abundance and biomass by both genus and ecological group were
tested against all soil parameters (total carbon, total nitrogen, organic matter, phosphorus
Bray-P1, phosphorus Bray-P2, potassium, calcium, magnesium, and pH), using Pearson
correlations.
Plots were also sorted by those containing earthworms (N=54) and those without
(N=9); all soil parameters were then compared using a t-test assuming unequal variances.
The same testing was also performed for plots containing Amynthas (N=12) and those
containing other earthworms (N=42). In an additional grouping, plots containing
Dendrobaena (N=12) were compared with respect to pH, to those containing other
earthworms (N=42) and using the same t-test assumptions.
Finally, soil magnesium (ppm) vs. soil pH was examined for plots containing
earthworms and those without, using ordinary least squares regressions, where trendlines
and their R2 values were determined.
35
3.2 Results
The following sections present data that characterize plant, invertebrate, and
earthworm communities as well as dry litter mass and soil composition. Subsequently,
these data are analyzed for significant relationships.
36
3.2.1 Plant Communities
Figure 8 illustrates the ranges of the habitat characteristics that were determined at
the sample plots. Note that for earthworm – plant community interactions, only those
plots (N=54) providing earthworm data were tested.
100
90
Plant Community Characteristics (%)
80
70
60
50
40
30
20
10
0
FQAI
Sensitive
Tolerant
Bare Ground
Figure 8. Plant Community Characteristics. The above selected plant characteristics represent the
spread of values across all plots (N=63). The following four plant community characteristics were reported
for each plot: FQAI (Floristic Quality Assessment Index), Sensitive Plant Coverage (%), Tolerant Plant
Coverage (%), and Bare Ground Coverage (%).
37
3.2.2 Invertebrate Communities
Of the 63 study plots visited, 58 were successfully sampled for leaf litter and
subsequently produced invertebrate data. Figure 9 presents the ranges of abundance and
diversity calculations across the study plots. All plots that produced usable litter also
2,000
2.5
8.0
45%
7.0
40%
16
2.0
1.0
4.0
500
12
25%
20%
15%
0.5
1.0
0
30%
10
8
6
3.0
2.0
0.0
14
5.0
Evenness
1.5
Maximum Diversity (Hmax)
Shannon Diversity (H')
1,500
1,000
Invertebrate Abundance (m-2)
6.0
N=58
35%
Number of Plots
2,500
yielded invertebrate specimens.
0.0
10%
5%
0%
4
2
0
1 3 5 7 9 11
Species Richness
Figure 9. Invertebrate Community Characteristics. Invertebrate Abundance, Shannon-Weiner
Diversity Index, Maximum Diversity, Evenness, and Species Richness are based upon specimens grouped
at the taxonomic level of Order. The above measures represent the spread of values across plots (N=58)
tested for earthworm-invertebrate interactions. The Species Richness bar graph illustrates the frequency of
richness across the tested plots.
38
Five of the plots (1011, 1045, 1063, 1064, and AT02) did not produce
invertebrate data. At four plots, the sample site was already bare, so litter was not
available for collection. The remaining plot did produce litter; however, the sampling
bag was not identifiable due to inadequate labeling measures, so it is not known from
which of the five it came.
3.2.3 Earthworm Communities
Earthworms were collected from 55 of the 63 plots sampled; no earthworms were
found at plots 1009, 1014, 1038, 1053, 1136, 1376, 3484, and 3737. Although plot 1074
was counted as having yielded earthworms, it produced a single specimen fragment and
therefore, no usable data.
Of the 922 individuals collected, 906 were complete, usable earthworm
specimens. The average abundance per plot was 38/m2 with a maximum of 164/m2 (Fig.
10). Note the substantial range of variation across the dataset, where 17% of the plots
(N=9) accounted for 62% of the total AFDM, whereas 19% of the plots (N=10)
accounted for 57% of the total abundance.
Seven genera of earthworms were collected. Lumbricus was the most numerous
and also had the greatest biomass. Aporrectodea and Amynthas were the next most
numerous, respectively. Although Aporrectodea was substantially more abundant than
Amynthas, Amynthas had a slightly greater biomass, indicating that Amynthas was
generally a larger genus of earthworm (Table VI: a1, a2).
39
20%
18%
16%
Contribution of Each Plot
14%
12%
10%
8%
6%
4%
2%
1006
1033
1047
1048
1071
1004
1026
1030
1070
1031
3596
1019
1028
1045
1072M
1012
1013
1051
1054
3420
1018
1017
1060
1002
1005
1021
1388
1022
1008
1039
AT02
1003
1024
1035
AT01
1068
1029
1050
1064
1015
1010
1044
1025M
1040
1011
1041
1034
1058
1016
1055
3668
1067
1063
1083
0%
Plots Sorted by Increasing Abundance
Abundance
AFDM
Figure 10. Relative Earthworm Abundance and Biomass by Plot ID. Abundance (individuals/m2) and
Biomass (AFDM mg/m2) were determined for each plot. Blue bars represent the percent contribution of
earthworm abundance with respect to all plots containing earthworms. Red bars represent the percent
contribution of earthworm biomass with respect to all plots containing earthworms. For example, if all red
bars were stacked together, it would equal 100% of estimated earthworm biomass over all plots containing
earthworms.
40
Table VI: Earthworms of the Cleveland Metroparks.
57.4
22.2
9.3
1.9
70.4
44.4
22.2
AFDM
(mg)
31
12
5
1
38
24
12
54
AFDM
(mg)
346 38.2
33
3.6
14
1.5
1
0.1
380 41.9
50
5.5
82
9.1
906 100.0
%
Total Biomass
Length
(mm)
%
Average
Wet Wt.
(mg)
Presence
In Plots
Count
Genus
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
All Genera
Specimen
Count
a1) Specimen Summary by Genus. Values are in terms of the plots where each genus was found.
―Presence in Plots‖ indicates the number of plots where a given genus was found. The corresponding
percentages do not equal 100% since occurrences of genera among plots are rarely mutually exclusive; the
appearance of one or more different genus at any single plot is a common event.
%
145.5
23.1
98.7
273.5
239.2
170.8
887.5
262.6
29.3
14.8
16.6
15.4
31.0
27.4
62.6
28.2
19.6
4.2
5.6
6.2
38.9
19.4
87.2
25.9
6790.7
137.2
78.7
6.2
14766.1
969.5
7148.1
29896.5
22.7
0.5
0.3
0.0
49.4
3.2
23.9
100.0
a2) Abundance and Biomass (m-2) by Genus. This is a continuation of the above table (a1).
41
Max
7.0 1.9 1.1 22.5
36.9 19.0 1.1 235.5
6.3 2.5 2.3 13.5
35.4 15.4 5.4
92.0
2.3 n/a 2.3
2.3
13.9 n/a 13.9
13.9
22.0 3.3 2.3 78.8 899.5 206.8 2.9 5943.6
4.5 0.7 2.3 15.8
90.1 22.4 0.8 440.3
15.4 3.7 2.3 42.8 1341.9 480.8 78.9 6215.5
38.0 5.7 2.3 164.3 1265.1 244.1 1.1 7606.1
491.4 176.1
Min
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
All Genera
S.E.
5.8
2.3 110.3
Mean
25.9
Max
Aporrectodea
Genus
Min
S.E.
Biomass (AFDM mg/m2)
Mean
Abundance (m-2)
3.0 3969.6
Table VI: Earthworms of the Cleveland Metroparks (continued).
5
1
1
11
5
1
17
8
2
12
12
46
10.9
2.2
2.2
23.9
10.9
2.2
37.0
17.4
4.3
26.1
26.1
524.1
444.8
133.1
23.1
46.7
43.2
333.2
2010.0
140.0
321.0
895.2
446.8
59.7
63.1
31.8
14.8
16.6
15.4
39.6
99.0
32.5
39.6
62.6
43.2
66.5 2127.5 11.9
71.8
71.8
0.4
16.2
16.2
0.1
4.2
137.2
0.8
5.6
78.7
0.4
6.2
6.2
0.0
47.2 1321.3
7.4
324.5 6166.2 34.6
19.8
39.6
0.2
38.1
723.2
4.1
87.2 7148.1 40.1
62.5 17836.0 100.0
AFDM
(mg)
AFDM
(mg)
32 13.8
1
0.4
1
0.4
33 14.2
14
6.0
1
0.4
28 12.1
19
8.2
2
0.9
19
8.2
82 35.3
232 100.0
%
Total Biomass
Length
(mm)
%
Average
Wet Wt.
(mg)
Count
Genus
A. calignosa
A. longa
A. rosea
D. octaedra
D. rubidus
E. fetida
L. rubellus
L. terrestris
O.cyaneum
O. tyrtaeum
Amynthas spp.
All Adults
Individual
Presence
in Plots
Count
b1) Specimen Summary of Adults by Species. Values are in terms of the plots where each adult was
found. ―Presence in Plots‖ indicates the number of plots where a given species was found. The
corresponding percentages do not equal 100% since occurrences of species among plots are rarely mutually
exclusive; the appearance of one or more different species at any single plot is a common event.
%
b2) Abundance and Biomass (m-2) of Adults by Species. This is a continuation of the above table (b1).
Max
Min
2.3
2.3
2.3
1.1
2.3
2.3
2.3
2.3
2.3
2.3
2.3
0.0
S.E.
5.5
0.0
0.0
1.4
2.5
0.0
0.7
1.6
0.0
0.6
3.7
1.5
Biomass (AFDM mg/m2)
Mean
Min
13.7
2.3
2.3
5.0
6.3
2.3
3.6
5.6
2.3
3.6
15.4
9.1
Max
S.E.
Genus
A. calignosa
A. longa
A. rosea
D. octaedra
D. rubidus
E. fetida
L. rubellus
L. terrestris
O.cyaneum
O. tyrtaeum
Amynthas spp.
All Adults
Mean
Abundance (m-2)
31.5 923.2 395.8 171.0 2380.3
2.3 161.6
0.0 161.6 161.6
2.3
36.3
0.0 36.3
36.3
13.5
31.0 17.3
1.1 200.8
13.5
35.4 15.4
5.4
92.0
2.3
13.9 0.0
13.9
13.9
13.5 172.1 31.5 16.2 504.2
15.8 1818.8 525.6 406.6 4941.9
2.3
44.5
4.0 40.5
48.5
9.0 137.3 36.8 42.8 440.3
42.8 1341.9 480.8 78.9 6215.5
45.0 884.0 179.0
1.1 6215.5
42
Table VI: Earthworms of the Cleveland Metroparks (continued).
Total Biomass
%
AFDM
(mg)
Genus
Adults
Juveniles
All
Individual
Count
c) Specimen Summary for Adults vs. Juveniles.
%
223
683
906
24.6
75.4
100.0
17805.8
12090.6
29896.4
59.6
40.4
100.0
d1) Specimen Summary by Effective Ecological Group. Values are in terms of the plots where each
ecological group was found. ―Presence in Plots‖ indicates the number of plots where a given group was
found. The corresponding percentages do not equal 100% since occurrences of different ecological groups
among plots are rarely mutually exclusive; the appearance of one or more different group at any single plot
is a common event. Note that the ―Epigeic‖ ecological group includes all juvenile Lumbricus specimens.
491
396
19
906
54.2
43.7
2.1
100.0
50
37
8
54
Total Biomass
%
92.6
68.5
14.8
AFDM
(mg)
%
Count
Genus
Epigeic
Endogeic
Anecic
All
Presence
in Plots
Count
Individual
%
15970.1
7760.2
6166.2
29896.5
53.4
26.0
20.6
100.0
d2) Biomass and Abundance (m-2) by Effective Ecological Group. This is a continuation of the above
table (d1).
Max
Min
S.E.
Mean
2.6
5.2
1.6
5.7
Biomass (AFDM mg/m2)
Max
21.9
24.6
5.6
38.0
Min
S.E.
Genus
Epigeic
Endogeic
Anecic
All
Mean
Abundance (m-2)
2.3 74.3 727.4 134.8
1.1 6215.5
2.3 110.3 470.1 150.3
3.0 3969.6
2.3 15.8 1818.8 525.6 406.6 4941.9
2.3 164.3 1265.1 244.1
1.1 7606.1
43
Adults comprised only one quarter of the total number of individuals, yet they
accounted for 60% of total biomass (Table VI: c). When only adult, sexually mature
individuals were considered, Amynthas was far more abundant than any other genus and
had the greatest total biomass, although it was nearly equaled by the biomass of
Lumbricus (Table VI: b2).
At any given study plot yielding earthworms, an average of 2 genera were found,
although some plots contained as many as 5. Across all plots, 7 genera representing 11
species were found (Appendix G1; Appendix G2). Twenty-two percent of the plots with
earthworms contained between 1 and 19 individuals of Amynthas (Table VI: a1).
44
3.2.4 Soil Chemistry
Soil chemistry data were grouped by plot, according to the presence or absence of
350
3500
8
30
300
3000
7
25
250
2500
15
10
200
150
5
2000
1500
3
1000
2
5
50
500
1
0
0
0
0
16
Phosphorus, Bray-P2
(ppm)
16
12
12
8
4
Earthworms
No Earthworms
8
4
0
0
12
0.50
35
0.45
10
6
4
2
0
0.35
0.30
0.25
0.20
0.15
Organic Matter (%)
8
30
0.40
Total Nitrogen (%)
Total Carbon (%)
4
100
20
Phosphorus, Bray-P1 (ppm)
6
Soil pH
20
Calcium (ppm)
35
Magnesium (ppm)
Potassium (ppm)
earthworms. The spread of values are summarized below (Fig. 11).
0.10
25
20
15
10
5
0.05
0.00
0
Figure 11. Soil Chemistry Data. The above figures summarize the observed spread of values for soil
parameters that will be tested for earthworm interactions. Green dashes correspond to plots with
earthworms; red dashes refer to plots without earthworms.
45
3.2.5 Earthworm – Plant Interactions
Earthworm - Plant analysis included 58 plots. Appendix I contains all
correlations, but significant interactions are presented in Figure 12.
Figure 12. Significant Earthworm-Plant Interactions. Interactions between earthworm communities
and plant communities were examined as follows. Earthworms were organized both by genus and
ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against 4
descriptive plant community metrics: FQAI (Floristic Quality Assessment Index), Sensitive Plant Coverage
(%), Tolerant Plant Coverage (%), and Bare Ground Coverage (%). This figure presents only those
relationships that were significant.
As Aporrectodea abundance and biomass increased, FQAI and sensitive plant
coverage decreased, whereas tolerant plant coverage increased. Meanwhile, FQAI fell as
both Lumbricus and epigeic biomasses increased. Additionally, Octolasion abundance
increased with bare ground coverage.
46
3.2.6 Earthworm – Invertebrate Interactions
Earthworm - Invertebrate analysis included 58 plots. Of the total 63, five plots
produced no invertebrate data (1011, 1045, 1063, 1064, and AT02) and were excluded
from the analysis. Nine plots that yielded invertebrates but no earthworms (1009, 1014,
1038, 1053, 1074, 1136, 1376, 3484, and 3732) were included in the analysis so that a
comparison between invertebrate communities based upon the presence or absence of
earthworms might be made.
Figure 13. Significant Earthworm-Invertebrate Interactions. Interactions between earthworm
communities and invertebrate communities were examined as follows. Earthworms were organized both
by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson
correlations, against against 2 aggregate measures of the total invertebrate community metrics: Abundance
and Evenness. Invertebrate abundance was also examined using the top 5 most abundant Orders: Acari,
Arachnida, Coleoptera, Collembola, and Hymenoptera). This figure presents only those relationships that
were significant.
Significant interactions are summarized in Figure 13; see Appendix J for all
earthworm-invertebrate correlations. As invertebrate evenness increased earthworm
biomass increased. Collembola abundance increased with greater biomasses of Amynthas
and anecic earthworms. Hymenoptera abundance also increased with abundance of
47
Dendrodrilus. Finally, Coleoptera abundance increased with greater biomasses of
Lumbricus and endogeic earthworms.
3.2.7 Litter – Invertebrate/Earthworm Interactions
Significant interactions are summarized in Figure 14; see Appendix J for all litterinvertebrate/earthworm correlations. As expected, invertebrate abundance increased with
dry litter mass and there was a weak relationship between increasing total earthworm
biomass and decreasing litter mass (r=-0.17, P=0.19) but it was not strong enough to be
significant. Additionally, when invertebrate abundance was tested against either
abundance or biomass of earthworms, no relationship was found.
Figure 14. Significant Litter-Invertebrate/Earthworm Interactions. Litter mass and both earthworm
and invertebrate communities were examined as follows. Earthworms were organized both by genus and
ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against
against Dry Litter Mass. Invertebrate abundance was also tested against dry litter mass, using Pearson
correlation. This figure presents only those relationships that were significant.
Finally, dry litter mass produced several modest negative correlations for
individual genera through biomass for Amynthas, Octolasion, and Anecics and through
abundance for Dendrobaena.
48
3.2.8 Earthworm – Earthworm Interactions
Significant interactions are discussed below; see Appendix K for all earthwormearthworm correlations. Abundances and biomasses for the genera of Aporrectodea,
Lumbricus, and Octolasion correlated with one another indicating that they tended to
appear together (Fig. 15).
Negative correlations were found for abundance and biomass between Amynthas
and both Lumbricus (r=-0.47, P<0.001; r=-0.56, P<0.001) and Octolasion (r=-0.37,
P=0.01; r=-0.41, P=0.002); this demonstrated that whenever Amynthas was found,
Lumbricus and Octolasion were likely to be less abundant and therefore, presented a
correspondingly lower biomass.
Figure 15. Correlations between Aporrectodea, Lumbricus, and Octolasion. The left-hand figure
illustrates the positive association that these 3 genera have with one another with respect to abundance; the
right-hand figure illustrates a similar relationship with respect to biomass. The Pearson correlations are
shown above the corresponding relationship arrows.
49
Earthworm Abundance (m-2)
25.0
20.0
Lumbricus spp.
P<0.001
Aporrectodea spp.
15.0
P=0.055
Octolasion spp.
P<0.001
10.0
Dendrobaena Octaedra
P=0.002
05.0
Dendrodrilus rubidus
P=0.451
Eisenia fetida
00.0
without Amynthas
with Amynthas
Figure 16. Earthworm Abundance by Genus for Plots with and without Amynthas. A p-value was
determined for each genus using the abundance at plots with Amynthas against those without, using a twotailed t-test and assuming unequal variances. Note that Eisenia fetida was insufficiently represented to
perform a t-test.
10
9
ln(AFDM)
(mg/m2)
8
7
6
5
4
3
2
1
0
0
1
2
3
ln(Abundance) (m-2)
Plots without Amynthas
Linear (Plots without Amynthas)
4
5
6
Plots with Amynthas
Linear (Plots with Amynthas)
R² = 0.61
R² = 0.78
Figure 17. Earthworm Biomass for Plots with and without Amynthas. This figure is an ordinary least
squares regression of earthworm abundance vs. biomass (AFDM). The black trendline is based upon those
plots containing earthworms other than Amynthas. The dashed red trendline is based upon plots that
contain Amynthas. The trendlines demonstrate that the total biomass at plots containing Amynthas is
greater than those where it is absent.
50
Analysis by ecological groups revealed that epigeic and endogeic earthworms
tended be found together (r=0.48, P<0.001) whereas anecic and endogeic earthworms
were not (r=-0.64, P<0.001) (Appendix K: c).
The abundances of Lumbricus, Octolasion, Dendrobaena, and Aporrectodea were
significantly higher where Amynthas was not present than those where it was (Fig. 16)
whereas plots containing Amynthas tended to have higher biomasses than those that did
not (Fig. 17).
3.2.9 Earthworm – Soil Interactions
Significant interactions are summarized in Figure 18; see Appendix L for all
earthworm-soil correlations. Several interactions were found; total carbon and nitrogen
decreased with greater endogeic biomass, whereas only total nitrogen decreased with
greater epigeic biomass. Plant available phosphorus decreased as the biomasses of
Lumbricus and endogeic earthworms increased.
As Dendrobaena abundance increased, total carbon and organic matter decreased
whereas pH, calcium, and magnesium decreased (Fig. 18). Plots were grouped in three
different ways. The first grouping was according to whether plots contained
Dendrobaena or other earthworms (Fig. 19). The second grouping was according to
whether plots contained Amynthas or other earthworms. In the final grouping, plots were
divided by whether earthworms were present.
51
Figure 18. Significant Earthworm-Soil Interactions. Interactions between earthworm communities and
soil composition were examined as follows. Earthworms were organized both by genus and ecological
group. Earthworm abundance and biomass were tested, using Pearson correlations, against against 9 soil
parameters: total carbon, total nitrogen, organic matter, phosphorus-P1, phosphorus-P2, potassium,
calcium, magnesium, and pH. This figure presents only those relationships that were significant.
52
8
7
6
Soil pH
5
4
3
2
1
0
Other Earthworms
Dendrobaena
Figure 19. Soil pH at Plots with Dendrobaena and Those with Other Earthworms. This figure
summarizes the spread of pH values between plots containing Dendrobaena (N=12) and those containing
earthworms other than Dendrobaena (N=42).
Magnesium Availability (ppm)
350
300
250
200
150
100
50
0
0
2
4
6
8
pH
Earthworms
No Earthworms
R² = 0.73
R² = 0.63
Figure 20. Regression Lines for pH vs. Mg for Plots with and without Earthworms. This figure is an
ordinary least squares regression of soil pH vs. Magnesium availability. The dashed black trendline
corresponds to plots with earthworms (N=42), whereas the solid black trendline corresponds to plots
without earthworms (N=12). Although both trendlines indicate an increasing availability of magnesium
with pH, there is some evidence that plots containing earthworms have enhanced Mg availability.
53
The pH at plots containing Dendrobaena were significantly different (P<0.001)
from those without (Fig. 19). The only other significant relationship was between plots
with earthworms and those without, with respect to magnesium availability (P=0.01).
Plots yielding earthworms (Mgppm=139) had a 64% higher magnesium availability than
those without (Mgppm=82). Regression lines for the two groups were determined for
magnesium vs. pH to explore whether pH was primarily driving magnesium availability
rather than an earthworm related factor.
54
CHAPTER IV
DISCUSSION
4.1 Hypotheses
HYPOTHESIS 1 (higher abundances and/or biomass of earthworms correspond
to more degraded plant communities) was supported by the data in the following ways:
Aporrectodea was the dominant earthworm influence on plant communities; as its
biomass increased, FQAI and sensitive plant coverage decreased and tolerant plant
coverage increased. Considering that Aporrectodea only constituted a quarter of total
biomass, its effects were disproportionately large making it a particularly potent agent.
FQAI also declined with Lumbricus biomass. Finally, bare ground coverage increased
with greater abundance of Octolasion.
HYPOTHESES 2 & 4 (invertebrate communities are degraded by higher
abundances and/or biomass of non-native earthworms or by Amynthas considered alone)
were not supported by the data, in fact a number of modest beneficial relationships were
found. Litter mass was of interest since many earthworms consume it and invertebrates
rely upon it for food and environment. Invertebrate abundance correlated positively with
litter mass as found in previous studies (Szlavecz et al. 2011; Cameron et al. 2013).
Greater earthworm abundance corresponded with decreased litter mass (Holdsworth et al.
55
2008; Holdsworth et al. 2012) yet this increased abundance did not affect overall
invertebrate abundance. However, greater earthworm abundance appeared to shift the
relative abundances of invertebrate taxa, as was represented by greater Evenness.
Additionally, the abundances of Collembola, Hymenoptera, and Coleoptera were
enhanced by a number of earthworm groups (Fig. 13). This was contrary to what one
might expect since earthworms were consuming the litter that invertebrates apparently
relied upon. A previous study by Straube et al. (2009) found a similar effect, where low
densities of Octolasion tyrtaeum caused increases in microarthropod taxa diversity and
abundance.
Several factors could contribute to these paradoxical circumstances. The first was
that the forests of N.E. Ohio are already ecologically disturbed. According to Williams
(1949), they were once old-growth forests, but nearly all of them were cut down when the
region was settled at the start of the 1800‘s. As these forests re-grew, earthworms, to
some extent, were probably incorporated into the recovering ecosystem. In the new foodweb, earthworms and other soil invertebrates were already co-existing; interactions
between them would likely be muted in contrast to an undisturbed, previously worm-free
forest.
In comparison to other studies, the densities that I found were quite modest, with
a mean of 38 individuals per square meter to a maximum of 164. Previously reported
densities of 100 to 200 were common (Suárez et al. 2006) while density spikes as high as
2000 to 3000 occurred in extreme cases (Suárez et al. 2006; Dymond et al. 1997).
The Intermediate Disturbance Hypothesis basically states that moderate amounts
of upheaval or disruption actually produce beneficial effects because they create new
56
opportunities that might otherwise not be available under equilibrium conditions (Begon
et al. 2006). I believe that is what the data was showing; earthworms were disturbing the
soil and fragmenting the litter but also stimulating microbial production. This enhanced
food resources for those invertebrates that could take advantage of it. If earthworm
densities were greatly elevated this benefit would probably vanish.
The lack of influence by Amynthas is another situation. At the time of sampling,
it was only found in 22% of the plots and constituted 9% of all individuals collected. It is
possible that as a recent arrival, Amynthas was not present in the study plots long enough
or in sufficient numbers to exert a significant and lasting influence.
HYPOTHESIS 3 (higher abundances and/or biomass of Amynthas tend to degrade
plant communities) was not supported by the data. Amynthas did not appear to have any
distinctive influence upon urban/suburban forest ecosystems beyond that of other nonnative earthworms. As mentioned above, Amynthas was a recent arrival to N.E. Ohio,
and its influence could become more notable with the passage of time.
HYPOTHESIS 5 (earthworm activity and soil composition mutually influence
one another) was supported by the data. Carbon, nitrogen, and phosphorus decreased
with increasing biomass of selected earthworm groups (Fig. 18). The likely cause of
these decreases was accelerated nutrient mineralization initiated by consumption of litter
and soil organic matter. Once mineralized, nutrients were easily leached away from
upper soil horizons through normal hydrologic processes. This essentially agreed with a
study by Hale et al. (2005) of an invasion of previously worm-free northern hardwood
forests that revealed consistent decreases in carbon, nitrogen, and organic matter of the O
and A soil horizons.
57
Soil tests measure the portion of nutrients that are likely to become plantavailable; they do not report total quantities present in the soil (Hornbeck et al. 2011).
Although earthworms can increase the leachate fluxes of cations, such as magnesium
through burrowing activity (Robinson et al. 1996), studies have also shown that
earthworms may increase soil pH through casting activities (Bolan & Baskaran 1996;
Sackett et al. 2013). Higher average pH, as found at plots containing earthworms,
contributed to a higher availability of cations yet the data did not provide clear evidence
that pH was the primary mechanism controlling magnesium availability. The regression
lines comparing pH/Mg relationships (Fig. 20) at plots with and without earthworms
suggested a secondary factor, yet there were insufficient worm-free plots in the dataset to
be definitive.
4.2 Octolasion and Succession
A relationship was found between dry litter mass and the abundance of individual genera
of earthworms (Fig. 14). Previous studies have demonstrated relationships between litter
depletion for epigeic and anecic earthworms such as Amynthas and L. terrestris
(Holdsworth et al. 2008; Holdsworth et al. 2012), yet Octolasion was a bit of a puzzle,
since it primarily consumed soil organic matter and not litter.
Earthworm assemblages are often successional (Suárez et al. 2006), where initial
invasions consist of epigeics, closely followed by anecic species; this continues until the
topsoil has been sufficiently enriched and loosened to facilitate an invasion by endogeics,
such as Octolasion. I propose that the higher densities of Octolasion found in litter-
58
depleted areas exerted no direct influence on litter consumption, rather, their presence
was incidental as product of earthworm succession.
Octolasion tyrtaeum is a peregrine species that tolerates a wide range of
environmental conditions (James & Hendrix 2004). Its association with bare ground was
consistent with successional litter depletion, yet Octolasion’s endogeic foraging habit
through and upon fine root systems could also cause understory plant decline, and thus
increase the appearance of bare ground.
The Aporrectodea-Lumbricus-Octolasion earthworm assemblage was commonly
found within the Cleveland Metroparks. This structure was likely to represent a
relatively stable, well-established community since Aporrectodea and Lumbricus
represented the first two groups of a successional invasion (epigeic and anecic) and
Octolasion represented the final group.
4.3 The Dendrobaena Puzzle
Dendrobaena produced some unexpected results; as its abundance increased, soil
carbon, organic matter, and dry litter mass increased whereas pH dropped, along with
magnesium and calcium availability. This was contrary to everything one would expect
since earthworms consume organic materials and decrease in abundance with falling pH
(Tiunov et al. 2006). Declining calcium and magnesium availability could be explained,
since such cations become less available as pH decreases.
A study by Suárez et al. (2006) provides some insight. Dendrobaena is
distinguished as being one of the most frost-resistant and acid-tolerant lumbricids in the
world. Being tiny, epigeic, and parthenogenetic makes it very well adapted to colonizing
59
worm-free or inhospitable soils. In general, earthworm densities begin to drop off once
soil pH falls below 5 (Tiunov et al. 2006). A t-test between plots sorted by Dendrobaena
(Fig. 19) confirmed that soil pH was lower at plots where it was present (P<0.001). The
evidence suggested that Dendrobaena enjoyed a partial release from inter-species
competition because of its tolerance to acidic soil; the reason it was correlated with
higher levels of carbon, organic matter, and leaf litter is because there were just not that
many other earthworms present to consume the litter that also had a comparable pH
tolerance.
4.4 Land Use History and Earthworm Influence
Pristine, minimally disturbed forests differ from urban/suburban forests in a
number of fundamental ways. In a study of previously worm-free boreal forests of
Minnesota, Frelich et al. (2006) found that invasive earthworms caused significant
declines in diversity of herbaceous plants and tree seedlings, contributing to ―forest
decline syndrome‖ where the successional trajectory of the forest is changed.
Although healthy, well-established ecosystems are inherently resilient, they also
contain significant numbers of ecosystem specialists that use resources uniquely and are
therefore successful. Invasive species, often being generalists, are able to overexploit
resources often driving resources to levels lower than can be tolerated by natives
(Crowder & Snyder 2010).
In contrast to the forests study by Frelich et al. (2006), Snyder et al. (2011)
examined the invasion of the non-native earthworm Amynthas agrestis into forests
already occupied by indigenous earthworms. Some moderate decreases in the O horizon
60
were observed, but the greater significance was that the invasion front expanded much
more slowly and inconsistently than expected. Snyder hypothesizes that a form of biotic
resistance in the form of direct competition with a native millipede may be a major factor.
The difference in response between the two forest communities highlights their
inherent sensitivities to a similar disturbance. For Minnesotan forests that have no
ecological equivalent to the earthworm, an earthworm invasion caused great change, yet
in the Smoky Mountains, the effects on forest floor structure and diversity were markedly
less.
Northeastern Ohio forests and Smoky Mountain forests are similar in that they
already have a resident earthworm population; however, they differ in at least two ways.
The Smoky Mountain forests have been exposed to relatively minor ecological
disturbances compared to N.E. Ohio. With few exceptions, the lands of the Cleveland
Metroparks are recovering urban/suburban forests. Additionally, all of the non-native
earthworms identified are highly adaptable, generalists whereas the indigenous
earthworms of the Smokies have been coevolving within their ecosystem for at least tens
of thousands of years.
I found that the Aporrectodea-Lumbricus-Octolasion assemblage appeared to be a
common element among the plots; one study found a correlation between these three
genera and a reduction in both leaf litter mass and seedling count (Corio et al. 2009).
Even though this community is technically non-native, it probably naturalized to
recovering forests and was incorporated into a new level of diversity and interactions that
exclude many of the original specialists leading to a biotic homogenization. Such a
community would support less diversity and encourage the spread of more tolerant
61
natives (Naaf & Wulf 2010) as well as resident non-natives. Subsequent introductions of
the same, or ecologically equivalent species, are more easily assimilated since the
conditions for foraging, burrowing, and reproduction have already been established.
This does not imply that introductions of new earthworm species or
reintroductions of existing species do not cause disturbances in the food web; it is only
that those disturbances are likely to cause less severe perturbations in the relative
equilibrium, since the ecosystem has ―learned‖ how earthworms use their environment
and can respond accordingly. This acquired toughness, however, is paid for through a
lower biodiversity and habitat quality. In contrast, worm-free forests do not benefit from
this learning and therefore, are far more vulnerable to dramatic changes in forest floor
dynamics, understory composition, or even dominant tree species selection over the long
term.
4.5 The Influence of Amynthas
Amynthas abundance displays a strong negative correlation with the abundances
of other non-native earthworms, yet fails to produce a distinctive negative interaction
with either plant or invertebrate communities. One explanation is that its potential
influence is limited, since it must divert some of its energy budget to compete for
resources. Another explanation is that Amynthas will eventually express its influence; it
is just that it is taking longer to become established since many of the prime habitats,
such as those not subject to desiccation or limited food, are already occupied. Due to its
high metabolic rate and necessity to complete its life cycle within one year, Amynthas is
62
more vulnerable to resource limitations and habitat fluctuations than established species
that may live for multiple seasons.
Figure 17 shows that the biomass at sites containing Amynthas have a greater
biomass yet those same sites have reduced abundances of non-Amynthas genera (Fig. 16)
indicating that once Amynthas does become established, it draws more carbon from its
environment than did previous assemblages; this points to a greater potential for
ecological damage by Amynthas once it becomes more deeply established.
Disturbances from a new influence on an ecosystem can be expected to manifest
through the relative success of the organisms that most directly compete for the same
resources, such as other earthworms or millipedes (Snyder et al. 2011). The current
earthworm – earthworm interactions could therefore be precursors to a more significant
Amynthas influence.
4.6 Sampling Methods and Weather Conditions
One of significant challenges with earthworm sampling is the variability of their
distributions, which may skew reported abundances and diversities from actual values.
Abundance represents the average number of individuals for a given area, yet earthworms
can be very patchy and will congregate around areas that offer the best forage and a
stable, hospitable environment.
Physical site characteristics therefore play a fundamental role in extraction
effectiveness. Surfaces that are uncommonly dry, compacted, or matted with roots, may
resist the penetration of a mustard solution to a degree that it is largely unabsorbed and
63
rendered ineffective. For excessively pitched surfaces, much of the solution may flow
outside of the sample area before being fully absorbed.
Earthworm distributions also expand and contract over time, primarily following
changes in soil moisture that are usually driven by weather conditions. For this research,
earthworm collection extended over a period of four weeks. The first two weeks were
very hot and dry, but the final two weeks included a fair amount of rain. One author
notes a dramatic reduction in earthworm numbers during very dry conditions (Snyder et
al. 2008). It is impossible to estimate by how much the average densities varied between
plots sampled during the first half and those sampled during the second, based entirely
upon weather conditions. Ideally, though wholly impractical, all sampling would be
completed in one day to eliminate the variability due to rainfall.
The same difficulty applies to longitudinal studies, where abundance and diversity
can be expected to vary from year to year with respect to rainfall and temperature as well
as successional changes based on litter and soil conditions.
The use of the liquid mustard extraction method is a well-established technique
for earthworm sampling, and in that respect, densities across different studies are
generally applicable, but the lingering question of how comparable it is to other methods
remains. One study by Lawrence et al. (2002) compared the mustard extraction method
to hand sorting and found that, the two are quite comparable and differ only slightly.
Digging and hand sorting tends to underestimate both the smallest earthworms and those
residing below a depth of 25 cm. At present, there appear to be no studies that attempt to
ascertain the relationship between earthworm density estimates and their corresponding
64
true densities. All the above considerations illustrate how collected data is ultimately at
the mercy of when, where, how often, and how thoroughly sampling is performed.
4.7 Future Work
In future work, a more detailed analysis of invertebrate specimens would be
useful so that functional rather than strictly taxonomic divisions could be used for
correlations. Inclusion of a relative measure of co-occurring disturbances, such as
intensity of deer browse and degree of surrounding urban land use, might be helpful to
tease apart overall disturbance into discrete contributing factors. Finally, though very
resource intensive, it would be useful to genetically barcode all the specimens, or at least
the juveniles, so that they could be identified to species. One study presented a
nondestructive technique using excreted coelomic fluid to amplify earthworm DNA for
barcoding (Minamiya et al. 2011). This would permit a greater insight into how both
juveniles and adults of different species interact with their environment.
4.8 Final Thoughts
My research contributed to the existing body of knowledge regarding the
influence of non-native earthworms on forest ecosystems, but was unique since it focused
on urban/suburban forests rather than relatively undisturbed woods.
Causation still remains a complex and vexing problem since ecosystems tend to
be very complex, chaotic, highly non-linear systems that are strongly influenced by
previous conditions. Ecosystems also have many simultaneous disturbances that often
65
co-facilitate one another and may cause runaway conditions through positive feedback
mechanisms.
Earthworms, certain invasive plants, and high deer populations often occur
together and it is not clear how they facilitate one another. It has been hypothesized that
earthworms and exotic plants support one another as co-invaders (Heneghan et al. 2007).
Earthworm-mediated litter breakdown promotes conditions favorable to invasion of
exotic plants such as common buckthorn (Rhamnus cathartica) by increasing soil N
availability above levels required by native plants. A causative relationship between nonnative plants and adjacent soil properties was established in a study by Kourtev et al.
(2003). The soil properties and microbial communities in the rhizosphere of exotic plants
developed very differently from those of native plants grown under greenhouse
conditions starting with identical soils. Exotic plant soils in that study had a
characteristically higher pH and higher availability of nitrates. These elevated nitrates in
turn, may favor increased earthworm densities, thus creating a positive feedback loop to
sustain a co-invasion.
Although earthworms may engage in seed predation and translocation (Forey et
al. 2011) as well seedling herbivory (Eisenhauer et al. 2010) the high densities of the
white-tailed deer (Odocoileus virginianus) are arguably a dominant factor in the
consumption of woody and herbaceous plants and seedlings (Alverson et al. 1988).
Selective deer browse and avoidance of unpalatable, often invasive plants can promote
continued ingress of undesirable plants (Aronson & Handel 2011).
The wide-ranging and wandering behavior of deer through both urban areas and
forest may facilitate jump dispersal of earthworm communities as cocoons are
66
transported by deer hoofs during their movements. Deer pellets cannot be
underestimated as source of earthworm enrichment (Rearick et al. 2011). In fact,
Lumbricus terrestris activity accelerates deer fecal pellet decomposition, where
subsequently released nutrients may then support yet greater earthworm densities
(Karberg & Lilleskov 2009). Meanwhile, high-pH castings resulting from deer foraging,
further raise soil pH which causes nutrients to become more bioavailable, but also creates
a greater risk of being leached away. Earthworm litter consumption also removes the
duff layer that acts as a nursery to seedlings and protects the forest floor food web against
extreme dry or cold events.
All of the above factors are likely to decrease plant diversity and alter soil
chemistry, yet earthworms are not the sole agents of change but only co-facilitators.
Considering the many ecological disturbances that encroach upon urban/suburban forests,
it is rather remarkable that any influences of earthworm activity are detectable.
67
BIBLIOGRAPHY
Addison, J. A., 2009. Distribution and impacts of invasive earthworms in Canadian forest
ecosystems. Biological Invasions, 11:59-79.
Alred, G. J., C. T. Brusaw, W. E. Oliu. 2006. Handbook of Technical Writing. New
York: St. Martin‘s Press. 639 p.
Alverson, W. S., D. M. Waller, S. L. Solheim, 1988. Forests too deer: edge effects in
northern Wisconsin. Conservation Biology, 2:348-358.
Andreas, B. K., J. J. Mack, J. S. McCormac. 2004. Floristic Quality Assessment Index
(FQAI) for vascular plants and mosses for the State of Ohio. Ohio Environmental
Protection Agency, Division of Surface Water, Wetland Ecology Group,
Columbus, OH. 219 p.
Araujo, Y., F. J. Luiz, E. Barros, 2004. Effect of earthworm addition on soil nitrogen
availability, microbial biomass and litter decomposition in mesocosms. Biology
and Fertility of Soils, 39:146-152.
Arguedas, N., 2010. Earthworms in the Cleveland Metroparks (2008-2009): Research
update. Internal Report. Fairview Park, OH: Cleveland Metroparks.
Aronson, M. F. J., S. N. Handel, 2011. Deer and Invasive Plant Species Suppress Forest
Herbaceous Communities and Canopy Tree Regeneration. Natural Areas Journal
31(4):400-407.
Asshoff, R., S. Scheu, N. Eisenhauer, 2010. Different earthworm ecological groups
interactively impact seedling establishment. European Journal of Soil Biology,
46:330-334.
Baker, G. H., G. Brown, K. Butt, J. P. Curry, J. Scullion, 2006. Introduced earthworms in
agricultural and reclaimed land: their ecology and influences on soil properties,
plant production and other soil biota. Published online: 1 September 2006 C211
Springer Science+Business Media B.V.
Baker, G. H. Baker, T.A. Thumlert, L.S. Meisel, P. J. Carter, G.P. Kilpin, 1997.
―Earthworms Downunder‖: A survey of the earthworm fauna of urban and
agricultural soils in Australia. Soil Biology & Biochemistry, 29(3/4):589-597.
Barajas-Guzmán, G., J. Alvarez-Sánchez, 2003. The relationships between litter fauna
and rates of litter decomposition in a tropical rain forest. Applied Soil Ecology,
24:91-100.
68
Begon, M., C. R. Townsend, J. L. Harper, 2006. Ecology: From Individuals to
Ecosystems, 4th edition. Malden: Blackwell Publishing. 738 p.
Belote, R. T., R. H. Jones, 2009. Tree leaf litter composition and nonnative earthworms
influence plant invasion in experimental forest floor mesocosms. Biological
Invasions, 11:1045-1052.
Bernard, M. J., M. A. Neatrour, T. S. McKay, 2009. Influence of Soil Buffering Capacity
on Earthworm Growth, Survival, and Community Composition in the Western
Adirondacks and Central New York. Northeastern Naturalist, 16(2):269-284.
Bhadauria, T., P. S. Ramakrishnan, 1996. Role of earthworms in nitrogen cycling during
the cropping phase of shifting agriculture (Jhum) in north-east India. Biology and
Fertility of Soils, 22:350-354.
Bhat, S., K. Hatfield, J. M. Jacobs, R. Lowrance, R. Williams, 2007. Surface runoff
contribution of nitrogen during storm events in a forested watershed.
Biogeochemistry, 85:253-262.
Blakemore, R. J., 2003. Japanese earthworms (Annelida: Oligochaeta): a review and
checklist of species. Organisms Diversity & Evolution 3, Electronic Supplement,
11:1-43.
Blumenthal, D. M., 2006. Interactions between resource availability and enemy release in
plant invasion. Ecology Letters, 9:887-895.
Bohlen, P. J., P. M. Groffman, T. J. Fahey, M. C. Fisk, E. Sua´rez, D. M. Pelletier, R. T.
Fahey, 2004. Ecosystem Consequences of Exotic Earthworm Invasion of North
Temperate Forests. Ecosystems, 7:1-12.
Bolan, N. S., S. Baskaran, 1996. Characteristics of earthworm casts affecting herbicide
sorption and movement. Biology and Fertility of Soils, 22:367-372.
Borders, B. D., J. C. Pushnik, D. M. Wood, 2006. Comparison of Leaf Litter
Decomposition Rates in Restored and Mature Riparian Forests on the Sacramento
River, California. Restoration Ecology, 14(2):308-315.
Briones, M. J. I., M. E. Barreal, A. C. Harrison, P. P. Gallego, 2011. Earthworms and
nitrogen applications to improve soil health in an intensively cultivated kiwifruit
orchard. Applied Soil Ecology, 49:158-166.
Brown, G. C., 1995. How do earthworms affect microfloral and faunal community
diversity? Plant and Soil, 170:209-231.
Burns, J. H., S. L. Halpern, A. A. Winn, 2007. A test for a cost of opportunism in
invasive species in the Commelinaceae. Biological Invasions, 9:213-225.
69
Burtelow, A. E., P. J. Bohlen, P. M. Groffman, 1998. Influence of exotic Earthworm
Invasion on Soil Organic Matter, Microbial Biomass and Denitrification Potential
in Forest Soils of the North Eastern United States. Applied Soil Ecology, 9:197202.
Burton, M. L., L. J. Samuelson, 2008. Influence of urbanization on riparian forest
diversity and structure in the Georgia Piedmont. Plant Ecology, 195:99–115.
Callaham Jr., M. A., G. González, C. M. Hale, L. Heneghan, S. L. Lachnicht, X. Zou,
2006. Policy and management responses to earthworm invasions in North
America. Biological Invasions, 8:1317-1329.
Callaham Jr., M. A., P. F. Hendrix, R. J. Phillips, J. Cortez, G. Billes, M. B. Bouché,
2003. Occurrence of an exotic earthworm (Amynthas agrestis) in undisturbed
soils of the southern Appalachian Mountains, USA. Pedobiologia, 47:466-470.
Cameron, E. K., E. M. Bayne, 2012. Invasion by a non-native ecosystem engineer alters
distribution of a native predator. Diversity and Distributions, 18:1190-1198.
Cameron, E. K., E. M. Bayne, M. J. Claperton, 2007. Human-facilitated invasion of
exotic earthworms into northern boreal forests. Ecoscience, 14:482-490.
Cameron, E. K., K. M. Knysh, H. C. Proctor, E. M. Bayne, 2013. Influence of two exotic
earthworm species with different foraging strategies on abundance and
composition of boreal microarthropods. Soil Biology & Biochemistry, 57:334340.
Corio, K, A. Wolf, M. Draney, G. Fewless, 2009. Exotic earthworms of great lakes
forests: A search for indicator plant species in maple forests. Forest Ecology and
Management. 258:1059-1066.
Cortez, J., G. Billes, M. B. Bouché, 2000. Effect of climate, soil type and earthworm
activity on nitrogen transfer from a nitrogen-15-labelled decomposing material
under field conditions. Biology and Fertility of Soils, 30:318-327.
Costello, D. M., G. A. Lamberti, 2008. Non-native earthworms in riparian soils increase
nitrogen flux into adjacent aquatic ecosystems. Oecologia, 158:499-510.
Côtè, S. D., T. P. Rooney, J. Tremblay, C. Dussault, D. M. Waller, 2004. Ecological
impacts of deer overabundance. Annual Review of Ecological Systems, 35:113147.
Crowder, D. W., W. E. Snyder, 2010. Eating their way to the top? Mechanisms
underlying the success of invasive insect generalist predators. Biological
Invasions, 12:2857-2876.
70
Dechaine, J., H. Ruan, Y. Sanchez-de Leon, X. Zoua, 2005. Correlation between
earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico.
Pedobiologia, 49:601-607.
Dymond, P., S. Scheu, D. Parkinson, 1997. Density and distribution of Dendrobaena
octaedra (Lumbricidae) in aspen and pine forests in the Canadian Rocky
Mountains (Alberta). Soil Biology & Biochemistry, 29(3/4):265-273.
Edwards, C. A., P. J. Bohlen, 1996. Biology and Ecology of Earthworms. London:
Chapman & Hall, pp. 142–145.
Eisenhauer, N., 2010. The action of an animal ecosystem engineer: Identification of the
main mechanisms of earthworm impacts in soil microarthropods. Pedobiologia,
53:343-352.
Eisenhauer, N., O. Butenschoen, S. Radsick, S. Scheu, 2010. Earthworms as seedling
predators: Importance of seeds and seedlings for earthworm nutrition. Soil
Biology & Biochemistry, 42:1245-1252.
Eisenhauer, N., S. Marhan, S. Scheu, 2008. Assessment of anecic behavior in selected
earthworm species: Effects on wheat seed burial, seedling establishment, wheat
growth and litter incorporation. Applied Soil Ecology, 38:79-82.
Eisenhauer, N., S. Partsch, D. Parkinson, S. Scheu, 2007. Invasion of a deciduous forest
by earthworms: Changes in soil chemistry, microflora, microarthropods and
vegetation. Soil Biology & Biochemistry, 39:1099-1110.
Eisenhauer, N., M. Schuy, O. Butenschoen, S. Scheu, 2009. Direct and indirect effects of
endogeic earthworms on plant seeds. Pedobiologia, 52:151-162.
Eriksen-Hamel, N. S., J. K. Whalen, 2007. Impact of earthworms on soil nutrients and
plant growth in soybean and maize agroecosystems. Agriculture, Ecosystems and
Environment, 120:442-448.
Ernst, G., D. Felten, M. Voland, C. Emmerling, 2009. Impact of ecologically different
earthworm species on soil water characteristics. European Journal of Soil
Biology, 45:207-213.
Eschtruth, A. K., J. J. Battles, 2008. Acceleration of Exotic Plant Invasion in a Forested
Ecosystem by a Generalist Herbivore. Conservation Biology, 23(2):388-399.
Felten, D., C. Emmerling, 2009. Earthworm burrowing behavior in 2D terraria with
single- and multispecies assemblages. Biology and Fertility of Soils, 45:789-797.
71
Ferreira, T., W. Rasband, 2012. ImageJ User Guide – IJ 1.46,
imagej.nih.gov/ij/docs/guide.
Foggo, A., C. M. P. Ozanne, M. R. Speight, C. Hambler, 2001. Edge effects and tropical
forest canopy invertebrates. Plant Ecology. 153:347-359.
Forey, E., S. Barot, T. Decaëns, E. Langlois, K. Laossi, P. Margerie, S. Scheu, N.
Eisenhauer, 2011. Importance of earthworm-seed interactions for the composition
and structure of plant communities: A review. Acta Oecologica, 37:594-603.
Frelich, L. E., C. Hale, S. Scheu, A. Holdsworth, L. Heneghan, P. J. Bohlen, P. B. Reich,
2006. Earthworm invasion into previously earthworm-free temperate and boreal
forests. Biological Invasions, 8:1235-1245.
Frelich, L. E., P. B. Reich, 2010. Will environmental changes reinforce the impact of
global warming on the prairie-forest border of central North America? Frontiers
in Ecology and the Environment, 8(7):371-378.
González, G., T. R. Seastedt, Z. Donato, 2003. Earthworms, arthropods and plant litter
decomposition in aspen (Populus tremuloides) and lodgepole pine (Pinus
contorta) forests in Colorado, USA. Pedobiologia, 47:863-869.
Gordon, R. B., 1969. The natural vegetation of Ohio in pioneer days. Columbus: Ohio
State University. 113 p.
Gotelli, N. J., A. M. Ellison, 2004. A Primer of Ecological Statistics. Sunderland:
Sinauer Associates, Inc. 479 p.
Greiner, H. G., D. M. Costello, S. D. Tiegs, 2010. Allometric estimation of earthworm
ash-free dry mass from diameters and lengths of select megascolecid and
lumbricid species. Pedobiologia, Vol. 53 No. 4 pp. 247-252.
Griffith, B., M. Türke, W. W. Weisser, N. Eisenhauer, 2013. Herbivore behavior in the
anecic earthworm species Lumbricus terrestris L.? European Journal of Soil
Biology, 55:62-65.
Haimi, J., M. Einbork, 1992. Effects of endogeic earthworms on soil processes and plant
growth in coniferous forest soil. Biology and Fertility of Soils, 13:6-10.
Haimi, J., V. Huhta, 1990. Effects of earthworms on decomposition processes in raw
humus forest soil: A microcosm study. Biology and Fertility of Soils, 10:178-183.
Hale, C. M. 2007. Earthworms of the Great Lakes. Duluth: Kollath+Stensaas Publishing.
36 p.
72
Hale, C. M., L. E. Frelich, P. B. Reich, J. Pastor, 2005. Effects of European earthworm
invasion on soil characteristics in northern hardwood forests of Minnesota, USA.
Ecosystems, 8:911-927.
Hale, C. M., P. B. Reich, L. E. Frelich, 2004. Allometric Equations for Estimation of
Ash-free Dry Mass from Length Measurements for Selected European Earthworm
Species (Lumbricidae) in the Western Great Lakes Region. The American
Midland Naturalist, 151:179-185.
Hale, C. M., 2008. Evidence for human-mediated dispersal of exotic earthworms: support
for exploring strategies to limit further spread. Molecular Ecology, 17:1165-1169.
Hausman, C. E., T. L. Robison, 2010. Plant Community Assessment Program (PCAP)
Preliminary Report. Cleveland Metroparks Technical Report 2010/NR-05.
Division of Natural Resources, Cleveland Metroparks, Fairview Park, Ohio.
Hendrix, P. F., 2006. Biological invasions belowground—earthworms as invasive
species. Biological Invasions, 8:1201–1204.
Hendrix, P. F., G. H. Baker, M. A. Callaham Jr., G. A. Damoff, C. Fragoso, G. González,
S. W. James, S. L. Lachnicht, T. Winsome, X. Zou, 2006. Invasion of exotic
earthworms into ecosystems inhabited by native earthworms. Published online: 1
September 2006. C211 Springer Science+Business Media B.V.
Heneghan, L., J. Steffen, K. Fagen, 2007. Interactions of an introduced shrub and
introduced earthworms in an Illinois urban woodland: Impact on leaf litter
decomposition. Pedobiologia, 50:543-551.
Holdsworth, A. R., 2008. Litter decomposition in earthworm-invaded northern hardwood
forests: Role of invasion degree and litter chemistry. Ecoscience, 15(4):536-544.
Holdsworth, A. R., L. E, Frelich, P. B. Reich, 2007. Effects of Earthworm Invasion on
Plant Species Richness in Northern Hardwood Forests. Conservation Biology,
21(4):997-1008.
Holdsworth, A. R., L. E. Frelich, P. B. Reich, 2012. Leaf Litter Disappearance in
Earthworm-Invaded Northern Hardwood Forests: Role of Tree Species and the
Chemistry and Diversity of Litter. Ecosystems, 15:913-926.
Hopfensperger, K. N., G. M. Leighton, 2011. Influence of Invasive Earthworms on
Above and Belowground Vegetation in a Northern Hardwood Forest. The
American Midland Naturalist, 166:53-62.
Hornbeck, D. A., D. M. Sullivan, J. S. Owen, J. M. Hart, 2011. Soil Test Interpretation
Guide (EC1478). Oregon State University Extension Service.
ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/22023/ec1478.pdf.
73
Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A.
Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V.
Kudeyarov, P. Murdoch, Z. Zhao-Liang, 1996. Regional nitrogen budgets and
riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and
human influences. Biogeochemistry, 35:75-139.
Ilieva-Makulec, K., G. Makulec, 2007. Does the activity of the earthworm Aporrectodea
calignosa modify the plant diversity effect on soil nematodes? European Journal
of Soil Biology, 43:S157-S164.
James, S.W., P. F. Hendrix, 2004. Invasion of exotic earthworms into North America and
other regions. In: Edwards, C.A. (Ed.), Earthworm Ecology. , 2nd ed., Boca
Raton: CRC Press, pp. 75–88.
James, S. W., 2004. An illustrated key to the earthworms of the Samoan Archipelago
(Oligochaeta: Glossoscolecidae, Megascolecidae, and Moniligastridae).
Micronesica, 37(1):1-13.
Karberg, N. J., E. A. Lilleskov, 2009. White-tailed deer (Odocoileus virginianus) fecal
pellet decomposition is accelerated by the invasive earthworm Lumbricus
terrestris. Biological Invasions, 11:761-767.
Keane, R. M., M. J. Crawley, 2002. Exotic plant invasions and the enemy release
hypothesis. Trends in Ecology & Evolution, 17(4):164-170.
Kelling, K. A., E. E. Schulte, 2004. A2523 Understanding Plant Nutrients: Soil and
Applied Calcium. University of Wisconsin-Extension,
www.soils.wisc.edu/extension/pubs/A2523.pdf.
Kelling, K. A., E. E. Schulte, 2004. A2524 Understanding Plant Nutrients: Soil and
Applied Magnesium. University of Wisconsin-Extension,
www.soils.wisc.edu/extension/pubs/A2524.pdf.
Klok, C., 2007. Effects of earthworm density on growth, development, and reproduction
in Lumbricus rubellus (Hoffm.) and possible consequences for the intrinsic rate of
population increase. Soil Biology & Biochemistry, 39:2401-2407.
Kourtev, P. S., J. G. Ehrenfeld, M. Häggblom, 2003. Experimental analysis of the effect
of exotic and native plant species on the structure and function of soil microbial
communities. Soil Biology & Biochemistry, 35: 895-905.
Krivtsov, V., A. Garside, A. Brendler, K. Liddell, B. S. Griffiths, H. J. Staines, 2007. A
study of population numbers and ecological interactions of soil and forest floor
microfauna. Animal Ecology, 57(4):467-484.
74
Kwong-Yin, C., J. A. Mead, 2003. Soil acidity limits colonisation by Aporrectodea
trapezoides, an exotic earthworm. Pedobiologia, 47:225-229.
Lawrence, A. P., M. Bowers, 2002. A test of the ‗hot‘ mustard extraction method of
sampling earthworms. Soil Biology & Biochemistry, 34:549-552.
Le Bayon, R., R. Milleret, 2009. Effects of Earthworms on Phosphorus Dynamics- A
Review. Dynamic Soil, Dynamic Plant, 3(Special Issue 2):21-27.
Lecerf, A., M. Dobson, C. K. Dang, E. Chauvet, 2005. Riparian plant species loss alters
trophic dynamics in detritus-based stream ecosystems. Oecologia, 146:432-442.
Li, X., M. C. Fisk, T. J. Fahey, P. J. Bohlen, 2002. Influence of earthworm invasion on
soil microbial biomass and activity in a northern hardwood forest. Soil Biology &
Biochemistry, 34:1929-1937.
Maerz, J. C., V. A. Nuzzo, B. Blossey, 2009. Declines in Woodland Salamander
Abundance Associated with Non-Native Earthworm and Plant Invasions.
Conservation Biology, 23(4):975-981.
Manor, R., O. Cohen, D. Saltz, 2008. Community homogenization and the invasiveness
of commensal species in Mediterranean afforested landscapes. Biological
Invasions, 10:507-515.
Matlack, G. R., 1993. Sociological Edge Effects: Spatial Distribution of Human Impacts
in Suburban Forest Fragments. Environmental Management, 17(6):829-835.
Maraun, M., J. Salamon, K. Schneider, M. Schaefer, S. Scheu, 2003. Oribatid mite and
collembolan diversity, density and community structure in a moder beech forest
(Fagus sylvatica): effects of mechanical perturbations. Soil Biology &
Biochemistry, 35:1387-1394.
McLean, M. A., S. Migge-Kleian, D. Parkinson, 2006. Earthworm invasions of
ecosystems devoid of earthworms: effects on soil microbes. Biological Invasions,
8:1257-1273.
McLean, M.A., D. Parkinson, 2000. Field evidence of the effects of the epigeic
earthworm Dendrobaena octaedra on the microfungal community in pine forest
floor. Soil Biology & Biochemistry, 32:351-360.
Merrill, A.G., T.L. Benning, 2006. Ecosystem type differences in nitrogen process rates
and controls in the riparian zone of a montane landscape. Forest Ecology and
Management, 222:145-161.
75
Migge-Kleian, S., M. A. McLean, J. C. Maerz, L. Heneghan, 2006. The influence of
invasive earthworms on indigenous fauna in ecosystems previously uninhabited
by earthworms. Biological Invasions, 8:1275-1285.
Milcu, A., J. Schumacher, S. Scheu, 2006. Earthworms (Lumbricus terrestris) affect plant
seedling recruitment and microhabitat heterogeneity. Functional Ecology, 20:261268.
Minamiya, Y., K. Ohga, H. Hayakawa, K. Ito, T. Fukuda, 2011. Coelomic fluid: a
noninvasive source of DNA in earthworms. Molecular Ecology Resources,
11:645-649.
Monroy, F., M. Aira, J. Domínguez, 2011. Epigeic earthworms increase soil arthropod
populations during first steps of decomposition of organic matter. Pedobiologia,
54:93-99.
Mudrák, O., K. Uteseny, J. Frouz, 2012. Earthworms drive succession of both plant and
Collembola communities in post-mining sites. Applied Soil Ecology, 62:170-177.
Naaf, T., M. Wulf, 2010. Habitat specialists and generalist drive homogenization and
differentiation of temperate forest plant communities at the regional scale.
Biological Conservation, 143:848-855.
Nuzzo, V A, J C. Maerz, B. Blossey, 2009. Earthworm Invasion As the Driving Force
Behind Plant Invasion and Community Change in Northeastern North American
Forests. Conservation Biology, 23(4):966-974.
Penrose, A. M., S. B. Katz. 2004. Writing in the Sciences: Exploring Conventions of
Scientific Discourse. 2nd ed. United States: Longman. 448 p.
Pižl, V., G. Josens, 1995. Earthworm communities along a gradient of urbanization.
Environmental Pollution, 90(1):7-14.
Poitrowska, K., J. Connolly, J. Finn, A. Black, T. Bolger, 2013. Evenness and plant
species identity affect earthworm diversity and community structure in grassland
soils. Soil Biology & Biochemistry, 57:713-719.
Porco, D., T. Decaens, L. Deharveng, S. W. James, D. Skarzynski, C. Erseus, K. R. Butt,
B. Richard, P. D. N. Hebert, 2012. Biological invasions in soil: DNA barcoding as
a monitoring tool in a multiple taxa survey targeting European earthworms and
springtails in North America. Biological Invasions, DOI:10.1007/s10530-0120338-2.
Presley, M. L., T. C. McElroy, W. J. Diehl, 1996. Soil Moisture and Temperature Interact
to Affect Growth, Survivorship, Fecundity, and fitness in the Earthworm Eisenia
fetida. Comparative Biochemistry and Physiology, 114A(4):319-326.
76
Quackenbush, P. M., R. A. Butler, N. C. Emery, M. A. Jenkins, E. J. Kladiviko, K. D.
Gibson, 2012. Lumbricus terrestris Prefers to Consume Garlic Mustard (Alliaria
petiolata) Seeds. Invasive Plant Management, 5:148-154.
Rasband, W.S., 1997-2012. ImageJ, U. S. National Institutes of Health, Bethesda,
Maryland, USA, http://imagej.nih.gov/ij/.
Rearick, D., L. Kintz, K. L. Burke, T. S. Ransom, 2011. Effects of white-tailed deer on
the native earthworm, Eisenoides carolinensis, in the southern Appalachian
Mountains, USA. Pedobiologia, 54S:S173-S180.
Richardson, D. R., B. A. Snyder, P. F. Hendrix, 2009. Soil Moisture and Temperature:
Tolerances and Optima for a Non-native Earthworm Species, Amynthas agrestis
(Oligochaeta: Opisthopora: Megascolecidae). Southeastern Naturalist, 8(2):325334.
Roberts, M. L., R. E. Bilby, 2009. Urbanization alters litterfall rates and nutrient inputs to
small Puget Lowland streams. Journal of the North American Benthological
Society, 28(4):941-954.
Robinson, C. H., P. Ineson, T. G. Piearce, J. Parrington, 1996. Effects of earthworms on
cation and phosphate mobilisation in limed peat soils under Picea sitchensis.
Forest Ecology and Management, 86:253-258.
Sackett, T. E., S. M. Smith, N. Basiliko, 2013. Indirect and direct effects of exotic
earthworms on soil nutrient and carbon pools in North American temperate
forests. Soil Biology & Biochemistry, 57:459-467.
Schädler, M., R. Brandl, 2005. Do invertebrate decomposers affect the disappearance rate
of litter mixtures? Soil Biology & Biochemistry, 37:329-337.
Scharenbroch, B., 2009. A microcosm study on Lumbricus terrestris and physical,
chemical, and biological properties of designed urban soil. ISA Conference &
Trade Show, Providence, RI. (PDF)
Scheu, S., 1987. The influence of earthworms (Lumbricidae) on the nitrogen dynamics in
the soil litter system of a deciduous forest. Oecologia, 72:197-201.
Scheu, S., 2003. Effects of earthworms on plant growth: patterns and perspectives.
Pedobiologia, 47:846-856.
Schon, N. L., A. D. MacKay, R. A. Gray, M. A. Minor, 2011. Earthworms in New
Zealand sheep- and dairy-grazed pastures with focus on anecic Aporrectodea
longa. Pedobiologia, 54S:S131-S137.
77
Schrader, S., C. Seibel, 2001. Impact of cultivation management in an agroecosystem on
hot spot effects of earthworm middens. European Journal of Soil Biology, 37:309313.
Seidl, D. E., P. Klepsis, 2011. Human Dimensions of Earthworm Invasion in the
Adirondack State Park. Human Ecology, 39:641-655.
Shuster, W. D., L. P. McDonald, D. A. McCartney, R. W. Parmelee, N. S. Studer, B. R.
Stinner, 2002. Nitrogen source and earthworm abundance affected runoff volume
and nutrient loss in a tilled-corn agroecosystem. Biology and Fertility of Soils,
35:320-327.
Snyder, B. A., M. A. Callaham Jr., P. F. Hendrix, 2011. Spatial variability of an invasive
earthworm (Amynthas agrestis) population and potential impacts on soil
characteristics and millipedes in the Great Smoky Mountains National Park, USA.
Biological Invasions, 13:349-358.
Snyder, B. A., M. A. Callaham Jr., C. N. Lowe, P. F. Hendrix, 2013. Earthworm invasion
in North America: Food resource competition affects native millipede survival
and invasive reproduction. Soil Biology & Biochemistry, 57:212-216.
Staaf, H., 1987. Foliage litter turnover and earthworm populations in three beech forests
of contrasting soil and vegetation types. Oecologia, 72:58-64.
Steinberg, D. A., R. V. Pouyat, R. W. Parmelee, P. M. Groffman, 1997. Earthworm
abundance and nitrogen mineralization rates along an urban-rural land use
gradient. Soil Biology & Biochemistry, 29(3/4):427-430.
Stirling, G., B. Wilsey, 2001. Empirical Relationships between Species Richness,
Evenness, and Proportional Diversity. The American Naturalist, 158(3):286-299.
Straube, D., E. A. Johnson, D. Parkinson, S. Scheu, N. Eisenhauer, 2009. Nonlinearity of
effects of invasive ecosystem engineers on abiotic soil properties and soil biota.
Oikos, 118:885-896.
Suárez, E. R., T. J. Fahey, P. M. Groffman, J. B. Yavitt, P. J. Bohlen, 2006. Spatial and
temporal dynamics of exotic earthworm communities along invasion fronts in a
temperate hardwood forest in South-Central New York (USA). Biological
Invasions, 8:553-564.
Subler, S., C. M. Baranski, C. A. Edwards, 1997. Earthworm additions increased shortterm nitrogen availability and leaching in two grain-crop Agroecosystems. Soil
Biology & Biochemistry, 29(3/4):413-421.
78
Suthar, S., 2011. Earthworm density, casting activities and its impact on canopy soil
nutrient profile under different aboveground vegetations. Environmentalist,
31:227-236.
Syers, J. K., J. A. Springett, 1984. Earthworms and soil fertility. Plant and Soil, 76:93104.
Szlavecz, K., M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, C.
Csuzdi, 2011. Ecosystem effects of non-native earthworms in Mid-Atlantic
deciduous forests. Biological Invasions 13:1165-1182.
Szlavecz, K., S. A. Placella, R. V. Pouyat, P. M. Groffman, C. Csuzdi, I. Yesilonis, 2006.
Invasive earthworm species and nitrogen cycling in remnant forest patches.
Applied Soil Ecology, 32:54-62.
Tabacchi, E., L. Lambs, H. Guilloy, A. Planty-Tabacchi, E. Muller, H. Décamps, 2000.
Impacts of riparian vegetation on hydrological processes. Hydrological processes,
14:2959-2976.
Talavera, J. A., 2011. New earthworm records for Macronesia with observations on the
species, ecological characteristics and colonization history. Pedobiologia, 54:301308.
Tiunov, A. V., C. M. Hale, A. R. Holdsworth, T. S. Vsevolodova-Perel, 2006. Invasion
patterns of Lumbricidae into the previously earthworm-free areas of northeastern
Europe and the western Great Lakes region of North America. Earthworm
Ecology. Boca Raton: CRC Press.
Tiunov, A. V., S. Scheu, 2004. Carbon availability controls the growth of detritivores
(Lumbricidae) and their effect on nitrogen mineralization. Oecologia, 138:83-90.
Wan, J. H. C., M. H. Wong, 2004. Effects of earthworm activity and P solubilizing
bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science,
167:209-213.
Whalen, J. K., R. W. Parmelee, D. A. McCartney, J. L. Vanarsdale, 1999. Movement of
N from decomposing earthworm tissue to soil, microbial and plant N pools. Soil
Biology & Biochemistry, 31:487-492.
Willems, J. J. G. M., J. C. Y. Marinissen, J. Blair, 1996. Effects of earthworms on
nitrogen mineralization. Biology and Fertility of Soils, 23:57-63.
Williams, A. B., 1949. The native forests of Cuyahoga County, Ohio. Cleveland:
Cleveland Museum of Natural History. 90 p.
79
Zicsi, A., K. Szlavecz, C. Csuzdi, 2011. Leaf litter acceptance and cast deposition by
peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae).
Pedobiologia, 54S:S145-S152.
80
APPENDIX A
Worm ID
Image ID
(IMG_nnnn.JPG)
Earthworm Allometry: Raw Data
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
1056
1055
1054
1053
1052
1051
1050
1049
1048
1047
1046
1045
1044
1043
1042
1041
1040
1039
1038
1037
1036
1035
1034
1033
1032
1031
1030
1029
1028
1027
1026
1025
1024
1023
1022
1021
1020
1019
1018
1017
1016
1015
1014
1013
Distance (mm)
Length
Mean SD Perim Wet
51.4 0.11 114.3
274
44.2 0.25
99.8
267
35.8 0.19
78.2
150
38.5 0.07
87.8
154
36.6 0.03
82.5
86
45.4 0.23 101.7
266
51.5 0.17 116.7
236
44.9 0.25 101.7
235
50.8 0.19 112.5
225
48.7 0.09 109.9
262
47.7 0.16 106.9
218
43.5 0.07
99.1
262
44.3 0.11
99.8
240
36.4 0.07
83.9
299
55.1 0.24 122.0
438
53.2 0.24 116.9
491
45.4 0.10
99.6
239
59.6 0.05 130.0
482
63.5 0.36 139.3
510
57.6 0.12 129.9
336
58.3 0.21 131.7
518
52.4 0.25 117.3
458
40.7 0.14
91.6
224
55.0 0.09 123.7
489
60.4 0.24 135.1
539
54.4 0.08 128.4
853
59.9 0.19 136.5
482
51.0 0.07 116.3
512
54.0 0.14 121.0
363
59.0 0.24 133.9
397
57.0 0.09 131.0
313
38.1 0.07
94.2
351
28.7 0.16
66.1
96
33.6 0.16
76.0
98
31.9 0.10
73.4
121
25.7 0.07
58.2
60
34.5 0.05
77.0
123
25.6 0.05
57.4
76
27.2 0.04
61.1
50
30.8 0.09
73.2
108
31.1 0.05
72.2
86
27.3 0.10
61.7
65
24.7 0.02
55.4
58
28.7 0.04
62.7
55
Weight (mg)
Dry
41.3
72.2
34.0
27.0
14.8
51.2
52.7
52.6
46.0
54.7
33.7
69.7
52.4
73.2
105.2
105.8
50.1
118.9
114.4
58.6
93.0
98.8
44.1
81.8
99.5
183.0
78.6
122.5
95.0
61.1
71.8
86.5
17.0
20.4
26.6
12.0
37.8
16.6
10.5
29.7
19.2
13.1
11.4
8.1
81
Ash AFDM
8.2
33.1
36.7
35.5
15.7
18.3
3.0
24.0
2.9
11.9
17.3
33.9
22.2
30.5
25.5
27.1
16.0
30.0
23.9
30.8
7.9
25.8
37.2
32.5
21.1
31.3
36.2
37.0
39.2
66.0
32.2
73.6
19.6
30.5
49.9
69.0
34.3
80.1
14.4
44.2
23.1
69.9
40.3
58.5
16.4
27.7
16.7
65.1
20.2
79.3
85.4
97.6
13.1
65.5
63.4
59.1
51.0
44.0
14.5
46.6
37.0
34.8
44.0
42.5
3.5
13.5
4.7
15.7
6.0
20.6
2.6
9.4
22.7
15.1
5.4
11.2
3.4
7.1
10.0
19.7
8.6
10.6
2.3
10.8
1.6
9.8
0.7
7.4
Worm ID
Image ID
(IMG_nnnn.JPG)
Earthworm Allometry: Raw Data
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
1012
1011
1010
1009
1008
1007
1006
1005
1004
1003
1002
1001
1000
0999
0998
0997
0996
0995
0994
0993
0992
0991
0990
0989
0988
0987
0986
0985
0984
0983
0982
0981
0980
0979
0978
0977
0976
0975
0974
0973
0972
0971
0970
0969
0968
0967
0966
Distance (mm)
Length
Mean SD Perim Wet
30.4 0.03
69.1
74
35.2 0.13
79.4
92
32.2 0.10
70.4
108
28.0 0.13
64.7
63
26.4 0.07
60.6
59
26.8 0.02
60.6
47
23.2 0.06
49.8
48
26.7 0.12
59.5
55
25.7 0.07
57.9
62
32.8 0.10
73.6
60
22.7 0.07
52.4
53
25.2 0.05
56.7
68
37.5 0.08
85.1
156
35.3 0.09
80.2
133
23.9 0.09
55.0
56
39.1 0.05
91.9
179
26.1 0.12
61.0
74
49.4 0.10 114.0
224
25.0 0.02
57.3
54
21.1 0.08
49.8
45
23.1 0.07
51.8
53
24.9 0.05
55.8
55
18.3 0.08
40.8
26
23.4 0.03
53.3
48
23.7 0.07
52.0
49
20.6 0.08
45.3
42
17.9 0.03
40.6
28
23.9 0.09
54.1
53
21.9 0.10
49.1
39
19.0 0.03
43.7
36
16.8 0.03
39.6
27
13.3 0.04
31.3
8
13.4 0.04
30.5
9
20.4 0.08
44.7
19
13.8 0.02
30.2
11
15.0 0.02
33.4
16
13.6 0.05
30.3
9
16.2 0.02
35.8
19
89.7 0.05 203.2 1095
72.3 0.12 168.3 1285
66.3 0.06 147.5
809
84.4 0.21 191.5 1253
85.7 0.30 206.8 1089
71.7 0.02 164.3
745
94.8 0.45 221.8 1628
54.2 0.15 126.8
635
64.1 0.30 155.7 1468
Weight (mg)
Dry
16.8
19.5
24.6
11.8
12.1
7.9
8.4
11.9
12.1
10.2
13.3
13.5
35.2
36.7
14.0
48.7
13.4
53.9
12.0
11.4
10.8
11.2
4.5
9.9
11.5
10.7
7.6
11.3
8.7
9.0
5.7
1.7
2.0
3.5
2.6
4.7
2.1
3.8
234.4
426.0
240.8
443.9
312.8
157.3
533.0
135.7
407.8
82
Ash AFDM
8.8
8.0
7.5
12.0
8.9
15.7
2.5
9.3
3.9
8.2
2.3
5.6
0.3
8.1
3.5
8.4
2.3
9.8
2.1
8.1
3.1
10.2
3.4
10.1
13.7
21.5
21.2
15.5
1.6
12.4
26.6
22.1
1.8
11.6
26.4
27.5
4.5
7.5
4.3
7.1
2.0
8.8
3.1
8.1
0.4
4.1
1.7
8.2
3.7
7.8
4.1
6.6
2.5
5.1
3.3
8.0
2.5
6.2
3.0
6.0
1.2
4.5
0.7
1.0
0.9
1.1
1.2
2.3
0.7
1.9
1.8
2.9
0.6
1.5
0.2
3.6
106.9 127.5
285.6 140.4
156.5
84.3
306.8 137.1
195.4 117.4
72.9
84.4
354.3 178.7
52.7
83.0
218.5 189.3
Worm ID
Image ID
(IMG_nnnn.JPG)
Earthworm Allometry: Raw Data
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
0965
0964
0963
0962
0961
0960
0959
0958
0957
0956
0955
0954
0953
0952
0951
0950
0949
0948
0947
0946
0945
0944
0943
0942
0941
0940
0939
0938
0937
0936
0935
0934
0933
0932
0931
0930
0927
0926
0925
0924
0923
0922
0920
0919
0918
0917
0916
Distance (mm)
Weight (mg)
Length
Dry
Ash AFDM
Mean SD Perim Wet
63.8 0.32 150.5
835 245.5 136.2 109.3
59.0 0.10 140.2
652 209.7 129.9
79.8
69.3 0.24 154.4
784 207.1 115.2
91.9
85.0 0.23 194.2 1689 483.3 245.5 237.8
63.1 0.05 148.7
572 135.6 48.8
86.8
85.4 0.18 202.0 1313 368.4 225.9 142.5
60.4 0.06 133.4
590 135.6 50.1
85.5
48.5 0.07 109.8
320
65.3 24.9
40.4
57.1 0.10 128.5
561 154.9 80.9
74.0
59.3 0.05 134.2
747 198.5 104.4
94.1
78.1 0.05 180.6
907 197.9 101.4
96.5
62.0 0.02 144.0
620 198.5 122.7
75.8
65.6 0.03 156.8
565 131.6 65.3
66.3
65.7 0.27 153.4
596 104.2 26.9
77.3
62.1 0.05 147.2
544 102.0 27.7
74.3
64.4 0.10 155.3
781 248.0 161.9
86.1
54.6 0.06 130.0
491 113.9 48.3
65.6
66.0 0.12 149.1
837 187.5 77.2 110.3
83.6 0.13 197.0 1279 196.5 48.1 148.4
72.5 0.04 176.3
630 143.0 65.7
77.3
61.3 0.11 149.2
665 184.8 106.4
78.4
64.7 0.21 152.0
698 180.8 90.8
90.0
66.0 0.08 160.2
710 180.0 90.8
89.2
62.3 0.30 147.0
578 109.7 36.1
73.6
62.8 0.34 151.6
711 185.8 94.4
91.4
98.7 0.47 239.4 1296 264.9 125.0 139.9
69.0 0.25 162.0
502 134.1 77.2
56.9
60.6 0.26 141.9
591 154.1 69.6
84.5
57.1 0.19 132.0
511 102.9 37.0
65.9
62.4 0.12 142.3
576 101.1 29.3
71.8
90.3 0.41 216.3 2061 718.5 434.9 283.6
57.5 0.12 136.0
557 103.6 38.8
64.8
55.5 0.28 130.2
611 166.1 86.0
80.1
66.8 0.29 151.9 1454 458.6 285.3 173.3
95.9 0.12 226.4 1521 552.2 403.2 149.0
60.2 0.23 137.8
677 233.4 156.0
77.4
122.0 0.20 294.6 3093 1005.1 622.8 382.3
96.7 0.38 227.1 2425 789.0 495.3 293.7
108.6 0.05 256.7 2088 761.0 557.4 203.6
109.1 0.27 250.6 2590 993.1 699.7 293.4
124.3 0.16 310.0 3130 970.3 620.9 349.4
99.0 0.31 234.9 1858 595.6 395.1 200.5
145.7 0.05 353.0 3797 1127.4 657.7 469.7
107.1 0.42 248.5 2502 1018.9 760.5 258.4
94.0 0.13 221.8 1654 438.7 247.9 190.8
91.4 0.32 211.7 1588 575.7 421.2 154.5
81.8 0.33 194.6 1354 387.7 226.0 161.7
83
Worm ID
Image ID
(IMG_nnnn.JPG)
Earthworm Allometry: Raw Data
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
0915
0914
0913
0912
0911
0910
0909
0908
0907
0906
0905
0904
0903
0902
0901
0900
0899
0898
0897
0896
0895
0894
Min
Avg
Median
Max
Distance (mm)
Length
Mean SD Perim Wet
103.4 0.08 267.8 2505
99.0 0.27 251.5 2567
102.0 0.10 252.1 2614
77.5 0.35 185.4 1342
81.8 0.27 194.2 1306
105.1 0.17 250.3 1865
133.5 0.28 328.0 3057
104.3 0.12 252.4 2902
73.6 0.30 178.2 1046
82.6 0.17 201.8 1364
111.4 0.39 257.5 2270
137.4 0.22 353.7 3486
74.7 0.24 192.7 1092
92.9 0.45 216.4 1341
76.1 0.23 185.3 1327
119.5 0.60 281.1 2944
117.0 0.10 285.6 2652
90.0 0.34 218.1 1367
86.9 0.24 200.1 1281
111.4 0.69 267.9 3488
143.8 0.02 343.6 3528
123.8 0.39 325.4 3001
13.3
58.8
57.1
145.7
0.02
0.15
0.11
0.69
30.2
137.7
130.1
353.7
Weight (mg)
Dry
569.9
584.1
749.4
369.0
289.2
547.5
953.3
836.9
272.8
331.2
816.2
970.7
326.6
330.7
406.7
965.5
949.7
426.7
415.3
912.8
968.0
842.0
Ash AFDM
301.5 268.4
298.9 285.2
445.0 304.4
204.3 164.7
143.9 145.3
346.6 200.9
631.5 321.8
516.3 320.6
154.8 118.0
170.7 160.5
523.1 293.1
572.3 398.4
207.5 119.1
179.5 151.2
258.1 148.6
639.7 325.8
644.3 305.4
279.2 147.5
271.1 144.2
523.0 389.8
588.3 379.7
473.0 369.0
8
1.7
0.2
799 225.8 131.5
506 103.3 37.1
3797 1127.4 760.5
84
1.0
94.3
66.0
469.7
APPENDIX B
x
x
x
x
x
x
x
x
x
x
24 x
2.3820 -12.4500 0.959
Family
-11.0100
-11.6417
-11.6417
-11.6417
-11.6417
-12.8740
-10.1900
-10.8800
-10.8800
-11.8423
-11.8423
-11.8423
-13.0190
-13.0190
-13.0190
-12.4500
-12.6400
Lumbricidae
x
x
2.0300
2.1734
2.1734
2.1734
2.1734
2.6365
1.7500
2.1200
2.1200
2.3225
2.3225
2.3225
2.6117
2.6117
2.6117
2.3820
2.4700
R2
0.740
0.940
0.940
0.940
0.940
0.840
0.670
0.890
0.890
0.960
0.960
0.960
0.970
0.970
0.970
0.959
0.850
Megascolecdiae
x
x
x
Intercept (b)
x
x
Slope (m)
01
03
04
05
06
09
10
11
13
15
16
17
18
19
20
22
23
Exact fit
Closest fit
Equation ID
Earthworm Allometry: Source Equations
Genus
Genus
Aporrectodea
Aporrectodea
Aporrectodea
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Eisenia
Lumbricus
Lumbricus
Lumbricus
Octolasion
Octolasion
Octolasion
Amynthas
Amynthas
Species
spp
spp
calignosa
longa
rosea
octaedra
rubidus
spp
fetida
spp
rubellus
terrestris
spp
cyaneum
tyrtaeum
spp
hilgendorfi
Amynthas
hilgendorfi/
Schermaier
agrestis
ln(AFDM) = m x ln(Length) + b
85
Source
Greiner
Hale, Reich, Frelich
#3
#3
#3
Hale, Reich, Frelich
Greiner
#13
Greiner
Hale, Reich, Frelich
#15
#15
#20
#20
Hale, Reich, Frelich
#24
Greiner
APPENDIX C
19.0 7.8%
6.60
5.28
4.36 20.0% 34.0%
23.5 -0.4%
8.20
7.15
7.23 12.8% 11.9%
23.0 3.0%
7.80
7.37
6.87
5.5% 12.0%
25.5 0.8%
9.80
8.94
8.78
8.7% 10.4%
25.0 5.3%
8.20
9.53
8.37 -16.3% -2.1%
26.5 7.7% 13.50
11.63
9.62 13.8% 28.7%
30.0 2.6% 19.70
13.76
12.93 30.1% 34.4%
33.0 4.3% 15.10
18.04
16.22 -19.4% -7.4%
34.0 3.4% 12.00
18.92
17.42 -57.7% -45.2%
34.5 5.2% 37.00
20.49
18.04 44.6% 51.3%
42.0 5.2% 31.30
32.72
28.81 -4.5%
7.9%
53.5 2.0% 65.60
53.83
51.28 17.9% 21.8%
53.0 3.8% 66.00
55.06
50.15 16.6% 24.0%
56.0 2.8% 44.20
61.14
57.18 -38.3% -29.4%
57.5 1.4% 69.90
62.93
60.89 10.0% 12.9%
59.0 2.3% 85.50
68.46
64.74 19.9% 24.3%
64.5 2.3% 110.30
84.56
80.06 23.3% 27.4%
66.5 3.6% 56.90
94.01
86.10 -65.2% -51.3%
79.5 2.8% 145.30 141.00 131.74
3.0%
9.3%
79.5 3.8% 160.50 144.30 131.74 10.1% 17.9%
90.0 -0.3% 127.50 175.62 177.03 -37.7% -38.8%
87.5 3.1% 283.60 178.44 165.54 37.1% 41.6%
89.5 3.7% 151.20 190.92 174.69 -26.3% -15.5%
94.5 1.5% 149.00 205.93 198.84 -38.2% -33.5%
94.5 2.3% 293.70 210.05 198.84 28.5% 32.3%
97.5 1.5% 200.50 222.15 214.21 -10.8% -6.8%
102.5 0.9% 268.40 246.39 241.31
8.2% 10.1%
102.0 2.2% 320.60 251.53 238.52 21.5% 25.6%
102.0 2.9% 200.90 256.15 238.52 -27.5% -18.7%
105.5 3.3% 293.40 279.98 258.48
4.6% 11.9%
61.7 3.0% 108.74 104.54 98.62 -0.2%
6.7%
** ln(AFDM) = 2.382*ln(Length) - 12.45
Group Length Ranges (mm)
small
13.3 to
43.5
medium
44.2 to
86.9
large
89.7 to
145.7
Group Size
56
74
30
86
20.0%
12.8%
5.5%
8.7%
16.3%
13.8%
30.1%
19.4%
57.7%
44.6%
4.5%
17.9%
16.6%
38.3%
10.0%
19.9%
23.3%
65.2%
3.0%
10.1%
37.7%
37.1%
26.3%
38.2%
28.5%
10.8%
8.2%
21.5%
27.5%
4.6%
22.6%
Ruler Method
ImageJ Method
Absolute Error
Ruler Method
ImageJ Method
Error
Hand Predicted
ImageJ Predicted
Actual
20.6
23.4
23.7
25.7
26.4
28.7
30.8
34.5
35.2
36.4
44.3
54.6
55.1
57.6
58.3
60.4
66.0
69.0
81.8
82.6
89.7
90.3
92.9
95.9
96.7
99.0
103.4
104.3
105.1
109.1
63.4
Deviation
ImageJ Method
(mm)
001 0987
002 0989
003 0988
004 1004
005 1008
006 1024
007 1017
008 1020
009 1011
010 1043
011 1044
012 0949
013 1042
014 1037
015 1036
016 0959
017 0948
018 0939
019 0911
020 0906
021 0974
022 0935
023 0902
024 0931
025 0926
026 0922
027 0915
028 0908
029 0910
030 0924
Average
Ruler Method
(mm)
Image
(IMG_nnnn.JPG)
S
S
S
S
S
S
S
S
S
S
M
M
M
M
M
M
M
M
M
M
L
L
L
L
L
L
L
L
L
L
Sorted ID
Group
Earthworm Allometry: Ruler Method Subsample Data
Length
AFDM**
34.0%
11.9%
12.0%
10.4%
2.1%
28.7%
34.4%
7.4%
45.2%
51.3%
7.9%
21.8%
24.0%
29.4%
12.9%
24.3%
27.4%
51.3%
9.3%
17.9%
38.8%
41.6%
15.5%
33.5%
32.3%
6.8%
10.1%
25.6%
18.7%
11.9%
23.3%
Site
ID
1002
1003
1004
1005
1006
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1021
1022
1024
1025
1026
1028
1029
1030
1031
1033
1034
Cnt
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
41.206452
41.347586
41.381564
41.256463
41.408758
41.369101
41.221348
41.403332
41.373140
41.565368
41.300936
41.345979
41.381597
41.435316
41.570337
41.212143
41.292114
41.220495
41.468175
41.413740
41.310507
41.403074
41.555195
41.283721
41.450114
41.373743
41.580313
41.210612
Latitude
-81.724179
-81.836767
-81.556337
-81.687648
-81.959078
-81.692580
-81.708681
-81.898016
-81.505242
-81.422232
-81.690296
-81.833202
-81.559910
-81.413602
-81.432606
-81.702571
-81.801251
-81.732038
-81.831905
-81.753365
-81.601642
-81.889362
-81.428632
-81.566183
-81.833389
-81.569409
-81.419725
-81.693375
Longitude
18.5749
25.9307
20.1782
31.3808
24.4263
17.4078
23.0517
22.7330
10.7825
28.0000
22.0625
15.7534
10.3280
16.1889
21.9107
26.9444
19.8248
17.9399
16.9031
21.3172
30.8305
16.0000
23.1925
6.4550
13.3128
32.6059
30.6679
30.8075
FQAI
0.0007
0.0009
0.0016
0.0031
0.0022
0.0115
0.0021
0.0008
0.0000
0.0014
0.0000
0.0012
0.0000
0.0010
0.0014
0.0006
0.0001
0.0029
0.0000
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.3086
0.0195
0.0694
0.0062
0.0146
0.0834
0.0712
0.3399
0.0016
0.0162
0.0013
0.0150
0.0243
0.0182
0.0000
0.2220
0.0000
0.0015
0.0035
0.0000
0.0319
0.0000
0.0000
0.0040
0.0742
0.0160
bryophyte hydrophyte
(%)
(%)
Metroparks Field Study: Plant Community Data
0.1875
0.6376
0.0904
0.2253
0.3520
0.2062
0.2093
0.0664
0.4181
0.0869
0.3238
0.0000
0.0050
0.0205
0.3794
0.2051
0.6392
0.0171
0.2094
0.3436
0.1587
0.1114
0.1501
0.0000
0.1209
0.2876
0.6698
0.1378
0.2231
0.0430
0.4112
0.0577
0.4904
0.4002
0.2254
0.2575
0.4393
0.0511
0.1057
0.3612
0.9794
0.9140
0.1139
0.1003
0.5575
0.2187
0.1511
0.2078
0.1104
0.4103
0.5003
0.3324
0.0136
0.0476
0.0001
0.0815
0.0983
0.0432
0.0909
0.0830
0.0920
0.1172
0.0638
0.3438
0.1200
0.0886
0.2174
0.0769
0.4070
0.0784
0.1758
0.3289
0.2727
0.1769
0.1136
0.0462
0.0927
0.1300
0.1535
0.1200
0.3590
0.1194
0.0328
0.4255
0.0571
0.0291
0.2022
0.0729
0.0829
0.0308
0.0614
0.0674
0.0000
0.0933
0.0314
0.0343
0.0000
0.0000
0.0297
0.0000
0.0403
0.1484
0.0426
0.0639
0.0859
0.0304
0.0798
0.0000
0.0000
0.0372
0.0589
0.0452
0.1484
0.1642
0.1394
0.1761
0.1356
0.2088
0.1664
0.1859
0.2055
0.1596
0.1590
0.0715
0.1721
0.0522
0.1934
0.1909
0.1633
0.1960
0.1534
0.1687
0.1349
0.1660
0.1614
0.3148
0.1654
0.1163
0.1974
0.1009
sensitive tolerant small subcanopy canopy IV
(%)
(%)
tree (%)
IV (%)
(%)
2.953E-03
3.717E-05
2.171E-01
1.630E-03
2.165E-05
7.664E-05
1.492E-01
4.131E-02
1.596E-01
1.086E-04
6.836E-03
7.232E-02
1.437E-03
4.300E-01
6.502E-02
2.932E-02
5.490E-03
1.369E-01
1.102E-03
7.528E-03
4.560E-03
3.994E-01
1.915E-02
9.612E-01
2.267E-03
2.375E-03
2.674E-05
2.126E-02
2.00E-02
1.00E-04
1.50E-02
7.50E-02
0.00E+00
3.03E-01
5.00E-03
1.00E-04
0.00E+00
0.00E+00
5.05E-03
1.50E-02
0.00E+00
0.00E+00
0.00E+00
1.50E-02
1.30E-01
1.50E-02
1.00E-04
1.38E-02
0.00E+00
0.00E+00
9.50E-02
0.00E+00
2.75E-01
2.83E-02
1.00E-04
1.00E-04
adventives
bare
(%)
ground (%)
APPENDIX D
87
Site
ID
1035
1038
1039
1040
1041
1044
1045
1047
1048
1050
1051
1053
1054
1055
1058
1060
1063
1064
1067
1068
1070
1071
1072
1074
1083
1136
1376
1388
Cnt
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
41.330414
41.452999
41.303063
41.572521
41.306299
41.561525
41.298469
41.373166
41.413311
41.419779
41.305680
41.215855
41.419301
41.410823
41.424994
41.423479
41.378448
41.414376
41.344676
41.386987
41.410397
41.312445
41.391773
41.398419
41.299497
41.384695
41.380962
41.380083
Latitude
-81.828890
-81.821247
-81.781649
-81.437336
-81.604534
-81.412848
-81.585528
-81.551583
-81.413345
-81.944948
-81.804343
-81.704497
-81.858643
-81.473119
-81.855146
-81.425297
-81.543503
-81.427328
-81.847214
-81.540837
-81.968463
-81.794015
-81.690991
-81.879049
-81.805737
-81.692377
-81.696831
-81.702194
Longitude
23.7143
20.1305
22.7719
16.0859
27.9203
12.7920
26.7026
31.8041
21.6025
21.7435
17.1957
30.2532
19.6958
12.3393
19.6708
27.6428
4.4000
22.7091
17.0982
32.1516
25.2110
18.0000
13.5978
11.7838
16.2776
17.2993
20.4124
15.5637
FQAI
0.0009
0.0000
0.0005
0.0130
0.0083
0.0000
0.0023
0.0013
0.0017
0.0000
0.0000
0.0008
0.0013
0.0000
0.0000
0.0017
0.0000
0.0020
0.0000
0.0062
0.0073
0.0023
0.0020
0.0000
0.0034
0.0041
0.0000
0.0000
0.0099
0.0041
0.0485
0.0827
0.0372
0.0023
0.0035
0.0026
0.1500
0.0058
0.0052
0.0754
0.0268
0.0000
0.0433
0.2177
0.0000
0.0277
0.3121
0.0110
0.1046
0.0146
0.0428
0.1898
0.0017
0.0000
0.0000
0.0029
bryophyte hydrophyte
(%)
(%)
Metroparks Field Study: Plant Community Data
0.3498
0.7113
0.0666
0.0049
0.3401
0.2274
0.4806
0.5507
0.0882
0.2736
0.6701
0.0907
0.0170
0.0522
0.0499
0.0722
0.0000
0.3144
0.1035
0.6178
0.2047
0.1952
0.0001
0.0380
0.1759
0.3762
0.6921
0.3002
0.3196
0.1137
0.2271
0.6149
0.0877
0.1154
0.1853
0.0480
0.6960
0.0334
0.0000
0.0309
0.0144
0.7990
0.0649
0.1136
0.1600
0.1615
0.5216
0.0757
0.3045
0.0974
0.8023
0.2279
0.3587
0.4397
0.2471
0.3775
0.1942
0.1765
0.0553
0.2941
0.0351
0.1929
0.2000
0.1060
0.1216
0.1115
0.0960
0.2308
0.2197
0.3694
0.2202
0.0655
0.0000
0.0643
0.0385
0.3043
0.0762
0.1492
0.2977
0.1125
0.1213
0.2372
0.0920
0.2339
0.0795
0.0616
0.0804
0.0000
0.0670
0.0302
0.0709
0.0894
0.0920
0.0374
0.0315
0.0577
0.0303
0.0000
0.0984
0.1271
0.0000
0.0534
0.1331
0.0423
0.0837
0.0315
0.0000
0.0000
0.0000
0.0299
0.0574
0.0743
0.1566
0.1848
0.1319
0.1979
0.1361
0.1697
0.1719
0.1801
0.1896
0.1431
0.1773
0.1632
0.1933
0.1974
0.2194
0.1540
0.0000
0.1730
0.1495
0.1358
0.1303
0.1428
0.4392
0.1537
0.1530
0.1808
0.1448
0.1487
sensitive tolerant small subcanopy canopy IV
(%)
(%)
tree (%)
IV (%)
(%)
3.659E-03
0.000E+00
1.482E-01
8.178E-03
1.802E-02
5.926E-02
5.316E-03
1.326E-03
3.233E-02
0.000E+00
0.000E+00
1.325E-02
1.165E-02
5.125E-01
2.439E-03
5.731E-04
1.325E-01
1.318E-05
1.686E-03
6.294E-03
0.000E+00
4.662E-02
2.308E-02
2.531E-02
5.921E-03
2.045E-05
3.504E-05
1.528E-02
2.55E-03
1.10E-01
0.00E+00
1.08E-01
3.10E-02
6.70E-03
5.00E-03
5.00E-03
0.00E+00
1.42E-01
0.00E+00
1.00E-04
1.00E-04
1.00E-04
1.88E-01
5.00E-03
0.00E+00
2.00E-02
5.75E-02
0.00E+00
1.00E-04
0.00E+00
0.00E+00
6.25E-01
4.00E-01
5.00E-03
0.00E+00
3.78E-03
adventives
bare
(%)
ground (%)
D
APPENDIX D
88
3420
3484
3596
3668
3732
AT01
AT02
057
058
059
060
061
062
063
41.378120
41.390583
41.384453
41.379483
41.371981
41.417490
41.416380
Latitude
-81.696407
-81.689232
-81.697726
-81.694029
-81.568829
-81.869020
-81.870900
Longitude
12.9316
20.2943
20.3961
21.3791
19.3276
18.4327
19.7500
FQAI
0.0030
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0129
0.0001
0.0000
0.0102
0.0000
0.0000
0.0000
bryophyte hydrophyte
(%)
(%)
**AT01 & AT02 are also identified as VIBI007 & VIBI008, respectively.
Site
ID
Cnt
Metroparks Field Study: Plant Community Data
0.1125
0.3141
0.4483
0.2805
0.7205
0.7750
0.7222
0.1526
0.5859
0.3600
0.2832
0.2539
0.0191
0.0020
0.1190
0.2564
0.2194
0.1083
0.1481
0.3654
0.0950
0.0000
0.0692
0.0300
0.1284
0.0547
0.0000
0.0000
0.1976
0.1325
0.1303
0.1496
0.1447
0.1898
0.1865
sensitive tolerant small subcanopy canopy IV
(%)
(%)
tree (%)
IV (%)
(%)
2.702E-02
5.105E-05
1.123E-03
2.640E-03
0.000E+00
5.073E-05
0.000E+00
4.50E-02
0.00E+00
9.50E-02
1.00E-02
1.05E-01
0.00E+00
3.83E-03
adventives
bare
(%)
ground (%)
APPENDIX D
89
Cnt
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
Site Total
ID C (%)
1002 2.35
1003 3.02
1004 3.47
1005 3.76
1006 5.75
1008 3.82
1009 2.38
1010 3.66
1011 3.61
1012 5.84
1013 3.32
1014 2.77
1015 2.22
1016 3.22
1017 4.63
1018 5.78
1019 5.27
1021 2.67
1022 3.96
1024 4.06
1025 3.29
1026 2.71
1028 3.69
1029 2.44
1030 5.58
1031 5.34
1033 3.60
1034 2.78
1035 3.28
1038 10.01
1039 3.99
1040 3.85
1041 4.65
Total
N
C/N
(%) Ratio
0.15 15.7
0.18 17.2
0.18 19.4
0.22 17.2
0.29 20.1
0.22 17.4
0.16 15.3
0.22 16.7
0.21 17.2
0.34 17.2
0.17 19.3
0.18 15.1
0.13 17.6
0.15 21.9
0.19 24.5
0.30 19.5
0.30 17.4
0.17 15.4
0.21 18.7
0.21 19.8
0.18 18.3
0.13 21.5
0.19 19.3
0.14 17.8
0.35 15.9
0.31 17.0
0.24 14.9
0.16 16.9
0.15 21.4
0.45 22.2
0.28 14.2
0.24 16.1
0.27 17.4
%
3.8
4.9
4.4
5.3
8.2
5.0
3.3
4.4
5.3
7.0
5.3
3.6
3.2
4.6
6.8
7.4
8.2
4.6
5.9
6.5
5.1
5.2
6.0
3.3
8.6
7.2
5.7
3.3
4.7
9.7
5.6
5.1
6.1
ppm
6
4
9
5
8
2
7
4
6
4
5
6
3
3
3
8
3
5
5
9
2
4
3
2
8
4
6
3
1
3
5
3
3
H
VH
H
VH
VH
VH
M
H
VH
VH
VH
H
M
VH
VH
VH
VH
VH
VH
VH
VH
VH
VH
M
VH
VH
VH
M
VH
VH
VH
VH
VH
VL
VL
L
VL
L
VL
VL
VL
VL
VL
VL
VL
VL
VL
VL
L
VL
VL
VL
L
VL
VL
VL
VL
L
VL
VL
VL
VL
VL
VL
VL
VL
rate
P1
rate
OM
Metroparks Field Study: Soil Chemistry Data
9
5
13
9
9
3
31
14
18
5
7
15
5
13
6
23
7
13
8
19
4
6
4
29
17
16
7
18
2
5
20
5
11
ppm
L
VL
L
L
L
VL
M
L
L
VL
VL
L
VL
L
VL
M
VL
L
L
L
VL
VL
VL
M
L
L
VL
L
VL
VL
M
VL
L
rate
P2
Phosphorus
6
8
ppm
L
L
rate
Bic
96
69
77
75
82
81
93
81
104
103
86
100
65
104
55
91
161
69
106
109
77
61
93
86
164
118
101
113
62
95
113
86
87
ppm
K
M
L
L
L
M
M
L
L
M
M
M
M
L
M
L
L
H
L
M
M
L
L
M
L
M
L
M
M
L
L
M
L
L
rate
149
74
130
208
63
100
248
94
117
94
126
92
82
188
171
168
238
235
215
188
125
92
132
180
285
281
80
235
100
47
307
129
208
ppm
VH
M
M
H
L
H
VH
L
H
M
H
M
M
VH
VH
M
VH
VH
VH
H
H
M
H
VH
VH
VH
M
VH
M
VL
VH
H
VH
rate
Mg
950
392
1250
2003
284
411
1724
682
864
454
784
723
443
1085
734
2491
1206
1645
1369
1804
735
470
936
1519
2755
2809
486
1890
1013
319
1981
666
1878
ppm
Ca
M
L
M
H
VL
L
H
L
M
VL
L
L
L
M
L
VH
M
H
M
H
L
L
M
H
H
H
L
H
M
VL
H
L
H
rate
pH Bindx
5.6
6.7
4.6
6.6
5.7
6.7
6.2
6.8
4.4
6.6
4.7
6.6
7.1
4.5
6.4
5.3
6.7
4.4
6.5
5.1
6.6
4.7
6.5
4.5
6.5
5.9
6.8
5.3
6.7
7.0
5.3
6.6
6.1
6.7
5.6
6.7
6.3
6.8
5.0
6.6
4.7
6.6
5.3
6.7
7.3
6.6
6.8
6.5
6.8
4.6
6.6
7.3
5.4
6.7
3.8
6.2
6.2
6.7
4.8
6.6
6.1
6.7
CEC
(meq/
100)
8.1
6.0
9.5
13.5
5.7
6.3
10.9
10.5
8.1
8.7
8.4
9.3
7.3
8.8
7.6
14.1
12.2
12.1
11.6
12.2
8.3
6.6
8.7
9.3
17.7
18.1
7.3
11.7
8.5
11.0
14.5
8.7
13.1
K
3.0
2.9
2.1
1.4
3.7
3.3
2.2
2.0
3.3
3.0
2.6
2.8
2.3
3.0
1.9
1.7
3.4
1.5
2.3
2.3
2.4
2.4
2.7
2.4
2.4
1.7
3.5
2.5
1.9
2.2
2.0
2.5
1.7
Mg
15.3
10.3
11.4
12.8
9.2
13.2
19.0
7.5
12.0
9.0
12.5
8.2
9.4
17.8
18.8
9.9
16.3
16.2
15.4
12.8
12.6
11.6
12.6
16.1
13.4
12.9
9.1
16.7
9.8
3.6
17.6
12.4
13.2
Ca
58.6
32.7
65.8
74.2
24.9
32.6
78.8
32.5
53.3
26.1
46.7
38.9
30.3
61.6
48.3
88.4
49.4
68.0
59.0
73.9
44.3
35.6
53.8
81.5
77.8
77.6
33.3
80.8
59.6
14.5
68.3
38.3
71.7
90
28.7
79.7
12.1
46.8
13.4
6.4
7.8
54.1
30.9
14.3
23.3
11.0
40.7
50.4
30.9
58.0
31.4
61.9
38.2
50.1
58.0
17.6
31.0
H
23.1
54.1
20.7
11.6
62.2
50.9
Base Saturation
(%)
APPENDIX E
91
rate
VL
VL
VL
VL
VL
VL
VL
VL
VL
L
VL
L
VL
VL
VL
L
VL
VL
VL
VL
VL
VL
L
VL
VL
VL
VL
VL
VL
VL
ppm
4
6
5
4
4
2
2
5
4
8
4
12
5
2
4
8
3
5
7
2
4
3
9
5
4
3
2
4
5
6
P1
5
8
6
7
6
3
11
10
5
29
5
15
6
4
5
10
16
9
9
4
5
11
19
14
6
6
7
6
13
12
ppm
VL
L
VL
VL
VL
VL
L
L
VL
M
VL
L
VL
VL
VL
L
L
L
L
VL
VL
L
L
L
VL
VL
VL
VL
L
L
rate
P2
Phosphorus
ppm
rate
Bic
57
71
65
76
59
99
50
141
57
81
96
72
49
83
65
62
113
73
63
64
69
95
157
135
58
79
120
97
58
106
ppm
K
L
L
L
L
L
M
VL
M
L
L
M
L
VL
M
L
VL
M
M
L
M
L
M
VH
M
L
L
M
M
L
M
rate
** Soil was also tested for sodium; no measurable quantities were detected.
Cnt
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
Site Total
ID C (%)
1044 2.73
1045 2.86
1047 3.89
1048 4.90
1050 3.36
1051 3.78
1053 2.05
1054 5.86
1055 4.94
1058 4.13
1060 6.32
1063 4.19
1064 4.54
1067 3.30
1068 3.29
1070 6.53
1071 4.57
1072 4.74
1074 3.51
1083 2.95
1136 5.67
1376 5.94
1388 4.87
3420 5.01
3484 8.80
3596 7.69
3668 3.72
3732 6.29
AT01 10.93
AT02 4.24
Total
OM
N
C/N
(%) Ratio % rate
0.14 19.9 3.6 H
0.18 16.1 3.9 H
0.21 18.3 5.6 VH
0.26 19.1 5.8 VH
0.14 23.5 5.4 VH
0.23 16.3 6.1 VH
0.10 20.3 2.4 L
0.39 15.1 7.5 VH
0.20 24.9 7.4 VH
0.23 17.7 6.0 VH
0.35 18.3 8.0 VH
0.23 18.5 5.1 VH
0.27 17.0 6.4 VH
0.20 16.2 4.6 VH
0.20 16.6 4.8 VH
0.37 17.7 5.9 VH
0.31 14.8 5.4 VH
0.25 19.0 6.3 VH
0.19 18.1 3.5 M
0.17 17.7 4.1 H
0.22 26.4 8.6 VH
0.20 29.7 7.7 VH
0.26 19.0 8.7 VH
0.28 18.0 5.2 VH
0.31 28.8 10.4 VH
0.29 27.0 9.6 VH
0.20 18.5 5.4 VH
0.27 23.3 8.4 VH
0.46 23.8 15.8 VH
0.25 17.2 5.7 VH
Metroparks Field Study: Soil Chemistry Data
106
119
167
84
44
104
67
222
78
218
97
152
49
82
171
101
197
58
63
42
53
66
83
262
42
52
105
57
49
80
ppm
M
H
H
L
VL
M
L
VH
M
VH
L
VH
VL
M
VH
L
H
L
L
L
L
L
M
VH
L
L
M
L
L
L
rate
Mg
799
1060
1389
568
281
455
1957
2026
569
1884
710
941
373
417
1378
522
1921
306
428
255
215
282
363
2989
210
254
678
301
198
412
ppm
Ca
L
M
H
L
VL
VL
VH
H
L
VH
L
M
VL
L
M
VL
H
VL
VL
VL
VL
VL
VL
VH
VL
VL
L
VL
VL
VL
rate
pH Bindx
4.9
6.6
5.8
6.8
6.2
6.8
4.5
6.5
4.1
6.5
4.5
6.5
7.2
6.4
6.8
4.9
6.6
6.8
4.6
6.5
5.6
6.7
3.7
6.1
4.7
6.6
5.8
6.7
4.0
6.0
5.8
6.7
4.3
6.5
4.4
6.5
4.5
6.7
4.0
6.5
4.2
6.5
4.6
6.6
7.4
4.1
6.5
4.1
6.5
4.8
6.6
4.2
6.5
4.0
6.5
4.2
6.3
CEC
(meq/
100)
8.9
8.0
9.7
8.9
7.4
8.1
10.5
13.5
6.5
11.4
10.0
8.1
13.3
6.0
10.5
15.3
14.2
6.5
7.4
4.3
7.2
7.3
6.3
17.5
5.9
7.4
8.7
7.4
6.5
10.0
K
1.6
2.3
1.7
2.2
2.0
3.1
1.2
2.7
2.2
1.8
2.5
2.3
0.9
3.5
1.6
1.0
2.0
2.9
2.2
3.8
2.5
3.3
6.4
2.0
2.5
2.7
3.5
3.4
2.3
2.7
Mg
9.9
12.4
14.3
7.9
5.0
10.7
5.3
13.7
10.0
15.9
8.1
15.6
3.1
11.4
13.6
5.5
11.6
7.4
7.1
8.1
6.1
7.5
11.0
12.5
5.9
5.9
10.1
6.4
6.3
6.7
Ca
44.9
66.2
71.6
31.9
19.0
28.1
93.5
75.0
43.8
82.3
35.5
58.1
14.0
34.8
65.6
17.1
67.6
23.5
28.9
29.7
14.9
19.3
28.8
85.5
17.8
17.2
39.0
20.3
15.2
20.6
73.8
74.2
47.4
69.9
76.2
70.0
53.9
24.0
82.0
50.3
19.2
76.4
18.8
66.2
61.8
58.4
76.5
69.9
53.8
8.6
44.0
H
43.6
19.1
12.4
58.0
74.0
58.1
Base Saturation
(%)
APPENDIX E
92
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1068
1068
1068
1068
1068
1068
1068
1068
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
4
4
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
02
03
04
05
01
02
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
Site Mod Num Pre
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0022
0023
0024
0025
0026
0027
0028
0029
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Species
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Octolasion spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Genus
Identification
14.397
16.193
16.380
13.563
20.264
18.561
21.133
19.675
17.686
22.525
23.308
42.769
46.685
62.252
11.589
19.275
9.272
10.771
10.031
10.797
4.922
5.552
4.869
8.295
11.327
11.881
9.580
14.279
16.226
16.420
13.576
20.345
18.726
21.210
19.683
17.688
22.569
23.322
42.695
46.684
62.191
11.581
19.401
9.300
10.904
10.079
10.686
4.843
5.604
4.970
8.381
11.255
12.019
9.470
14.461
16.297
16.404
13.593
20.384
18.618
21.214
19.709
17.674
22.327
23.357
42.842
46.914
62.375
11.667
19.370
9.296
10.816
10.117
10.737
4.886
5.530
4.924
8.319
11.343
12.016
9.609
samp 1 samp 2 samp 3
Length (mm)
14.379
16.239
16.401
13.577
20.331
18.635
21.186
19.689
17.683
22.474
23.329
42.769
46.761
62.273
11.612
19.349
9.289
10.830
10.076
10.740
4.884
5.562
4.921
8.332
11.308
11.972
9.553
mean
300
300
300
300
300
300
200
200
300
200
300
100
200
150
400
400
400
400
400
400
600
400
600
600
600
600
600
Img.
Mag.
(%)**
22.4
20.3
20.4
18.7
43.8
35.8
42.4
44.9
29.3
60.6
59.8
292.8
300.1
478.3
11.5
35.6
3.2
6.6
5.7
2.7
0.2
0.5
0.1
0.5
1.8
2.8
3.4
Wet
Wt.
(mg)
**Image Magnification (Img Mag) is the magnification of the image at the time of centerline measurement, where 100% is full size.
The captured image however, is 6 times actual size, therefore a magnification of 200% would be equal to 12 times (2.00 x 6) actual size.
Date
Cnt
Worm ID
Metroparks Field Study: Earthworm Raw Data
5243
5244
5245
5246
5247
5248
5249
5250
5251
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5316
5317
5318
5321
Image ID
APPENDIX F
Date
13-Oct-2010
13-Oct-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
22-Sep-2010
Cnt
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
1068
1068
1039
1039
1039
1039
1039
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
1040
4
4
3
3
3
3
9
2
2
2
2
2
2
2
2
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
03
04
01
02
03
04
01
01
02
03
04
05
06
07
08
01
15
14
13
12
11
10
09
08
07
06
05
04
03
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0030
0031
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
93
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Amynthas spp
Amynthas spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Octolasion spp
Aporrectodea spp
Dendrobaena octaedra
Lumbricus spp
Lumbricus spp
Octolasion cyaneum
Aporrectodea spp
Octolasion spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Octolasion spp
Lumbricus spp
Octolasion spp
Octolasion spp
Aporrectodea spp
Octolasion spp
Aporrectodea spp
Genus
Identification
6.472
4.684
9.762
19.772
26.863
41.570
35.916
10.597
10.594
20.361
15.650
31.664
20.219
37.631
44.065
31.352
32.413
25.683
39.926
27.857
24.541
23.004
24.984
14.643
16.284
11.821
10.591
11.446
11.847
12.561
6.506
4.790
9.773
19.756
27.023
41.453
35.974
10.676
10.668
20.517
15.606
31.895
20.157
37.792
44.336
31.476
32.694
25.847
39.612
27.883
24.365
23.208
24.879
14.650
16.310
11.796
10.369
11.343
11.866
12.538
6.467
4.766
9.722
19.779
27.167
41.526
35.811
10.604
10.733
20.516
15.579
31.969
20.224
37.602
44.173
31.393
32.676
25.777
39.837
27.910
24.586
22.995
24.893
14.629
16.342
11.812
10.503
11.420
11.839
12.643
samp 1 samp 2 samp 3
Length (mm)
6.482
4.747
9.752
19.769
27.018
41.516
35.900
10.626
10.665
20.465
15.612
31.843
20.200
37.675
44.191
31.407
32.594
25.769
39.792
27.883
24.497
23.069
24.919
14.641
16.312
11.810
10.488
11.403
11.851
12.581
mean
600
400
400
400
200
100
150
400
400
300
300
200
300
150
150
150
300
200
200
200
300
300
300
400
400
600
400
400
400
300
Img.
Mag.
(%)**
2.1
1.1
2.5
44.4
84.6
337.0
180.0
4.8
4.9
26.3
18.9
111.5
46.4
21.6
302.9
162.3
108.8
147.3
203.4
95.6
78.4
45.8
53.7
24.6
22.9
8.5
10.4
8.2
9.1
8.4
Wet
Wt.
(mg)
5322
5323
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
Image ID
IX F
APPENDIX F
Date
22-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
Cnt
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
1040
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
1041
9
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
01
01
02
03
04
05
06
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0061
0062
0063
0064
0065
0066
0067
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
94
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Dendrodrilus rubidus
Dendrodrilus rubidus
Dendrodrilus rubidus
Eisenia fetida
Dendrodrilus rubidus
Dendrodrilus rubidus
Octolasion spp
Lumbricus spp
Lumbricus spp
Dendrodrilus rubidus
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Lumbricus spp
Genus
Identification
10.711
9.523
11.956
9.208
15.404
15.707
17.249
6.919
5.859
4.551
5.997
6.557
7.728
8.932
8.260
9.040
9.569
10.068
11.959
11.986
13.655
22.459
12.619
15.461
13.274
14.740
14.983
17.841
20.993
34.521
10.627
9.523
11.902
9.276
15.396
15.663
17.337
6.888
5.747
4.576
6.051
6.530
7.697
9.126
8.205
8.982
9.675
10.061
12.110
11.825
13.560
22.359
12.600
15.344
13.295
14.691
15.158
17.944
20.776
34.379
10.646
9.580
11.899
9.216
15.364
15.663
17.272
6.904
5.822
4.562
6.036
6.515
7.648
9.098
8.206
9.019
9.549
10.079
11.917
11.927
13.563
22.426
12.642
15.339
13.332
14.562
15.010
17.895
20.944
34.739
samp 1 samp 2 samp 3
Length (mm)
10.661
9.542
11.919
9.233
15.388
15.678
17.286
6.904
5.809
4.563
6.028
6.534
7.691
9.052
8.224
9.014
9.598
10.069
11.995
11.913
13.593
22.415
12.620
15.381
13.300
14.664
15.050
17.893
20.904
34.546
mean
400
400
400
400
300
300
300
600
600
600
800
600
600
600
600
600
600
600
400
400
400
400
400
300
400
400
400
300
300
300
Img.
Mag.
(%)**
5.8
8.3
9.5
5.9
43.2
47.6
41.9
0.8
1.4
0.1
1.5
1.6
3.1
5.3
5.2
6.7
5.7
5.7
13.7
14.2
17.7
21.5
27.2
23.1
17.3
20.9
18.1
43.9
32.2
150.1
Wet
Wt.
(mg)
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
Image ID
APPENDIX F
Date
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
23-Sep-2010
13-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
Cnt
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
1041
1041
1041
1041
1041
1041
1041
1044
1044
1044
1044
1044
1044
1047
1048
1050
1050
1050
1050
1050
1050
1050
1050
1050
1050
1050
1050
1050
1050
1050
3
3
3
3
3
3
8
3
8
8
8
9
9
8
3
2
2
2
2
2
2
2
2
8
8
8
8
8
9
9
25
26
27
28
29
30
01
01
01
02
03
01
02
01
01
01
02
03
04
05
06
07
08
01
02
03
04
05
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0104
0105
0107
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0121
0122
0123
0124
0125
0126
95
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Amynthas spp
Aporrectodea spp
Aporrectodea spp
Octolasion cyaneum
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Octolasion spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus rubellus
Genus
Identification
25.342
25.543
22.623
24.557
30.999
41.853
16.007
7.620
19.465
33.931
43.724
11.276
9.318
33.696
7.362
8.261
10.498
11.194
6.933
9.852
9.560
11.184
22.693
14.822
23.360
20.480
18.082
24.513
16.945
33.435
25.490
25.549
22.529
24.605
31.091
41.803
15.931
7.661
19.434
33.610
43.514
11.344
9.271
33.562
7.483
8.253
10.460
11.243
6.890
10.018
9.552
11.219
22.911
14.914
23.343
20.415
18.108
24.460
16.933
33.612
25.389
25.419
22.614
24.714
31.102
41.732
15.991
7.536
19.520
33.974
43.555
11.290
9.304
33.643
7.335
8.222
10.549
11.152
6.966
9.947
9.557
11.194
22.883
14.872
23.437
20.383
18.119
24.202
16.931
33.326
samp 1 samp 2 samp 3
Length (mm)
25.407
25.504
22.589
24.625
31.064
41.796
15.976
7.606
19.473
33.838
43.598
11.303
9.298
33.634
7.393
8.245
10.502
11.196
6.930
9.939
9.556
11.199
22.829
14.869
23.380
20.426
18.103
24.392
16.936
33.458
mean
300
300
300
300
300
300
400
600
400
300
200
600
600
200
800
800
600
600
800
600
400
300
200
200
150
300
200
200
300
150
Img.
Mag.
(%)**
68.1
74.3
76.7
69.2
122.7
276.0
11.9
0.8
34.8
142.1
271.9
1.3
0.7
117.7
1.4
4.0
5.1
6.3
2.6
5.1
5.4
8.3
35.9
17.8
48.1
40.9
18.0
60.5
17.6
289.9
Wet
Wt.
(mg)
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5354
5355
5356
5369
5370
5371
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
Image ID
APPENDIX F
Date
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
Cnt
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
1051
1051
1051
1051
1054
1054
1054
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
3
9
9
9
2
3
3
1
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
01
01
02
03
01
01
02
01
02
03
04
05
06
07
01
02
03
04
05
06
01
02
03
04
05
06
07
08
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
96
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus rubellus
Lumbricus spp
Dendrobaena octaedra
Lumbricus spp
Amynthas spp
Amynthas spp
Amynthas spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus rubellus
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Genus
Identification
50.385
13.601
21.643
32.715
34.195
40.548
41.404
26.614
24.971
35.242
39.288
36.644
36.762
48.237
16.137
24.707
37.580
41.845
59.065
61.454
19.968
25.050
24.227
32.893
29.442
35.958
39.201
32.490
12.408
17.462
50.436
13.555
21.531
32.577
34.128
40.703
41.575
26.807
25.055
35.172
39.523
37.222
36.560
48.686
16.212
24.753
37.647
41.732
58.880
61.791
20.061
25.242
24.261
33.116
29.346
35.947
39.224
32.622
12.431
17.337
51.179
13.747
21.533
32.308
34.317
40.444
41.402
26.732
24.931
35.217
39.601
36.626
36.428
48.716
16.196
24.821
37.267
42.190
59.286
61.650
20.152
25.242
24.354
33.250
29.282
35.940
38.997
32.503
12.426
17.304
samp 1 samp 2 samp 3
Length (mm)
50.667
13.634
21.569
32.533
34.213
40.565
41.460
26.718
24.986
35.210
39.471
36.831
36.583
48.546
16.182
24.760
37.498
41.922
59.077
61.632
20.060
25.178
24.281
33.086
29.357
35.948
39.141
32.538
12.422
17.368
mean
150
400
300
200
150
100
100
300
200
200
200
200
200
150
300
200
200
200
200
100
200
200
200
150
150
150
150
150
400
300
Img.
Mag.
(%)**
491.0
13.9
67.7
149.7
199.1
361.0
406.5
59.5
90.6
79.5
198.0
196.0
194.1
359.0
12.9
111.1
183.6
321.5
431.9
532.0
50.9
66.3
71.7
161.7
188.1
200.9
242.6
164.3
8.6
20.3
Wet
Wt.
(mg)
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
Image ID
APPENDIX F
Date
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
Cnt
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1055
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1067
1067
1067
1067
1067
1067
1067
1067
1067
4
4
4
4
4
4
4
4
4
4
4
9
9
9
9
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
03
04
05
06
07
08
09
10
11
12
13
01
02
03
04
05
06
07
08
09
10
01
02
03
04
05
06
07
08
09
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Octolasion spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Genus
Identification
21.750
23.474
21.946
31.965
29.004
36.707
37.582
43.120
37.540
33.301
52.217
14.199
29.213
21.675
35.354
27.255
23.204
24.698
34.700
36.799
37.112
16.636
14.615
15.112
13.779
15.291
12.284
10.374
14.450
11.845
21.873
23.461
21.873
32.143
28.911
36.681
37.759
43.381
37.687
33.215
52.496
14.233
29.345
21.695
35.427
27.307
23.283
25.002
34.506
36.617
36.755
16.527
14.596
15.081
13.771
15.366
12.329
10.259
14.303
11.829
22.011
23.439
21.764
31.818
29.007
37.055
37.770
43.270
37.621
33.017
52.647
14.235
29.247
21.677
35.264
27.407
23.216
24.938
34.598
36.829
37.284
16.438
14.652
15.014
13.735
15.325
12.311
10.418
14.377
11.794
samp 1 samp 2 samp 3
Length (mm)
21.878
23.458
21.861
31.975
28.974
36.814
37.704
43.257
37.616
33.178
52.453
14.222
29.268
21.682
35.348
27.323
23.234
24.879
34.601
36.748
37.050
16.534
14.621
15.069
13.762
15.327
12.308
10.350
14.377
11.823
mean
300
150
200
150
200
200
200
200
200
150
150
300
200
200
200
200
200
200
200
200
200
300
400
400
300
400
400
400
400
400
Img.
Mag.
(%)**
30.7
47.1
53.4
128.2
124.8
169.0
174.5
226.8
202.3
194.3
286.8
28.0
136.7
108.0
159.7
108.1
92.9
121.1
189.5
201.4
267.6
13.4
15.8
12.3
10.8
19.3
24.2
6.8
15.0
8.2
Wet
Wt.
(mg)
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
Image ID
APPENDIX F
97
Date
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
Cnt
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
1067
1067
1067
1067
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
8
8
8
8
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
9
9
10
12
13
14
01
02
03
04
05
06
07
08
09
10
01
02
03
04
05
06
07
08
09
10
11
12
13
14
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0187
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Genus
Identification
10.848
20.962
22.820
23.010
14.872
25.156
34.268
38.224
37.975
29.345
28.870
32.415
33.737
39.768
19.064
24.659
27.715
34.849
40.936
40.485
39.339
46.275
49.170
50.718
48.033
52.502
52.433
38.300
10.160
10.507
10.779
20.913
22.909
23.070
14.905
25.172
34.601
38.075
37.870
29.373
28.987
32.592
33.687
39.709
18.979
24.575
27.762
34.817
40.939
40.240
39.587
46.515
49.438
50.887
48.091
52.753
52.714
38.227
10.195
10.591
10.737
20.926
22.925
23.017
14.929
25.231
34.336
38.128
37.737
29.311
28.847
32.596
33.681
39.701
19.146
24.670
27.796
34.783
40.902
40.285
39.358
46.815
49.270
50.940
48.417
52.880
52.405
38.106
10.180
10.531
samp 1 samp 2 samp 3
Length (mm)
10.788
20.934
22.885
23.032
14.902
25.186
34.402
38.142
37.861
29.343
28.901
32.534
33.702
39.726
19.063
24.635
27.758
34.816
40.926
40.337
39.428
46.535
49.293
50.848
48.180
52.712
52.517
38.211
10.178
10.543
mean
600
300
300
300
400
200
300
300
300
200
150
200
200
200
300
300
200
300
200
200
200
200
200
200
200
200
200
150
400
400
Img.
Mag.
(%)**
4.9
44.8
55.0
48.8
12.8
45.0
75.0
114.0
100.0
101.7
175.3
106.1
144.0
176.3
33.6
39.1
43.3
107.3
155.0
137.5
141.5
217.5
194.4
212.2
242.7
246.5
285.0
282.3
5.5
7.2
Wet
Wt.
(mg)
5443
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
Image ID
APPENDIX F
98
Date
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
Cnt
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
1083
1083
1083
1083
1083
1083
1083
1388
1388
1388
1388
1388
3668
3668
3668
3668
3668
3420
3420
3420
3420
3420
3596
3596
3596
3668
3668
3668
3668
3668
9
9
9
9
9
9
9
5
5
5
5
5
9
9
9
9
9
4
4
4
4
4
2
9
9
2
2
2
2
2
03
04
05
06
07
08
09
01
02
03
04
05
02
01
03
04
05
02
03
04
05
06
01
01
02
01
02
03
04
05
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0231
0230
0232
0233
0234
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Genus
Identification
9.789
11.414
16.043
24.477
16.811
20.469
20.775
8.842
13.709
10.123
10.726
13.172
13.485
20.330
18.367
33.807
36.919
9.444
6.669
9.579
7.980
3.371
17.241
16.872
29.883
15.432
25.209
23.452
26.384
29.353
9.755
11.394
16.228
24.369
16.735
20.562
20.597
8.844
13.577
10.074
10.735
13.224
13.465
20.380
18.366
33.728
36.931
9.457
6.652
9.570
7.961
3.414
17.034
16.924
29.793
15.468
25.102
23.357
26.470
29.498
9.804
11.375
16.134
24.246
16.776
20.554
20.741
8.845
13.681
10.087
10.697
13.248
13.443
20.450
18.315
33.762
36.700
9.583
6.623
9.595
8.091
3.375
17.084
16.869
29.699
15.402
25.219
23.354
26.381
29.414
samp 1 samp 2 samp 3
Length (mm)
9.783
11.394
16.135
24.364
16.774
20.528
20.704
8.844
13.656
10.095
10.719
13.215
13.464
20.387
18.349
33.766
36.850
9.495
6.648
9.581
8.011
3.387
17.120
16.888
29.792
15.434
25.177
23.388
26.412
29.422
mean
400
400
300
300
300
300
300
600
200
400
400
400
300
300
300
200
200
400
400
400
400
400
300
300
200
400
200
200
200
200
Img.
Mag.
(%)**
5.7
10.9
25.1
52.6
23.3
30.9
42.9
1.6
1.6
6.1
7.4
11.1
38.0
35.9
34.7
106.6
144.2
1.6
0.7
1.0
0.7
0.4
21.8
15.7
63.8
17.7
67.4
93.0
130.3
114.0
Wet
Wt.
(mg)
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
Image ID
APPENDIX F
99
Date
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
Cnt
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
AT02
AT02
AT02
AT02
AT02
AT01
AT01
AT01
AT01
AT01
AT01
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
8
8
8
8
8
06
07
08
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
01
02
03
04
05
01
01
02
03
04
05
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
100
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Octolasion tyrtaeum
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Lumbricus spp
Lumbricus spp
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Lumbricus spp
Genus
Identification
39.106
33.390
34.238
10.860
10.994
11.093
11.741
19.736
22.169
21.858
26.432
26.664
27.806
34.104
34.019
35.544
39.359
34.544
36.822
17.094
14.096
22.403
34.373
37.755
33.038
13.514
18.037
21.424
23.448
38.599
39.127
33.335
34.121
10.896
10.988
10.990
11.693
19.681
22.237
21.811
26.495
26.480
27.673
33.851
34.100
35.535
39.595
34.422
36.646
17.058
14.085
22.421
34.694
37.695
33.139
13.549
17.973
21.383
23.382
38.502
39.003
33.485
34.362
10.891
10.983
11.055
11.879
19.773
22.189
21.846
26.459
26.558
27.684
33.712
34.066
35.528
39.404
34.420
36.711
17.170
14.104
22.328
34.452
37.604
32.849
13.614
18.058
21.369
23.523
38.588
samp 1 samp 2 samp 3
Length (mm)
39.079
33.403
34.240
10.882
10.988
11.046
11.771
19.730
22.198
21.838
26.462
26.567
27.721
33.889
34.062
35.536
39.453
34.462
36.726
17.107
14.095
22.384
34.506
37.685
33.009
13.559
18.023
21.392
23.451
38.563
mean
200
200
200
400
400
400
400
300
300
300
300
300
300
200
200
200
200
200
150
400
400
400
200
200
200
400
400
400
300
200
Img.
Mag.
(%)**
179.3
113.5
168.7
7.2
7.5
5.8
10.2
65.0
56.1
47.2
86.6
129.6
108.0
158.3
125.0
177.8
201.0
238.8
293.0
22.9
13.5
47.7
168.7
227.5
124.3
11.5
22.2
31.3
60.7
212.6
Wet
Wt.
(mg)
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
Image ID
APPENDIX F
Date
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
Cnt
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
3668
1002
1002
1002
1002
1002
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3
3
3
8
8
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
01
02
03
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
1001
1002
1003
1004
1005
101
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Octolasion tyrtaeum
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Lumbricus spp
Genus
Identification
35.927
11.124
18.357
22.627
21.558
27.884
32.753
37.974
36.685
35.852
37.715
38.934
39.835
32.913
30.624
38.315
39.106
35.655
36.906
41.431
44.173
41.155
45.478
40.993
38.693
33.188
22.140
36.661
20.465
32.956
35.902
11.101
18.411
22.641
21.616
27.936
32.842
37.920
36.629
35.668
37.709
38.880
39.785
33.051
30.522
38.457
39.186
35.488
36.999
41.591
44.606
41.194
45.459
40.942
38.600
33.113
22.107
36.667
20.414
32.936
35.907
11.102
18.456
22.604
21.569
27.971
32.802
38.264
36.716
35.944
37.839
39.036
39.908
33.073
30.455
38.373
39.130
35.748
37.257
41.603
44.384
41.193
45.502
41.024
38.684
33.116
22.094
36.686
20.464
32.919
samp 1 samp 2 samp 3
Length (mm)
35.912
11.109
18.408
22.624
21.581
27.930
32.799
38.053
36.677
35.821
37.754
38.950
39.843
33.012
30.534
38.382
39.141
35.630
37.054
41.542
44.388
41.181
45.480
40.986
38.659
33.139
22.114
36.671
20.448
32.937
mean
300
400
400
300
400
300
200
200
200
150
200
150
200
200
200
200
200
200
200
200
200
200
200
200
200
200
300
200
200
200
Img.
Mag.
(%)**
135.6
4.5
24.2
30.4
36.3
79.8
135.1
143.8
144.4
266.9
186.3
190.9
182.6
110.5
112.5
140.0
179.9
134.6
148.0
173.5
189.8
163.6
192.4
146.0
141.0
96.0
59.6
208.0
55.9
113.2
Wet
Wt.
(mg)
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5665
5666
5667
5668
5669
Image ID
APPENDIX F
Date
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
23-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
Cnt
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
1002
1003
1003
1003
1003
1003
1003
1003
1003
1003
1003
1003
1003
1004
1005
1005
1005
1005
1005
1005
1005
1005
1005
1005
1008
1008
1008
1008
1008
1008
8
3
3
3
8
8
9
9
9
9
9
9
9
3
8
8
2
2
2
2
2
9
9
9
2
2
2
2
3
3
03
01
02
03
01
02
01
02
03
04
05
06
07
01
01
02
01
02
03
04
05
01
02
03
01
03
04
05
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1037
1038
1039
1040
1041
102
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Amynthas spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Dendrodrilus rubidus
Genus
Identification
31.484
25.007
29.682
37.684
24.929
34.473
33.624
31.942
38.141
39.871
42.979
40.444
58.156
40.404
14.157
14.518
15.741
21.180
19.672
28.330
36.264
8.193
20.900
31.259
10.174
12.257
22.756
29.175
8.612
27.731
31.480
25.035
29.645
37.798
24.919
34.426
33.515
32.093
38.050
39.976
43.057
40.537
58.256
40.398
14.193
14.513
15.744
21.173
19.693
28.329
36.294
8.132
20.803
31.182
10.151
12.301
22.717
29.294
8.638
27.626
31.493
25.099
29.633
37.854
24.914
34.558
33.662
31.968
38.074
39.944
43.022
40.624
58.439
40.466
14.118
14.547
15.697
21.192
19.711
28.328
36.282
8.194
20.892
31.235
10.114
12.291
22.746
29.304
8.647
27.714
samp 1 samp 2 samp 3
Length (mm)
31.486
25.047
29.653
37.779
24.921
34.486
33.600
32.001
38.088
39.930
43.019
40.535
58.284
40.423
14.156
14.526
15.727
21.182
19.692
28.329
36.280
8.173
20.865
31.225
10.146
12.283
22.740
29.258
8.632
27.690
mean
200
300
200
200
300
200
150
300
200
200
150
200
150
200
600
400
400
300
300
300
200
600
300
200
600
600
300
200
800
200
Img.
Mag.
(%)**
178.2
53.2
111.3
194.9
68.5
244.5
210.1
100.2
177.4
195.5
249.6
241.9
594.0
257.3
10.0
13.9
16.0
65.4
40.4
111.0
214.1
4.1
69.1
118.9
3.8
11.6
58.0
142.4
4.0
144.6
Wet
Wt.
(mg)
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5696
5697
5698
5699
5700
Image ID
APPENDIX F
Date
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
Cnt
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
1008
1008
1008
1008
1008
1008
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
9
9
9
9
9
9
2
3
3
3
3
3
3
3
8
8
9
9
9
1
1
1
1
1
1
1
1
1
1
1
01
02
03
04
05
06
01
01
02
03
04
05
06
07
01
02
01
02
03
01
02
03
04
05
06
07
08
09
10
11
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1042
1043
1044
1045
1046
1047
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Dendrodrilus rubidus
Lumbricus spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Genus
Identification
30.366
32.446
29.635
24.469
39.317
42.472
10.736
13.132
29.027
40.260
45.406
39.388
53.013
52.983
41.143
40.632
40.032
39.702
46.593
11.653
14.747
10.790
13.462
14.239
15.111
15.926
23.200
22.355
31.504
30.704
30.471
32.504
29.721
24.489
39.452
42.587
10.752
13.092
28.984
40.336
45.303
39.258
52.990
52.857
41.153
40.733
39.955
39.681
46.545
11.634
14.773
10.814
13.394
14.210
15.114
15.923
23.299
22.350
31.482
30.681
30.424
32.396
29.606
24.461
39.305
42.381
10.787
13.095
29.017
40.265
45.367
39.243
52.969
52.867
41.139
40.607
39.979
39.882
46.522
11.696
14.768
10.847
13.488
14.245
15.057
15.962
23.243
22.330
31.569
30.729
samp 1 samp 2 samp 3
Length (mm)
30.420
32.449
29.654
24.473
39.358
42.480
10.758
13.106
29.009
40.287
45.359
39.296
52.991
52.902
41.145
40.657
39.989
39.755
46.553
11.661
14.763
10.817
13.448
14.231
15.094
15.937
23.247
22.345
31.518
30.705
mean
300
300
200
200
150
150
600
400
200
150
100
150
100
100
150
150
150
100
100
600
600
400
400
400
400
400
300
300
200
150
Img.
Mag.
(%)**
148.0
127.9
119.6
92.6
200.1
283.2
9.5
7.9
83.8
163.9
249.4
197.3
358.9
358.1
159.4
233.0
208.1
212.3
266.0
7.6
12.6
7.8
15.6
13.5
12.4
16.1
64.5
49.7
118.0
182.6
Wet
Wt.
(mg)
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5727
5728
5729
5730
5731
Image ID
APPENDIX F
103
Date
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
Cnt
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1012
1012
1012
1012
1012
1013
1013
1013
1
1
2
2
2
2
2
2
2
5
5
5
5
5
5
5
5
6
6
6
6
6
3
8
8
8
8
1
2
4
12
13
01
02
03
04
05
06
07
01
02
03
04
05
06
07
08
01
02
03
04
05
01
01
02
03
04
01
01
01
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
104
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Lumbricus spp
Lumbricus spp
Dendrobaena octaedra
Genus
Identification
35.098
36.744
11.343
10.507
11.373
15.363
25.842
29.229
36.043
10.161
10.130
12.036
12.047
12.766
16.115
18.610
17.341
10.227
12.719
11.751
13.268
15.887
18.645
13.900
13.567
15.769
17.290
27.764
38.835
5.835
35.084
36.761
11.273
10.476
11.360
15.263
25.908
29.261
36.208
10.080
10.121
11.954
12.051
12.701
16.079
18.572
17.272
10.244
12.791
11.647
13.218
15.975
18.520
13.919
13.510
15.704
17.264
27.626
38.716
5.844
35.062
36.688
11.302
10.473
11.360
15.373
25.876
29.222
35.981
10.125
10.118
11.972
12.077
12.758
16.089
18.675
17.343
10.225
12.782
11.701
13.238
15.939
18.533
13.879
13.560
15.726
17.260
27.686
38.757
5.887
samp 1 samp 2 samp 3
Length (mm)
35.081
36.731
11.306
10.485
11.364
15.333
25.875
29.237
36.077
10.122
10.123
11.987
12.058
12.742
16.094
18.619
17.319
10.232
12.764
11.700
13.241
15.934
18.566
13.899
13.546
15.733
17.271
27.692
38.769
5.855
mean
200
200
400
400
400
400
200
200
200
400
400
400
400
400
400
300
300
600
400
600
400
400
300
400
400
400
400
200
200
800
Img.
Mag.
(%)**
174.0
222.3
10.5
7.4
9.1
19.8
66.8
85.2
246.2
6.1
5.7
8.8
10.1
10.4
19.8
30.0
30.1
7.1
8.5
8.7
12.6
12.7
42.3
16.3
22.0
20.2
27.2
89.6
172.1
2.0
Wet
Wt.
(mg)
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
Image ID
APPENDIX F
Date
21-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
Cnt
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
1013
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1015
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
4
3
3
3
3
3
3
3
3
8
9
9
9
9
9
9
9
9
2
2
2
2
2
2
2
2
2
2
2
2
02
01
02
03
04
05
06
07
08
01
01
02
03
04
05
06
07
08
01
02
03
04
05
06
07
08
09
10
11
13
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1104
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1135
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Dendrobaena octaedra
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Lumbricus spp
Aporrectodea spp
Octolasion spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Genus
Identification
17.540
13.090
25.668
23.420
32.550
34.889
28.247
42.222
42.263
35.632
14.118
16.240
20.476
24.068
24.954
29.229
32.741
44.787
13.761
17.422
15.574
15.718
17.094
18.930
20.352
23.482
25.323
23.723
24.215
35.351
17.525
13.040
25.782
23.440
32.410
34.940
28.341
42.222
42.453
35.525
14.072
16.280
20.499
24.173
24.930
29.260
32.833
44.816
13.759
17.422
15.581
15.644
17.107
18.994
20.406
23.372
25.321
23.764
24.248
35.342
17.589
13.053
25.766
23.474
32.426
34.765
28.235
42.175
42.429
35.562
14.120
16.264
20.461
24.272
24.996
29.309
32.795
44.769
13.842
17.391
15.624
15.723
17.107
18.951
20.381
23.450
25.336
23.775
24.235
35.387
samp 1 samp 2 samp 3
Length (mm)
17.551
13.061
25.739
23.445
32.462
34.865
28.274
42.206
42.382
35.573
14.103
16.261
20.479
24.171
24.960
29.266
32.790
44.791
13.787
17.412
15.593
15.695
17.103
18.958
20.380
23.435
25.327
23.754
24.233
35.360
mean
300
400
300
300
200
200
200
200
150
200
400
400
300
300
300
300
150
200
400
400
400
400
300
300
300
300
200
200
300
150
Img.
Mag.
(%)**
24.5
10.5
60.0
75.9
115.4
181.4
159.0
229.0
284.1
224.4
40.5
42.2
70.5
88.4
92.5
100.5
194.1
239.0
17.6
38.8
31.6
16.1
32.3
44.3
49.7
49.8
82.0
85.7
48.7
85.4
Wet
Wt.
(mg)
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5794
Image ID
APPENDIX F
105
Date
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
Cnt
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
1016
2
2
2
2
3
3
3
3
3
3
3
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
14
15
16
17
01
02
03
04
05
06
07
01
02
03
04
05
06
01
02
03
04
05
06
07
08
09
10
01
12
13
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Dendrobaena octaedra
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Genus
Identification
32.100
35.986
34.519
42.657
11.546
17.513
14.187
13.071
28.190
37.054
42.154
30.966
27.896
22.906
33.353
41.148
52.772
11.771
18.530
13.419
18.811
25.701
27.119
21.710
26.947
31.132
30.177
28.091
30.376
31.889
32.014
36.123
34.493
42.791
11.577
17.482
14.136
13.058
28.323
37.213
42.245
30.945
28.061
22.968
33.450
41.178
52.826
11.781
18.500
13.442
18.764
25.482
27.128
21.745
27.019
30.955
30.325
28.160
30.432
31.809
32.041
36.014
34.439
42.665
11.608
17.465
14.207
13.028
28.157
37.004
42.258
31.028
27.929
22.952
33.405
41.208
52.816
11.791
18.504
13.336
18.832
25.585
27.148
21.842
27.000
31.091
30.222
28.071
30.364
31.801
samp 1 samp 2 samp 3
Length (mm)
32.052
36.041
34.484
42.704
11.577
17.487
14.177
13.052
28.223
37.090
42.219
30.980
27.962
22.942
33.403
41.178
52.805
11.781
18.511
13.399
18.802
25.589
27.132
21.766
26.989
31.059
30.241
28.107
30.391
31.833
mean
200
150
200
200
400
400
600
400
300
200
150
300
300
300
200
200
200
400
400
400
400
300
300
300
300
300
200
200
200
200
Img.
Mag.
(%)**
186.6
299.7
159.8
306.2
7.7
30.8
10.3
18.8
128.8
145.0
292.0
120.4
80.4
55.1
177.2
298.5
515.1
11.1
57.2
29.3
36.1
74.2
66.9
63.7
92.8
130.8
153.6
109.7
142.8
162.7
Wet
Wt.
(mg)
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
Image ID
APPENDIX F
106
Date
30-Sep-2010
30-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
24-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
Cnt
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
1016
1016
1017
1017
1017
1017
1017
1017
1018
1018
1018
1019
1019
1019
1019
1021
1021
1021
1021
1022
1022
1022
1022
1022
1022
1022
1022
1022
1022
1022
8
8
3
3
3
3
3
8
2
2
9
2
2
2
3
5
6
6
6
3
3
3
3
3
3
3
3
4
4
4
14
15
01
02
03
04
05
01
01
02
01
01
02
03
01
01
02
03
04
01
02
03
04
05
06
07
08
01
02
03
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1178
1179
1180
1181
1182
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
107
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Amynthas spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Amynthas spp
Amynthas spp
Amynthas spp
Aporrectodea spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Genus
Identification
35.323
43.133
15.611
22.824
29.184
35.978
29.851
55.865
9.318
48.749
19.586
28.974
33.419
46.458
34.101
41.839
46.698
59.022
10.004
31.322
19.595
17.172
20.821
38.112
48.695
42.678
42.642
17.459
15.329
33.500
35.398
43.284
15.566
22.835
29.307
36.033
29.895
55.898
9.298
48.878
19.674
28.969
33.237
46.387
33.963
41.862
46.706
58.934
10.053
31.307
19.591
17.174
20.805
38.142
48.642
42.940
42.788
17.463
15.317
33.450
35.469
43.219
15.628
22.817
29.281
36.108
29.920
55.826
9.321
48.810
19.569
28.937
33.358
46.293
34.167
41.773
46.655
59.094
9.994
31.327
19.593
17.219
20.807
38.129
48.734
42.833
42.722
17.402
15.330
33.480
samp 1 samp 2 samp 3
Length (mm)
35.397
43.212
15.602
22.825
29.257
36.040
29.889
55.863
9.312
48.812
19.610
28.960
33.338
46.379
34.077
41.825
46.686
59.017
10.017
31.319
19.593
17.188
20.811
38.128
48.690
42.817
42.717
17.441
15.325
33.477
mean
200
150
400
300
300
200
200
200
600
150
400
300
300
200
300
150
200
150
400
300
300
400
400
200
200
200
200
400
400
200
Img.
Mag.
(%)**
150.8
171.2
18.0
73.2
119.8
172.1
171.2
208.5
5.7
396.7
41.8
127.8
128.6
308.1
120.2
385.1
319.7
497.8
6.4
87.7
41.7
28.4
37.0
159.2
183.4
219.9
324.5
13.0
15.7
76.1
Wet
Wt.
(mg)
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
Image ID
APPENDIX F
Date
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
12-Oct-2010
12-Oct-2010
Cnt
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
1024
1024
1024
1024
1024
1025
1025
1025
1025
1024
1024
1024
1024
1024
1024
1024
1024
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1
1
1
3
3
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
01
02
03
01
02
01
02
03
04
01
02
03
04
05
06
07
08
01
02
03
04
05
06
07
08
09
10
11
02
03
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1227
1228
108
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Lumbricus rubellus
Octolasion spp
Lumbricus spp
Genus
Identification
14.051
7.869
6.222
7.177
7.088
22.134
44.783
42.464
55.563
4.549
5.863
5.388
8.605
8.473
11.271
10.150
20.534
15.727
11.707
13.931
23.330
19.266
26.148
16.510
31.445
48.518
46.645
54.227
7.525
11.597
14.095
7.874
6.192
7.228
7.145
22.147
45.074
42.492
55.678
4.496
5.888
5.311
8.607
8.440
11.252
10.146
20.472
15.728
11.755
13.918
23.354
19.267
26.276
16.555
31.306
48.520
46.519
54.070
7.468
11.560
14.036
7.854
6.218
7.170
7.246
22.178
45.105
42.549
55.486
4.551
5.817
5.329
8.640
8.472
11.278
10.153
20.607
15.597
11.756
13.933
23.316
19.285
26.228
16.539
31.373
48.628
46.522
54.220
7.471
11.600
samp 1 samp 2 samp 3
Length (mm)
14.061
7.866
6.211
7.192
7.160
22.153
44.987
42.502
55.576
4.532
5.856
5.343
8.617
8.462
11.267
10.150
20.538
15.684
11.739
13.927
23.333
19.273
26.217
16.535
31.375
48.555
46.562
54.172
7.488
11.586
mean
400
800
600
600
600
300
200
150
200
800
600
800
600
600
400
400
200
300
600
400
200
300
200
300
200
200
150
150
600
400
Img.
Mag.
(%)**
11.0
0.8
0.8
1.1
1.1
63.1
183.8
344.4
315.8
0.8
0.3
0.9
1.0
1.8
4.0
3.3
42.9
12.0
10.0
14.3
32.0
41.3
55.6
27.6
123.8
292.4
310.4
500.0
13.0
10.7
Wet
Wt.
(mg)
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
Image ID
APPENDIX F
Date
12-Oct-2010
23-Sep-2010
23-Sep-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
21-Sep-2010
21-Sep-2010
Cnt
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1025
1026
1026
9
9
9
3
3
3
3
3
3
3
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2
3
01
01
02
04
05
06
07
08
09
10
03
04
01
02
03
04
05
06
07
08
09
01
02
03
04
05
06
07
01
01
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
109
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Octolasion tyrtaeum
Lumbricus spp
Octolasion spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Octolasion spp
Dendrobaena octaedra
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Genus
Identification
10.665
12.636
10.567
17.165
20.233
26.291
35.217
46.546
38.351
41.920
10.392
25.719
13.956
14.623
27.437
26.582
44.503
29.592
26.360
37.050
27.639
7.743
9.097
12.775
15.277
20.129
19.365
25.139
30.723
29.870
10.592
12.654
10.530
17.081
20.222
26.276
35.109
46.630
38.318
42.097
10.385
25.679
14.001
14.672
27.435
26.578
44.566
29.655
26.371
37.039
27.611
7.709
9.067
12.812
15.286
20.141
19.364
25.018
30.689
29.819
10.610
12.692
10.608
17.187
20.190
26.255
35.106
46.475
38.299
41.878
10.448
25.627
13.954
14.646
27.492
26.482
44.589
29.616
26.403
37.054
27.686
7.666
9.052
12.752
15.274
20.174
19.410
25.052
30.830
29.833
samp 1 samp 2 samp 3
Length (mm)
10.622
12.661
10.568
17.144
20.215
26.274
35.144
46.550
38.323
41.965
10.408
25.675
13.970
14.647
27.455
26.547
44.553
29.621
26.378
37.048
27.645
7.706
9.072
12.780
15.279
20.148
19.380
25.070
30.747
29.841
mean
400
400
400
300
200
200
150
150
200
200
400
200
600
300
200
200
200
200
200
150
200
600
400
600
300
200
200
300
300
200
Img.
Mag.
(%)**
10.0
7.5
35.0
54.0
90.4
334.3
300.0
293.0
281.3
380.2
6.2
80.9
9.3
19.5
108.4
102.6
206.4
107.6
92.0
188.9
175.2
1.3
7.5
10.0
14.4
68.6
57.3
112.7
77.5
123.0
Wet
Wt.
(mg)
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
Image ID
APPENDIX F
Date
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
21-Sep-2010
21-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
Cnt
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
1028
1028
1028
1028
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1029
1030
1030
1031
1031
1031
1033
1035
1035
1035
1035
3
3
3
8
2
2
2
2
2
2
3
3
3
3
3
3
8
8
9
9
2
2
9
8
8
2
2
2
2
2
01
02
03
01
01
02
03
04
05
06
01
02
03
04
05
06
02
03
04
05
02
01
01
01
02
01
01
02
03
04
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1276
1277
1282
1283
1284
1285
1287
1288
1289
1290
1291
1292
1293
1294
110
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Octolasion spp
Aporrectodea spp
Octolasion tyrtaeum
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Octolasion spp
Lumbricus spp
Octolasion tyrtaeum
Octolasion tyrtaeum
Aporrectodea spp
Dendrodrilus rubidus
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Genus
Identification
11.849
26.173
37.164
29.716
11.109
12.977
20.518
23.219
32.206
31.904
7.311
10.797
12.723
10.968
27.712
31.572
19.885
20.238
15.559
16.713
29.964
32.745
4.155
16.636
21.684
12.587
27.564
23.271
33.852
41.904
11.896
26.008
37.307
29.551
10.968
12.978
20.574
23.239
32.200
31.945
7.306
10.779
12.970
10.949
27.570
31.572
19.897
20.175
15.605
16.769
30.084
32.817
4.126
16.714
21.558
12.531
27.712
23.112
33.891
41.843
11.880
26.217
37.166
29.736
11.013
12.998
20.642
23.145
32.145
31.922
7.337
10.820
12.983
10.905
27.547
31.540
19.877
20.222
15.574
16.684
30.057
32.782
4.134
16.664
21.651
12.611
27.620
23.283
33.790
41.947
samp 1 samp 2 samp 3
Length (mm)
11.875
26.133
37.212
29.668
11.030
12.984
20.578
23.201
32.184
31.924
7.318
10.799
12.892
10.941
27.610
31.561
19.886
20.212
15.579
16.722
30.035
32.781
4.138
16.671
21.631
12.576
27.632
23.222
33.844
41.898
mean
400
300
200
200
300
600
200
300
200
150
600
400
400
400
200
150
300
300
300
300
200
200
800
300
200
400
300
300
200
200
Img.
Mag.
(%)**
13.8
64.5
302.9
119.1
2.0
7.1
49.4
74.6
113.7
189.4
0.7
7.3
11.7
17.3
111.1
136.0
42.9
35.8
29.3
33.6
177.0
185.0
0.2
20.7
93.0
3.2
75.4
63.1
118.0
174.3
Wet
Wt.
(mg)
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
Image ID
APPENDIX F
Date
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
21-Sep-2010
20-Sep-2010
23-Sep-2010
07-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
Cnt
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
1035
1035
1035
1035
1035
1035
1035
1035
1034
1039
1045
1054
1055
1055
1055
1055
1055
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
2
3
3
8
8
9
9
9
1
3
9
9
3
3
3
3
4
2
2
2
2
2
2
2
2
2
2
3
3
3
05
01
02
01
02
01
02
03
21
05
02
01
09
10
11
12
14
01
02
03
04
05
06
07
08
09
10
01
02
03
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
111
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Octolasion tyrtaeum
Lumbricus spp
Amynthas spp
Amynthas spp
Amynthas spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Octolasion tyrtaeum
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Octolasion spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus rubellus
Genus
Identification
39.195
35.866
46.640
50.987
7.116
18.655
33.007
33.087
73.478
53.874
45.471
45.613
55.723
51.195
49.436
54.806
32.100
6.198
11.602
11.594
10.534
13.229
21.126
27.815
30.726
29.094
31.323
15.238
48.223
44.690
38.994
35.788
46.968
51.035
7.044
18.668
32.887
33.074
73.006
53.988
45.369
45.577
55.847
51.315
49.432
54.674
32.023
6.184
11.629
11.615
10.517
13.261
21.018
27.861
30.703
29.039
31.168
15.226
48.132
44.156
39.216
35.773
46.726
50.788
7.104
18.720
32.997
33.110
73.567
53.992
45.466
45.498
55.654
51.351
49.444
55.064
32.100
6.233
11.580
11.603
10.556
13.251
21.121
27.715
30.786
29.096
31.175
15.253
48.222
44.617
samp 1 samp 2 samp 3
Length (mm)
39.135
35.809
46.778
50.937
7.088
18.681
32.964
33.090
73.350
53.951
45.435
45.563
55.741
51.287
49.437
54.848
32.074
6.205
11.604
11.604
10.536
13.247
21.088
27.797
30.738
29.076
31.222
15.239
48.192
44.488
mean
150
300
200
150
600
300
200
200
150
100
100
100
150
150
150
100
200
400
600
600
400
400
200
300
200
200
200
300
150
200
Img.
Mag.
(%)**
223.0
137.3
261.6
359.0
3.4
43.8
101.4
134.3
712.9
418.0
409.0
372.0
462.3
481.6
492.6
549.3
226.3
5.9
9.0
9.2
8.5
8.4
84.7
127.4
186.5
130.6
242.6
24.5
262.5
416.2
Wet
Wt.
(mg)
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
7776
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
Image ID
APPENDIX F
Date
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
05-Oct-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
Cnt
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1058
1060
1060
1060
1060
1060
1060
1060
1060
1064
1064
1063
1063
3
3
3
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
1
2
2
2
2
3
3
4
2
2
4
4
04
05
06
01
02
03
04
05
06
07
08
09
11
12
13
14
15
16
01
02
03
04
05
01
02
02
02
03
02
03
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1345
1346
1347
1348
1349
1350
1352
1354
1355
1357
1358
112
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus rubellus
Octolasion tyrtaeum
Aporrectodea calignosa
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea calignosa
Octolasion tyrtaeum
Octolasion tyrtaeum
Aporrectodea spp
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Octolasion tyrtaeum
Aporrectodea calignosa
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Aporrectodea spp
Amynthas spp
Amynthas spp
Dendrodrilus rubidus
Dendrodrilus rubidus
Lumbricus spp
Lumbricus spp
Genus
Identification
37.544
44.191
54.490
13.473
14.293
18.664
25.510
32.889
33.650
50.350
39.780
43.276
37.454
38.209
53.266
49.753
41.123
49.968
55.609
46.745
52.437
52.415
54.979
10.862
41.819
52.340
18.812
23.206
11.568
12.851
37.611
44.286
54.293
13.457
14.287
18.571
25.556
32.944
33.736
50.625
39.990
43.038
37.380
38.350
53.288
49.864
40.995
50.005
55.714
46.900
52.672
52.287
54.682
10.907
41.956
52.123
18.821
23.266
11.504
12.881
37.626
44.103
54.482
13.421
14.325
18.692
25.432
32.870
33.713
50.477
39.816
43.319
37.312
38.338
53.360
49.877
41.106
49.966
55.537
46.486
52.458
52.448
54.804
10.881
41.806
52.274
18.824
23.523
11.541
12.907
samp 1 samp 2 samp 3
Length (mm)
37.594
44.193
54.422
13.450
14.302
18.642
25.499
32.901
33.700
50.484
39.862
43.211
37.382
38.299
53.305
49.831
41.075
49.980
55.620
46.710
52.522
52.383
54.822
10.883
41.860
52.246
18.819
23.332
11.538
12.880
mean
200
150
200
400
300
300
200
200
200
200
150
200
200
200
100
200
100
150
150
150
150
150
150
600
200
150
300
200
400
400
Img.
Mag.
(%)**
252.0
393.6
404.8
30.2
11.9
37.2
106.9
141.4
213.6
283.0
356.2
461.7
136.6
159.3
378.8
394.0
418.0
359.1
464.5
309.0
389.5
363.6
440.3
3.3
270.9
372.8
71.5
77.2
8.5
13.7
Wet
Wt.
(mg)
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
6000
6002
6003
6004
6005
Image ID
APPENDIX F
Date
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
Cnt
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
01
02
03
04
05
06
07
08
09
10
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
113
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Genus
Identification
12.456
11.920
17.513
18.759
15.509
17.859
18.377
20.382
17.694
23.052
22.332
26.549
28.232
35.006
42.282
37.379
51.351
53.310
60.221
53.647
10.333
10.439
11.109
12.151
11.276
10.147
17.799
20.286
22.467
22.115
12.453
11.882
17.431
18.780
15.476
17.782
18.365
20.481
17.622
23.102
22.318
26.514
28.078
34.971
42.292
37.361
51.010
53.302
60.151
53.771
10.373
10.406
11.182
12.216
11.264
10.118
17.789
20.244
22.424
22.006
12.496
11.888
17.456
18.728
15.515
17.722
18.351
20.405
17.656
23.020
22.289
26.512
28.195
35.005
42.297
37.285
51.206
53.206
60.203
53.597
10.326
10.489
11.092
12.173
11.298
10.156
17.834
20.291
22.499
22.142
samp 1 samp 2 samp 3
Length (mm)
12.468
11.897
17.467
18.756
15.500
17.788
18.364
20.423
17.657
23.058
22.313
26.525
28.168
34.994
42.290
37.342
51.189
53.273
60.192
53.672
10.344
10.445
11.128
12.180
11.279
10.140
17.807
20.274
22.463
22.088
mean
400
400
300
300
300
300
300
300
200
200
200
200
150
150
100
100
100
100
100
100
400
400
400
300
400
400
300
200
300
200
Img.
Mag.
(%)**
15.0
9.5
38.9
19.2
18.2
33.0
17.3
45.3
28.2
55.8
66.2
110.6
117.2
232.7
338.0
196.4
398.0
415.2
463.0
522.0
6.7
6.8
9.8
11.9
7.6
7.7
18.2
24.7
37.2
46.0
Wet
Wt.
(mg)
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
Image ID
APPENDIX F
Date
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
Cnt
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
1063
1063
1063
1063
1063
1063
1063
1063
1064
1064
1064
1064
1063
1063
1063
1063
1063
1063
1067
1067
1067
1067
1067
1067
1064
1064
1064
1064
1064
1064
3
2
2
2
2
2
2
2
3
3
3
3
1
1
1
1
1
1
8
8
8
8
8
8
8
8
8
8
8
9
11
01
02
03
04
05
06
07
01
02
03
04
01
02
03
04
05
06
15
16
17
18
19
20
01
02
03
04
05
01
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
114
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea calignosa
Lumbricus spp
Lumbricus rubellus
Dendrodrilus rubidus
Dendrodrilus rubidus
Dendrodrilus rubidus
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Amynthas spp
Lumbricus spp
Genus
Identification
35.654
12.238
20.015
19.498
23.602
28.546
48.373
53.356
13.811
20.310
23.054
22.625
9.114
12.088
16.258
14.596
13.720
16.075
24.236
30.064
31.677
31.106
23.050
25.568
7.265
11.442
21.769
22.568
48.064
16.436
35.525
12.220
20.017
19.401
23.542
28.488
48.275
53.640
13.820
20.333
22.983
22.587
9.120
12.112
16.301
14.612
13.786
16.087
24.247
30.180
31.808
30.990
23.050
25.497
7.289
11.432
21.811
22.508
47.884
16.467
35.579
12.184
19.956
19.499
23.499
28.541
48.448
53.170
13.776
20.421
23.054
22.602
9.122
12.077
16.243
14.577
13.741
15.990
24.204
30.092
31.710
30.986
22.966
25.571
7.272
11.456
21.725
22.566
47.872
16.410
samp 1 samp 2 samp 3
Length (mm)
35.586
12.214
19.996
19.466
23.548
28.525
48.365
53.389
13.802
20.355
23.030
22.605
9.119
12.092
16.267
14.595
13.749
16.051
24.229
30.112
31.732
31.027
23.022
25.545
7.275
11.443
21.768
22.547
47.940
16.438
mean
150
400
300
300
200
150
150
150
300
200
200
200
600
400
400
400
400
400
200
200
200
200
200
300
600
400
300
200
150
300
Img.
Mag.
(%)**
255.2
10.6
69.2
67.5
96.7
190.0
388.1
463.0
54.5
82.7
68.1
65.4
10.6
9.2
16.7
12.1
12.4
19.0
46.3
106.9
96.0
101.3
127.8
87.7
7.5
11.2
45.9
80.2
328.0
29.3
Wet
Wt.
(mg)
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
Image ID
APPENDIX F
Date
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
Cnt
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
1064
1064
1064
1064
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
9
9
9
9
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
9
9
9
9
9
9
9
9
02
03
04
05
01
02
03
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
01
02
03
04
05
06
07
08
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
115
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Lumbricus rubellus
Lumbricus rubellus
Lumbricus rubellus
Lumbricus rubellus
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Genus
Identification
19.370
19.446
20.767
19.677
24.225
24.194
37.694
6.877
11.565
15.629
18.618
17.889
16.374
26.444
33.690
47.356
46.977
58.933
52.530
55.586
67.613
67.879
11.074
16.802
16.119
19.916
24.040
21.755
28.866
28.080
19.464
19.438
20.740
19.705
24.331
24.303
37.596
6.875
11.594
15.645
18.645
18.004
16.417
26.522
33.497
47.359
47.045
59.060
52.455
56.029
67.648
68.147
11.067
16.816
16.209
19.751
24.026
21.881
28.900
28.171
19.365
19.387
20.715
19.649
24.264
24.318
37.549
6.894
11.567
15.612
18.522
17.907
16.446
26.420
33.733
47.351
46.872
59.018
52.485
56.038
67.599
67.662
11.116
16.764
16.160
19.875
24.197
21.899
28.885
28.208
samp 1 samp 2 samp 3
Length (mm)
19.400
19.424
20.741
19.677
24.273
24.272
37.613
6.882
11.575
15.629
18.595
17.933
16.412
26.462
33.640
47.355
46.965
59.004
52.490
55.884
67.620
67.896
11.086
16.794
16.163
19.847
24.088
21.845
28.884
28.153
mean
200
200
200
200
200
200
150
400
400
400
300
300
300
200
200
150
150
150
100
150
100
100
400
300
300
300
200
300
300
200
Img.
Mag.
(%)**
61.5
65.0
63.7
60.1
60.4
53.5
149.6
7.2
8.4
15.0
23.7
17.3
13.6
83.5
161.0
261.8
370.0
514.0
343.1
467.0
601.6
633.0
6.9
16.9
16.9
37.7
43.2
36.6
87.7
95.8
Wet
Wt.
(mg)
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
Image ID
APPENDIX F
Date
15-Oct-2010
15-Oct-2010
15-Oct-2010
14-Oct-2010
14-Oct-2010
21-Sep-2010
21-Sep-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
Cnt
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
1067
1067
1067
1070
1071
1072
1072
1072
1072
1072
1072
1072
1072
1072
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
9
9
9
8
9
3
3
3
3
3
8
8
8
9
8
8
2
2
2
2
9
9
9
9
9
9
9
9
9
9
09
10
11
01
01
01
02
01
02
03
01
02
03
01
01
02
11
12
13
14
10
11
12
13
14
15
16
17
18
19
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1449
1450
1451
1453
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
116
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Aporrectodea spp
Aporrectodea calignosa
Dendrobaena octaedra
Amynthas spp
Lumbricus spp
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Lumbricus spp
Dendrobaena octaedra
Dendrobaena octaedra
Dendrobaena octaedra
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Genus
Identification
31.046
40.316
58.942
11.306
47.758
27.349
10.363
14.453
20.612
21.236
11.787
9.356
13.561
19.033
6.634
9.729
38.430
45.207
50.258
53.023
21.850
31.776
39.653
29.790
32.062
32.516
36.123
41.168
36.197
51.178
31.123
40.201
59.043
11.325
48.022
27.489
10.451
14.640
20.656
21.317
11.800
9.298
13.529
18.980
6.674
9.738
38.521
45.562
50.299
53.073
21.848
32.018
39.952
29.886
32.110
32.378
36.295
41.062
36.157
51.339
31.124
39.982
58.808
11.304
47.756
27.376
10.456
14.510
20.488
21.187
11.763
9.242
13.549
19.010
6.640
9.668
38.470
45.557
50.547
53.112
21.869
31.862
39.776
29.677
32.129
32.728
36.221
41.210
36.241
51.312
samp 1 samp 2 samp 3
Length (mm)
31.098
40.166
58.931
11.312
47.845
27.405
10.423
14.534
20.585
21.247
11.783
9.299
13.546
19.008
6.649
9.712
38.474
45.442
50.368
53.069
21.856
31.885
39.794
29.784
32.100
32.541
36.213
41.147
36.198
51.276
mean
200
200
150
400
150
200
600
400
300
300
600
600
400
200
800
600
200
150
150
150
300
200
200
150
200
200
200
200
200
200
Img.
Mag.
(%)**
86.1
139.0
367.0
11.1
404.5
93.0
12.7
19.2
38.7
72.9
8.8
6.7
14.9
49.6
4.1
6.6
212.6
351.4
332.6
400.5
34.2
106.0
164.4
98.4
140.3
116.7
154.3
153.9
179.5
223.0
Wet
Wt.
(mg)
6096
6097
6098
6100
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
Image ID
APPENDIX F
Date
14-Oct-2010
14-Oct-2010
14-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
13-Oct-2010
30-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
21-Sep-2010
23-Sep-2010
30-Sep-2010
24-Sep-2010
24-Sep-2010
23-Sep-2010
24-Sep-2010
24-Sep-2010
Cnt
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
1083
1083
1083
3668
3668
3668
3668
1063
1016
1002
1003
1010
1010
1010
1010
1010
1010
1010
1010
1011
1011
1011
1013
1015
1016
1018
1018
1017
1021
1021
9
9
9
2
2
2
2
4
2
9
3
2
2
2
2
3
8
8
9
2
5
6
1
3
3
8
2
3
1
1
20
21
22
09
10
11
12
31
18
01
04
02
03
04
05
08
03
04
04
08
09
06
02
09
08
01
03
06
01
02
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1483
1484
1485
1486
1487
1488
1489
1514
1515
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
117
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Lumbricus rubellus
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Lumbricus spp
Lumbricus rubellus
Lumbricus spp
Amynthas spp
Amynthas spp
Lumbricus rubellus
Amynthas spp
Amynthas spp
Genus
Identification
30.759
41.521
51.355
41.507
45.716
40.121
41.821
9.405
10.005
48.583
54.032
55.220
58.520
55.789
59.773
59.491
54.124
56.803
57.244
58.420
45.687
66.346
44.835
52.639
75.998
60.870
65.500
49.803
51.792
51.384
30.634
41.618
51.491
41.777
45.832
40.039
41.830
9.376
10.017
48.810
54.055
55.204
58.650
55.945
59.922
59.686
53.947
56.854
57.281
58.069
45.733
66.139
44.846
52.865
75.639
60.707
65.371
50.246
51.927
51.392
30.742
41.657
51.413
41.824
45.692
40.284
41.778
9.365
9.995
48.456
54.165
55.101
58.712
55.765
59.765
59.772
53.933
56.883
57.336
58.186
45.804
66.311
44.889
52.745
75.896
60.651
65.951
50.264
51.877
51.232
samp 1 samp 2 samp 3
Length (mm)
30.712
41.599
51.420
41.703
45.747
40.148
41.810
9.382
10.006
48.616
54.084
55.175
58.627
55.833
59.820
59.650
54.001
56.847
57.287
58.225
45.741
66.265
44.857
52.750
75.844
60.743
65.607
50.104
51.865
51.336
mean
200
150
150
150
150
150
150
300
400
200
150
100
100
100
100
100
100
100
100
150
150
100
150
150
75
150
150
200
200
200
Img.
Mag.
(%)**
118.7
321.8
403.3
281.8
277.4
297.7
260.3
5.5
5.5
334.5
404.5
436.0
465.0
437.0
514.0
508.0
405.0
456.0
444.0
612.0
334.0
915.0
278.0
485.0
1443.0
540.0
624.0
413.5
397.0
630.0
Wet
Wt.
(mg)
6129
6130
6131
6132
6133
6134
6135
7778
7777
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6181
6182
6185
6186
6187
6188
6189
6190
6191
6192
6193
Image ID
APPENDIX F
Date
24-Sep-2010
24-Sep-2010
12-Oct-2010
12-Oct-2010
12-Oct-2010
07-Oct-2010
21-Sep-2010
21-Sep-2010
23-Sep-2010
23-Sep-2010
23-Sep-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
Cnt
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
1021
1021
1025
1025
1025
1054
1035
1035
1029
1045
1045
1055
1055
1055
1055
1055
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1063
1
5
9
8
8
3
8
9
2
9
9
2
3
3
4
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
03
02
02
08
09
03
03
04
07
03
04
07
13
14
15
16
25
26
24
07
08
09
10
11
12
13
14
15
16
17
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
118
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Amynthas spp
Amynthas spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Amynthas spp
Lumbricus rubellus
Lumbricus spp
Lumbricus spp
Amynthas spp
Amynthas spp
Aporrectodea spp
Aporrectodea spp
Lumbricus spp
Lumbricus spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Lumbricus spp
Genus
Identification
56.435
58.022
61.492
50.759
47.641
64.611
61.148
56.530
64.028
67.317
63.282
67.130
71.308
75.610
75.018
98.844
60.952
68.021
59.559
14.447
17.117
15.527
16.548
19.430
21.953
27.546
43.769
46.035
57.117
76.656
56.171
58.026
61.616
50.763
47.573
64.737
60.948
56.389
64.363
67.064
63.496
67.016
71.415
75.688
75.112
98.539
61.139
67.990
59.329
14.427
17.127
15.492
16.619
19.400
21.995
27.525
43.746
45.796
57.074
76.566
56.686
57.908
61.762
50.918
47.575
64.546
61.258
56.758
63.997
66.958
63.424
67.078
71.572
75.710
74.986
98.447
61.074
67.934
59.317
14.372
17.095
15.512
16.544
19.434
21.989
27.517
43.822
45.612
56.794
76.684
samp 1 samp 2 samp 3
Length (mm)
56.431
57.985
61.623
50.813
47.596
64.631
61.118
56.559
64.129
67.113
63.401
67.075
71.432
75.669
75.039
98.610
61.055
67.982
59.402
14.415
17.113
15.510
16.570
19.421
21.979
27.529
43.779
45.814
56.995
76.635
mean
100
100
150
100
200
150
200
150
150
150
150
150
150
100
100
100
100
150
150
400
400
300
300
300
200
200
100
150
150
100
Img.
Mag.
(%)**
521.5
541.5
509.5
512.5
591.5
445.5
287.2
370.2
372.8
543.0
564.5
549.5
702.5
1023.5
900.0
1211.0
695.5
627.0
457.5
18.2
23.5
19.2
22.4
27.6
87.9
71.6
362.6
376.1
663.4
1227.0
Wet
Wt.
(mg)
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
Image ID
APPENDIX F
Date
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
Cnt
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1067
1070
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
1083
8
8
8
8
8
8
8
8
8
8
3
3
9
9
9
9
9
9
3
8
8
8
8
8
8
8
8
8
8
8
21
22
23
24
25
26
27
28
29
30
04
05
13
14
15
16
17
18
01
03
04
05
06
07
08
09
10
11
12
13
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
119
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea calignosa
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea spp
Aporrectodea calignosa
Aporrectodea calignosa
Aporrectodea spp
Octolasion tyrtaeum
Lumbricus spp
Lumbricus spp
Octolasion spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Lumbricus spp
Aporrectodea spp
Genus
Identification
80.546
67.130
68.601
57.357
44.905
35.467
36.289
36.942
42.257
34.433
60.954
72.266
56.092
65.696
59.886
67.673
65.630
57.584
78.427
10.482
9.792
9.678
9.108
11.903
12.271
15.089
16.353
18.510
25.024
42.054
80.690
67.269
68.559
57.317
45.048
35.637
36.344
37.151
42.153
34.482
60.963
72.638
55.755
65.410
59.759
67.671
65.325
57.617
78.163
10.395
9.735
9.700
9.089
11.879
12.260
15.071
16.308
18.617
24.975
42.011
80.571
67.203
68.387
57.335
44.989
35.656
36.350
36.928
42.174
34.495
61.029
72.824
56.150
65.410
59.971
67.581
65.237
57.643
78.241
10.501
9.757
9.730
9.121
11.837
12.252
15.104
16.388
18.560
25.047
41.969
samp 1 samp 2 samp 3
Length (mm)
80.602
67.201
68.516
57.336
44.981
35.587
36.328
37.007
42.195
34.470
60.982
72.576
55.999
65.505
59.872
67.642
65.397
57.615
78.277
10.459
9.761
9.703
9.106
11.873
12.261
15.088
16.350
18.562
25.015
42.011
mean
100
150
150
100
150
200
200
200
150
200
100
150
100
150
150
150
100
150
100
600
600
600
600
400
400
400
300
300
300
200
Img.
Mag.
(%)**
747.3
603.7
593.7
675.9
390.4
149.6
132.2
168.9
217.8
146.3
558.4
674.7
473.1
475.4
377.5
697.8
264.3
555.3
947.5
7.2
8.1
6.9
6.4
11.5
11.9
18.2
24.0
28.5
80.1
251.0
Wet
Wt.
(mg)
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
Image ID
APPENDIX F
Date
14-Oct-2010
14-Oct-2010
14-Oct-2010
14-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
30-Sep-2010
30-Sep-2010
24-Sep-2010
24-Sep-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
20-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
Cnt
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
1083
1083
1083
1083
1388
1388
1388
1388
1002
1002
1006
1016
1016
1021
1021
1068
1068
1068
1068
1068
1039
1039
1039
1039
1039
1039
1044
1044
1044
1044
8
8
8
8
2
2
2
3
3
8
9
9
9
2
6
2
2
2
4
4
2
2
8
9
9
9
2
2
2
2
14
15
17
18
02
03
04
02
04
04
01
07
08
01
05
01
02
03
06
07
01
02
01
02
03
04
01
02
03
04
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
2081
2082
2084
2085
2087
2088
2089
2091
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
x
x
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus rubellus
Lumbricus spp
Octolasion spp
Aporrectodea rosea
Lumbricus spp
Lumbricus terrestris
Lumbricus terrestris
Lumbricus rubellus
Lumbricus terrestris
Lumbricus terrestris
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Genus
Identification
22.690
18.794
52.094
41.711
12.865
26.468
31.680
50.461
73.501
73.364
85.920
96.455
102.101
61.025
56.708
80.161
93.418
61.641
69.478
77.943
91.961
74.171
96.291
69.625
72.731
81.181
95.454
88.531
81.480
99.255
23.043
18.847
51.701
41.839
12.911
26.370
31.793
50.611
73.661
73.377
86.079
96.123
102.142
60.743
56.726
80.138
93.125
61.555
69.438
77.730
91.784
74.229
96.365
70.033
72.761
81.116
95.213
88.474
81.772
99.388
22.958
18.768
52.127
41.868
12.842
26.651
31.800
50.476
73.599
72.977
86.144
96.136
102.122
60.966
56.823
79.998
93.397
61.530
69.270
77.879
91.653
74.383
96.599
69.624
72.663
81.232
95.605
88.119
81.595
99.224
samp 1 samp 2 samp 3
Length (mm)
22.897
18.803
51.974
41.806
12.873
26.496
31.758
50.516
73.587
73.239
86.048
96.238
102.122
60.911
56.752
80.099
93.313
61.575
69.395
77.851
91.799
74.261
96.418
69.761
72.718
81.176
95.424
88.375
81.616
99.289
mean
200
300
200
150
400
200
200
200
100
100
100
100
100
150
150
75
100
100
150
100
100
100
100
75
75
100
100
100
100
75
Img.
Mag.
(%)**
54.4
38.8
258.4
376.3
10.9
121.0
133.1
318.5
653.0
1312.0
1185.0
1513.0
2266.0
543.0
532.0
1994.0
2496.0
1246.0
991.7
1802.0
1683.5
1095.0
1890.0
1127.0
1130.0
1214.6
2260.0
1905.0
1616.0
2463.0
Wet
Wt.
(mg)
6254
6255
6257
6258
6259
6260
6261
6262
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
Image ID
APPENDIX F
120
Date
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
30-Sep-2010
23-Sep-2010
07-Oct-2010
07-Oct-2010
07-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
15-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
13-Oct-2010
15-Oct-2010
14-Oct-2010
Cnt
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1045
1050
1050
1051
1055
1055
1055
1055
1055
1063
1063
1063
1063
1063
1063
1063
1064
1067
1083
2
2
8
8
8
8
9
9
9
9
9
2
9
9
3
1
1
1
2
4
4
4
4
4
3
3
3
9
9
2
05
06
04
05
06
07
03
04
05
06
07
01
03
04
02
08
09
10
08
17
27
28
29
30
12
13
14
06
19
15
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
121
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Amynthas spp
Lumbricus spp
Lumbricus spp
Lumbricus terrestris
Lumbricus spp
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Lumbricus terrestris
Amynthas spp
Lumbricus terrestris
Aporrectodea spp
Genus
Identification
94.914
84.939
100.486
85.573
102.779
80.785
74.132
115.525
66.377
80.288
98.853
88.775
53.041
75.991
129.827
74.126
84.536
98.036
114.928
111.828
100.437
91.479
86.328
83.521
98.056
103.373
125.305
73.773
78.695
70.032
95.338
84.831
100.668
85.380
102.098
80.940
74.301
115.329
66.347
80.457
98.829
88.745
53.241
76.074
129.448
74.212
84.679
98.417
114.696
111.962
100.501
91.569
85.834
83.218
97.643
103.324
125.901
73.537
78.350
69.649
95.144
84.770
100.703
85.089
102.060
80.884
74.321
115.268
66.346
80.464
98.643
88.927
53.132
76.391
130.194
74.131
84.607
98.687
114.428
111.966
100.822
91.575
85.856
83.127
97.756
103.310
125.658
73.903
78.270
69.967
samp 1 samp 2 samp 3
Length (mm)
95.132
84.847
100.619
85.347
102.312
80.870
74.251
115.374
66.357
80.403
98.775
88.816
53.138
76.152
129.823
74.156
84.607
98.380
114.684
111.919
100.587
91.541
86.006
83.289
97.818
103.336
125.621
73.738
78.438
69.883
mean
100
75
75
75
100
100
100
75
100
75
100
100
200
150
100
150
100
100
100
100
100
100
100
100
100
100
75
100
100
150
Img.
Mag.
(%)**
2186.0
2075.0
2716.0
1714.0
2319.0
1410.0
1160.0
3344.0
1207.0
1969.0
2373.0
2215.0
474.7
876.2
2858.0
959.2
1693.0
2099.0
3153.0
2710.0
1684.0
1736.0
1780.0
1479.0
2430.0
3126.0
3395.0
1053.0
1575.0
579.3
Wet
Wt.
(mg)
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6398
6400
6401
6402
Image ID
APPENDIX F
898
899
900
901
902
903
904
905
906
Cnt
3
3
3
3
9
2
2
8
2
15
16
17
18
23
01
06
06
04
B
B
B
B
B
B
B
B
B
3053
3054
3055
3056
3057
3058
3059
3060
4001
x
x
x
x
Num Juv.
Specimen
Vial ID
Site Mod Num Pre
14-Oct-2010 1083
14-Oct-2010 1083
14-Oct-2010 1083
14-Oct-2010 1083
14-Oct-2010 1083
07-Oct-2010 1388
24-Sep-2010 AT02
24-Sep-2010 AT01
24-Sep-2010 1018
Date
Worm ID
Metroparks Field Study: Earthworm Raw Data
Species
Aporrectodea spp
Aporrectodea spp
Aporrectodea spp
Lumbricus terrestris
Aporrectodea longa
Lumbricus spp
Lumbricus terrestris
Lumbricus rubellus
Amynthas spp
Genus
Identification
61.509
65.698
73.076
131.642
63.064
74.400
97.642
56.602
101.054
61.528
65.639
73.124
131.565
63.173
74.427
97.496
56.778
101.350
3.387
75
0.1
247.1
min
avg 32.171 200
Wet
Wt.
(mg)
444.1
635.4
750.6
2260.0
444.8
992.8
468.0
1803.0
2559.0
3395.0
61.503
65.680
73.046
131.637
63.096
74.367
97.659
56.686
101.180
131.637
mean
Img.
Mag.
(%)**
150
150
150
75
150
100
100
100
100
800
61.471
65.703
72.939
131.704
63.052
74.274
97.840
56.679
101.135
max
samp 1 samp 2 samp 3
Length (mm)
6403
6404
6405
6406
6407
6408
6409
6410
6423
Image ID
APPENDIX F
122
APPENDIX G1
Metroparks Field Study: Plot Profile, by Earthworm Species
1002
1003
1004
1005
1006
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1021
1022
1024
1025
1025
1026
1028
1029
1030
1031
1033
1034
1035
1038
1039
1040
1041
1044
1045
1047
1048
1050
1051
1053
1054
1055
1058
1060
1063
1064
1067
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 2
1
1
1
1
1
1
19
1
1
1
2
1
2
1
1
4
9
1
3
3
1
2
1
2
1
1
2
2
9
1
1
6 1
2
16
4
1
1
6
1
1
1 1
5
1
5
1 4
2
1
4
7
9
7
5
14
6
2
1
3
2
1
0
1
1
0
20
2
1
2
0
1
3
1
4
0
9
1
0
3
6
0
1
0
2
1
0
1
4
0
9
2
9
16
4
1
1
7
3
0
5
7
11
7
16
13
15
123
6
1
1
3
6
1
2
8
1
6
1
27
1
4
3
2
2
2
1
1
2
11
2
2
1
12
1
12
24
4
1
3
3
7
2
21
9
2
1
4
1
1
2
3
1
1
2
14
1
4
1
1
3
12
2
5
4
24
6
1
2
7
2
1
32
1
1
24
1
18
35
28
4
17
2
SUBTOTAL
Lumbricus rubellus
Lumbricus terrestris
Octolasion spp.
Octolasion cyaneum
Octolasion tyrtaeum
Amynthas spp.
Lumbricus spp.
Aporrectodea calignosa
Aporrectodea longa
Aporrectodea rosea
Dendrobaena octaedra
Dendrodrilus rubidus
Eisenia fetida
Aporrectodea spp.
SUBTOTAL
Juveniles By Species
Dendrodrilus rubidus
Eisenia fetida
Lumbricus spp.
Lumbricus rubellus
Lumbricus terrestris
Octolasion spp.
Octolasion cyaneum
Octolasion tyrtaeum
Amynthas spp.
Sampling Instance
Aporrectodea spp.
Aporrectodea calignosa
Aporrectodea longa
Aporrectodea rosea
Dendrobaena octaedra
Site ID
Adults By Species
6
2
0
10
0
11
0
1
34
4
3
0
17
27
6
2
4
1
10
13
25
14
2
3
17
0
2
1
19
1
0
3
22
27
5
0
0
0
10
2
0
0
33
21
1
52
4
52
1068 1
1070 1
1071 1
1072 1
1072 2
1074 1
1083 1
1136 1
1376 1
1388 1
3420 1
3484 1
3596 1
3668 1
3732 1
AT01 1
AT02 1
Total
1
1
5
1
2 1
1
3
1
0 32 1 1 24 14 1
1
1
0 28 19
1
5
124
SUBTOTAL
Lumbricus rubellus
Lumbricus terrestris
Octolasion spp.
Octolasion cyaneum
Octolasion tyrtaeum
Amynthas spp.
Lumbricus spp.
Adults By Species
Aporrectodea calignosa
Aporrectodea longa
Aporrectodea rosea
Dendrobaena octaedra
Dendrodrilus rubidus
Eisenia fetida
Aporrectodea spp.
SUBTOTAL
Dendrodrilus rubidus
Eisenia fetida
Lumbricus spp.
Lumbricus rubellus
Lumbricus terrestris
Octolasion spp.
Octolasion cyaneum
Octolasion tyrtaeum
Amynthas spp.
Sampling Instance
Aporrectodea spp.
Aporrectodea calignosa
Aporrectodea longa
Aporrectodea rosea
Dendrobaena octaedra
Site ID
Metroparks Field Study: Plot Profile, by Earthworm Species
Juveniles By Species
5 9
1
10
2
0
1
1
0
1
1
1
5
2
2
0
0
4 45
23
1
69
0
0
0
0
1 2
6
1
9
0 5
5
0
0
0 3
3
2
2 39
17
56
0
0
4
2
1
3
2
2
2
4
0 2 19 82 223 285 0 0 0 9 0 0 306 0 0 29 0 0 0 629
Metroparks Field Study: Earthworm Site Profiles, By Species
1
1
3
6
1
1
2
1
1
6
5
2
2
2
2
1
1
2
11
2
2 3
8
1
27 1
1
19
1
1
3
12 1
3
24
2
4 1
1
3
1
1
1
4
9
7 1
2
21 3
9
2
1
4
1
1
12
1
2
3
2
1
1
1
2
2
1
1
4
1 2
14
3
12
2
5
1
1
2
9
1
6 1
4
24 2
6 1
1
16
4
1
2
1
6
1
7 1
1
2 1 1
5
32 1
1 5
1
24 9
1 1 4
18 2
2
7
5
35 14
1
4
28
7
4 6
17
1
2
Species Richness (by species)
6 1 2
1 1
1
TOTAL
Lumbricus rubellus
Lumbricus terrestris
Octolasion spp.
Octolasion cyaneum
Octolasion tyrtaeum
Amynthas spp.
Lumbricus spp.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Aporrectodea calignosa
Aporrectodea longa
Aporrectodea rosea
Dendrobaena octaedra
Dendrodrilus rubidus
Eisenia fetida
Sampling Instance
1002
1003
1004
1005
1006
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1021
1022
1024
1025
1025
1026
1028
1029
1030
1031
1033
1034
1035
1038
1039
1040
1041
1044
1045
1047
1048
1050
1051
1053
1054
1055
1058
1060
1063
1064
1067
Aporrectodea spp.
Site ID
All By Species
9
4
1
10
1
12
0
21
36
5
5
0
18
30
7
6
4
10
11
13
28
20
2
4
17
2
3
1
20
5
0
12
24
36
21
4
1
1
17
5
0
5
40
32
8
68
17
67
2
2
1
3
1
4
0
3
3
1
2
0
3
4
2
3
2
2
3
2
3
4
1
3
3
1
2
1
3
2
0
2
4
5
2
1
1
1
4
3
0
1
4
3
2
2
3
2
125
TOTAL
Lumbricus rubellus
Lumbricus terrestris
Octolasion spp.
Octolasion cyaneum
Octolasion tyrtaeum
Amynthas spp.
Lumbricus spp.
Aporrectodea calignosa
Aporrectodea longa
Aporrectodea rosea
Dendrobaena octaedra
Dendrodrilus rubidus
Eisenia fetida
Sampling Instance
Aporrectodea spp.
Site ID
All By Species
1068 1
9
1
5 15
1070 1
1
1
2
1071 1
1
1
1072 1
1
1
2
1072 2
5
2
7
1074 1
0
1083 1 45
1
23 2 1 1
73
1136 1
0
1376 1
0
1388 1
2
1
6
1
10
3420 1
5
5
3484 1
0
3596 1
3
3
3668 1 39
17
2
58
3732 1
0
AT01 1
5
1 1
7
AT02 1
3
2
1
6
Total 285 32 1 1 33 14 1 306 28 19 29 2 19 82 852
126
Species Richness (by species)
Metroparks Field Study: Earthworm Site Profiles, By Species
3
2
1
2
2
0
4
0
0
3
1
0
1
3
0
2
2
APPENDIX G2
1
1
1
1
19
1
1
1
2
1
2
1
1
4
9
1
3
3
1
2
1
2
1
2
1
2
9
1
1
6 1
2
16
4
1
1
6
1
1
2
5
1
5
5
2
9
7
1
4
7
3
2
1
0
1
1
0
20
2
1
2
0
1
3
1
4
0
9
1
0
3
6
0
1
0
2
1
0
1
4
0
9
2
9
16
4
1
1
7
3
0
5
7
11
7
16
6
1 1
3
6 1
2
8 1
6
1
27 1
4
3
2
2 1
2
1
1
2
11
2
2
1
12
12 3
24
4
1
3 1
7
2
21
9
2
1
4
1
2
3
1
1
2
14
1
4 1
1
3
12
2
5
4 6
24 1
2
7 1
2
32
1
1
24
1
18 2
28
127
6
11
0
10
0
11
0
1
34
4
3
0
17
45
6
2
4
1
10
13
25
14
2
3
17
0
2
1
19
10
0
3
22
27
5
0
0
0
10
2
0
0
42
30
1
52
9
11 2
1
3
2
1
1
6
5
2
1
19
28 2
3
2
2 1
2
1
13 3
26 1
5
1
4
3 1
9
8 1
2
24 2
9 5
2
1 2
4 1
2
1
2
11
2
5 1
1
12
2
6 1
1
8 1
1
14
1
4 2
12 2
3
12 1
2
6 1
5
4 7
26 1
9
16
4
1
1
2 6
1
8 1
4
5
33
15
1
33
15 1
2 6
7
35
TOTAL
Octolasion
Amynthas
Lumbricus
Dendrobaena
Dendrodrilus
Eisenia
Aporrectodea
All by Genus
SUBTOTAL
Octolasion
Amynthas
Lumbricus
Dendrobaena
Dendrodrilus
Eisenia
Aporrectodea
1
SUBTOTAL
3
1
Juveniles by Genus
Amynthas
Dendrobaena
Octolasion
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Dendrodrilus
Eisenia
Lumbricus
1002
1003
1004
1005
1006
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1021
1022
1024
1025
1025
1026
1028
1029
1030
1031
1033
1034
1035
1038
1039
1040
1041
1044
1045
1047
1048
1050
1051
1053
1054
1055
1058
1060
1063
Sampling Instance
Aporrectodea
Site ID
Adults by Genus
9
13
1
10
1
12
0
21
36
5
5
0
18
48
7
6
4
10
11
13
28
20
2
4
17
2
3
1
20
14
0
12
24
36
21
4
1
1
17
5
0
5
49
41
8
68
Species Richness (by Genus)
Metroparks Field Study: Plot Profile, by Earthworm Genus
1
2
1
3
1
4
3
3
1
2
3
4
2
3
2
2
3
2
3
4
1
3
3
1
2
1
3
2
2
4
5
2
1
1
1
4
2
1
3
3
2
2
4
17
1
128
5
1
1
5
5
3
33
1
18
1
2
TOTAL
Octolasion
Amynthas
4
52 49
10
9
0
0
1
1
2
2
0
45
23 1
69 46
0
0
2
6 1
9
3
5
5
5
0
3
3
3
39
17
56 39
0
2
1
3
2
2
4
312 9 0 0 333 29 0 683 346
35
9
Dendrobaena
Dendrodrilus
Eisenia
Aporrectodea
SUBTOTAL
Octolasion
Amynthas
Lumbricus
Dendrobaena
Dendrodrilus
Eisenia
All by Genus
Lumbricus
1064 1
5
6
2 13
1067 1 14
1
15
1068 1
5
5
1070 1
1
1
2
1071 1
1
1
1072 1
1
1
1072 2
5
5
1074 1
0
1083 1 1
3
4
1136 1
0
1376 1
0
1388 1 1
1
3420 1
0
3484 1
0
3596 1
0
3668 1
2
2
3732 1
0
AT01 1
3
1
4
AT02 1
1
1
2
Total 34 24 14 1 47 21 82 223
Aporrectodea
Juveniles by Genus
SUBTOTAL
Amynthas
Octolasion
Dendrodrilus
Eisenia
Lumbricus
Dendrobaena
Sampling Instance
Aporrectodea
Site ID
Adults by Genus
17
67
5 15
1
2
1
1
1
2
2
7
0
26 1
73
0
0
6 1
10
5
0
3
17 2
58
0
2
7
3
6
14 1 380 50 82 906
Species Richness (by Genus)
Metroparks Field Study: Plot Profile, by Earthworm Genus
3
2
3
2
1
2
2
3
3
1
1
3
2
2
APPENDIX H
2
2
1
2
2
2
2
2
n/a
2
1
1
2
n/a
2
2
2
2
2
1
2
2
2
2
2
4
n/a
n/a
1
2
2
2
n/a
2
n/a
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2 1
2 1
2 1
2 1
2 1
2 1
2 1
9 1
n/a 1
n/a 1
20-Sep-2010
20-Sep-2010
22-Sep-2010
20-Sep-2010
20-Sep-2010
21-Sep-2010
20-Sep-2010
20-Sep-2010
22-Sep-2010
22-Sep-2010
21-Sep-2010
21-Sep-2010
23-Sep-2010
2-Oct-2010
22-Sep-2010
24-Sep-2010
21-Sep-2010
24-Sep-2010
20-Sep-2010
21-Sep-2010
23-Sep-2010
12-Oct-2010
21-Sep-2010
22-Sep-2010
23-Sep-2010
21-Sep-2010
22-Sep-2010
22-Sep-2010
24-Sep-2010
21-Sep-2010
24-Sep-2010
20-Sep-2010
22-Sep-2010
23-Sep-2010
30-Sep-2010
23-Sep-2010
22-Sep-2010
13-Oct-2010
5-Oct-2010
5-Oct-2010
24-Sep-2010
5-Oct-2010
15-Oct-2010
5-Oct-2010
30-Sep-2010
13-Oct-2010
Weight (g)
Wet
Dry
Total Sample
54.57
45.48
34.89
34.89
57.80
57.80
42.93
42.93
269.04 186.31
55.60
55.60
84.39
84.39
131.28 100.69
n/a
n/a
165.87
99.40
30.53
30.53
84.35
84.35
93.98
93.98
88.98
88.98
73.65
73.65
51.68
51.68
30.63
30.63
38.86
38.86
72.89
42.14
247.00
69.12
54.92
54.92
92.17
70.00
164.08
71.76
72.45
72.45
58.49
58.49
14.09
14.09
170.42
88.94
88.10
88.10
51.31
51.31
50.13
50.13
146.57
75.58
59.55
59.55
77.93
77.93
147.65
78.04
22.18
22.18
n/a
n/a
91.26
91.26
149.80
70.83
393.54 393.54
128.88 128.88
48.94
48.94
41.01
41.01
112.89 112.89
211.78 211.78
228.38 228.38
n/a
n/a
Total Sample
45.57
37.98
22.96
22.96
25.56
25.56
34.25
34.25
114.41
79.23
31.57
31.57
55.76
55.76
80.80
61.97
n/a
n/a
74.76
44.80
27.24
27.24
52.68
52.68
36.97
36.97
33.70
33.70
62.98
62.98
36.56
36.56
27.96
27.96
25.36
25.36
56.92
32.91
170.49
47.71
25.99
25.99
61.02
46.34
127.98
55.97
35.36
35.36
23.93
23.93
11.12
11.12
88.97
46.43
42.90
42.90
36.15
36.15
36.04
36.04
105.19
54.24
36.46
36.46
49.38
49.38
81.34
42.99
9.59
9.59
n/a
n/a
43.02
43.02
86.46
40.88
118.42 118.42
37.78
37.78
39.06
39.06
11.84
11.84
46.52
46.52
57.07
57.07
86.52
86.52
n/a
n/a
129
Moisture
Collection
Date
1002
1003
1004
1005
1006
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1021
1022
1024
1025
1025
1026
1028
1029
1030
1031
1033
1034
1035
1038
1039
1040
1041
1044
1045
1047
1048
1050
1051
1053
1054
1055
1058
1060
1063
Samp. Inst.
Site ID
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
Module
Cnt
Metroparks Field Study: Litter Data
16.49%
34.19%
55.78%
20.22%
57.47%
43.22%
33.93%
38.45%
n/a
54.93%
10.78%
37.55%
60.66%
62.13%
14.49%
29.26%
8.72%
34.74%
21.90%
30.98%
52.68%
33.80%
22.00%
51.19%
59.09%
21.08%
47.80%
51.31%
29.55%
28.11%
28.23%
38.77%
36.64%
44.91%
56.76%
n/a
52.86%
42.28%
69.91%
70.69%
20.19%
71.13%
58.79%
73.05%
62.12%
n/a
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
1064 n/a 1
1067 n/a 1
1068 2 1
1070 2 1
1071 2 1
1072 2 1
1072 2 2
1074 1 1
1083 2 1
1136 2 1
1376 9 1
1388 2 1
3420 1 1
3484 2 1
3596 2 1
3668 2 1
3732 1 1
AT01 8 1
AT02 n/a 1
13-Oct-2010
15-Oct-2010
13-Oct-2010
14-Oct-2010
14-Oct-2010
21-Sep-2010
7-Oct-2010
14-Oct-2010
14-Oct-2010
12-Oct-2010
7-Oct-2010
7-Oct-2010
7-Oct-2010
7-Oct-2010
7-Oct-2010
7-Oct-2010
7-Oct-2010
24-Sep-2010
24-Sep-2010
Weight (g)
Wet
Dry
Total Sample
n/a
n/a
274.81 197.02
69.64
69.64
155.11 155.11
78.97
78.97
46.06
46.06
173.21 173.21
10.99
10.99
111.23 111.23
131.19 131.19
196.68 196.68
202.77 202.77
190.61 190.61
241.53
96.15
190.12 190.12
41.46
41.46
69.30
69.30
99.02
57.40
n/a
n/a
Total Sample
n/a
n/a
54.25
38.89
55.02
55.02
52.13
52.13
24.33
24.33
40.57
40.57
74.74
74.74
5.21
5.21
50.00
50.00
96.46
96.46
90.48
90.48
102.25 102.25
82.36
82.36
101.71
40.49
72.56
72.56
22.15
22.15
29.79
29.79
93.09
53.96
n/a
n/a
130
Moisture
Collection
Date
Samp. Inst.
Module
Site ID
Cnt
Metroparks Field Study: Litter Data
n/a
80.26%
20.99%
66.39%
69.19%
11.92%
56.85%
52.59%
55.05%
26.47%
54.00%
49.57%
56.79%
57.89%
61.83%
46.58%
57.01%
5.99%
n/a
APPENDIX I
Earthworm Community - Plant Community Interactions
The following are Pearson correlations that yielded relationships of interest.
Abundances and biomasses are natural log transformed; FQAI, percent sensitive plants, tolerant plants,
and bare ground are arcsine-square root transformed.
a) Earthworm Abundance vs. Plant Community Metrics.
Sensitive Plants Tolerant
Bare
(%)
Plants (%) Ground (%)
FQAI
-2
(m )
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
N=54
r
-0.29
-0.02
-0.18
0.14
-0.24
0.01
0.13
P
0.03
0.92
0.20
0.30
0.09
0.95
0.37
r
-0.37
0.18
0.10
0.07
-0.06
-0.22
-0.09
P
0.01
0.20
0.47
0.59
0.65
0.11
0.53
r
0.25
-0.14
-0.09
-0.09
0.19
0.19
-0.16
P
r
P
0.07 0.21 0.13
0.32 -0.10 0.47
0.51 0.12 0.37
0.54 0.05 0.75
0.17 0.12 0.39
0.18 0.29 0.03
0.25 0.17 0.23
b) Earthworm Biomass by Genus vs. Plant Community Metrics.
FQAI
-2
(m )
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
N=54
r
-0.30
-0.04
0.17
0.14
-0.28
0.03
0.14
Sensitive Plants
P
0.02
0.80
0.23
0.30
0.04
0.82
0.30
r
-0.40
0.21
0.09
0.07
0.02
-0.12
-0.06
P
0.003
0.13
0.51
0.59
0.86
0.38
0.67
Tolerant
r
0.30
-0.17
-0.07
-0.09
0.21
0.23
-0.17
Bare
P
r
P
0.03 0.22 0.11
0.23 -0.12 0.38
0.61 0.21 0.12
0.54 0.05 0.75
0.14 0.06 0.69
0.09 0.17 0.24
0.22 -0.18 0.21
c) Earthworm Biomass by Ecological Group vs. Plant Community Metrics.
FQAI
-2
(mg/m )
Epigeic
Endogeic
Anecic
N=54
r
P
-0.31 0.02
-0.26 0.06
0.14 0.30
Sensitive Plants
r
P
-0.26 0.06
0.04 0.77
-0.06 0.67
131
Tolerant
Bare
r
P
r
P
0.18 0.18 0.18 0.21
0.18 0.19 0.11 0.44
-0.17 0.22 -0.18 0.21
APPENDIX J
Earthworm Community - Invertebrate Community / Litter Interactions
The following are Pearson correlations that yielded relationships of interest.
Abundances and biomasses are natural log transformed.
Evenness is arcsine-square root transformed.
a1) Earthworm Abundance vs. Invertebrate Community Metrics.
Abundance
(m-2)
-2
(m )
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
ALL Genera
N=58
r
-0.08
-0.07
0.17
0.11
-0.14
-0.16
0.11
-0.13
P
0.55
0.59
0.21
0.44
0.33
0.25
0.42
0.33
Evenness
r
-0.19
0.04
0.03
0.06
0.07
0.10
-0.05
-0.02
P
0.17
0.79
0.86
0.66
0.63
0.46
0.70
0.86
Dry Litter
Mass
(mg/m2)
r
-0.09
0.30
-0.03
-0.05
0.001
-0.05
-0.003
0.02
P
0.53
0.03
0.84
0.72
0.99
0.74
0.98
0.88
a2) Earthworm Abundance vs. Invertebrate Community Metrics.
Araneae (m-2)
(m-2)
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
ALL Genera
N=58
r
-0.21
0.10
-0.01
-0.14
-0.09
-0.19
0.04
-0.13
P
0.14
0.47
0.94
0.33
0.53
0.18
0.80
0.34
Acari
(m-2)
r
-0.03
-0.15
0.11
0.03
-0.15
-0.14
0.06
-0.15
P
0.81
0.29
0.44
0.83
0.27
0.31
0.68
0.27
Collembola
(m-2)
r
0.04
-0.05
0.19
0.16
-0.02
-0.12
0.16
0.05
132
P
0.77
0.73
0.16
0.25
0.91
0.39
0.26
0.70
Coleoptera
(m-2)
r
0.05
-0.003
-0.12
-0.21
-0.05
0.03
-0.08
-0.02
P
0.74
0.99
0.37
0.12
0.73
0.86
0.59
0.91
Hymenoptera
(m-2)
r
P
0.00 0.99
-0.19 0.17
0.44 0.001
0.34 0.01
0.23 0.10
0.08 0.55
0.05 0.73
0.16 0.24
Earthworm Community - Invertebrate Community / Litter Interactions
b1) Earthworm Biomass by Genus vs. Invertebrate Community Metrics.
Abundance
(m-2)
-2
(m )
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
ALL Genera
N=58
r
0.06
0.08
0.20
0.13
-0.01
-0.08
0.07
0.09
P
0.67
0.55
0.13
0.33
0.94
0.54
0.59
0.51
Evenness
r
0.13
0.01
-0.11
0.03
0.20
0.16
0.10
0.27
P
0.340
0.92
0.41
0.85
0.14
0.23
0.450
0.04
Dry Litter
Mass
(mg/m2)
r
-0.04
0.18
0.11
0.11
0.06
-0.26
-0.25
-0.17
P
0.76
0.19
0.41
0.43
0.67
0.05
0.05
0.19
b2) Earthworm Biomass by Genus vs. Invertebrate Community Metrics.
Araneae
(m-2)
(m-2)
r
P
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
-0.004
0.18
0.17
0.21
-0.06
0.98
0.18
0.22
0.11
0.63
Acari
(m-2)
r
0.08
0.09
0.21
0.01
0.03
Collembola
(m-2)
P
0.53
0.51
0.12
0.47
0.80
r
-0.01
0.04
0.03
0.11
-0.07
P
Coleoptera
(m-2)
r
P
Hymenoptera
(m-2)
r
P
0.94
0.77
0.83
0.42
0.60
0.19
0.08
0.25
0.17
0.26
0.16
0.57
0.06
0.20
0.05
-0.02
-0.03
0.25
0.31
-0.03
0.87
0.82
0.06
0.02
0.84
Octolasion
-0.04 0.78
-0.04 0.79
-0.05 0.69
0.21
0.12
-0.17
0.20
Amynthas
ALL Genera
N=58
0.01 0.94
-0.001 0.99
-0.05 0.70
0.06 0.68
0.26 0.05
0.09 0.50
-0.15
0.21
0.26
0.11
0.19
0.11
0.16
0.44
133
Earthworm Community - Invertebrate Community / Litter Interactions
c1) Earthworm Biomass by Ecological Group vs. Invertebrate Community Metrics.
Abundance
(m-2)
-2
(AFDM mg/m )
Epigeic
Endogeic
Anecic
N=58
r
P
0.10 0.44
-0.02 0.91
0.07 0.59
Evenness
Dry Litter
Mass
(mg/m2)
r
P
0.13 0.34
0.19 0.15
0.10 0.45
r
P
0.04 0.75
0.003 0.98
-0.25 0.05
c2) Earthworm Biomass by Ecological Group vs. Invertebrate Community Metrics.
Araneae
(m-2)
(AFDM mg/m-2)
Epigeic
Endogeic
Anecic
N=58
r
P
0.07 0.59
-0.06 0.64
0.01 0.94
Acari
(m-2)
Collembola
(m-2)
Coleoptera
(m-2)
r
P
0.14 0.31
0.05 0.72
-0.05 0.70
r
P
-0.001 0.99
-0.01 0.48
0.26 0.05
r
0.23
0.31
-0.15
d) Invertebrate Abundance (m-2) vs. Dry Litter Mass (g/m2)
(r=0.39, P=0.002)
134
P
0.09
0.02
0.26
Hymenoptera
(m-2)
r
0.04
-0.05
0.19
P
0.79
0.74
0.16
APPENDIX K
Earthworm Community - Earthworm Community Interactions
The following are Pearson correlations that yielded relationships of interest.
Abundances and biomasses are natural log transformed.
a) Earthworm Interactions for Abundance by Genus.
Aporrectodea Dendrobaena
-2
(m )
(m-2)
r
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
Dendrodrilus
-2
(m )
P
r
-0.25 0.06
-0.10 0.46 -0.12
0.01
0.97 -0.06
0.52 <0.001 0.003
0.36
0.01 -0.15
-0.15 0.29 -0.22
Eisenia
-2
-2
(m )
P
0.38
0.66
0.98
0.29
0.11
r
(m )
P
0.68* <0.001
0.19
0.18
-0.07
0.60
0.09
0.50
(m-
Lumbricus
2
)
Octolasion
(m-2)
r
P
r
P
r
P
0.21
0.04
-0.07
0.13
0.76
0.63
0.48
-0.47
<0.001
<0.001
-0.37
0.01
N=54
* This is an artifact of the statistical program: it is not possible to produce a correlation with a single data point (Eisenia, N=1).
b) Earthworm Interactions for Biomass by Genus.
Aporrect.
2
(AFDM mg/m )
Dendrob.
(AFDM
mg/m2)
(AFDM mg/m2)
r
P
r
P
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
-0.22
-0.12
-0.01
0.46
0.30
-0.19
0.11
0.38
0.95
0.001
0.03
0.16
-0.14
-0.06
0.170
-0.13
-0.24
0.33
0.66
0.23
0.35
0.09
Eisenia
(AFDM
Dendrodrilus
2
(AFDM mg/m )
r
mg/m2)
P
0.49* <0.001
0.03
0.86
-0.16
0.25
0.11
0.43
Lumbricus
2
(AFDM mg/m )
Octolasion
(AFDM
mg/m2)
r
P
r
P
r
P
0.09
-0.13
-0.07
0.51
0.37
0.61
0.35
-0.56
0.01
<0.001
-0.41
0.002
N=54
* This is an artifact of the statistical program: it is not possible to produce a correlation with a single data point (Eisenia, N=1).
c) Earthworm InteractionsEpigeic
for Biomass by
Ecological Group.
Endogeic
(AFDM mg/m2)
Epigeic
Endogeic
Anecic
N=54
(AFDM
mg/m2)
(AFDM
mg/m2)
r
r
P
P
0.48 <0.001
-0.24 0.08 -0.64 <0.001
d) T-tests between Plots with and without Dendrobaena by Abundance.
Other Genera
N=
P
0.16
0.05
0.82
0.90
<0.001
Dendrobaena
Genus*
Aporrectodea
Dendrodrilus
Lumbricus
Octolasion
Amynthas
12
42
*Eisenia (N=1) excluded from analysis due to insufficient representation.
135
APPENDIX L
Earthworm Community - Soil Community Interactions
The following are Pearson correlations that yielded relationships of interest.
Biomasses and ppm quantities are natural log transformed.
Percentages are arcsine-square root transformed.
a1) Earthworm Biomass by Genus vs. Soil Parameters 1.
Total
Total
Carbon (%) Nitrogen (%)
-2
(m )
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
N=54
r
0.23
0.34
0.07
0.05
-0.27
-0.15
-0.06
P
0.09
0.01
0.64
0.71
0.05
0.27
0.69
r
-0.33
0.26
0.14
0.08
-0.41
-0.17
0.09
P
0.01
0.06
0.32
0.56
0.002
0.21
0.53
Organic
Matter
(%)
r
-0.23
0.35
0.02
0.02
-0.11
-0.13
-0.13
P
0.09
0.01
0.87
0.86
0.42
0.36
0.36
pH
r
0.17
-0.42
-0.10
0.12
-0.20
0.09
0.13
P
0.22
0.002
0.49
0.41
0.15
0.52
0.36
a2) Earthworm Biomass by Genus vs. Soil Parameters 2.
Phosphorus, Phosphorus,
P1
(ppm) P2
(ppm)
(m-2)
Aporrectodea
Dendrobaena
Dendrodrilus
Eisenia
Lumbricus
Octolasion
Amynthas
N=54
r
-0.24
-0.01
-0.12
-0.09
-0.27
-0.19
0.17
P
0.09
0.97
0.38
0.50
0.05
0.18
0.23
r
0.06
-0.09
-0.05
0.06
-0.17
-0.06
0.13
P
0.68
0.52
0.72
0.67
0.23
0.65
0.36
136
Potassium
(ppm)
Magnesium
(ppm)
Calcium (ppm)
r
-0.04
-0.09
-0.13
0.01
-0.15
0.09
-0.11
r
0.05
-0.36
-0.05
0.14
-0.26
0.13
0.15
P
0.75
0.54
0.36
0.95
0.28
0.53
0.44
P
0.71
0.01
0.75
0.31
0.06
0.35
0.27
r
0.03
-0.44
-0.001
0.16
-0.35
0.08
0.26
P
0.83
0.001
0.99
0.25
0.01
0.59
0.05
Earthworm Community - Soil Community Interactions
b1) Earthworm Biomass by Ecological Group vs. Soil Parameters 1.
Total
Total
Carbon (%) Nitrogen (%)
-2
(m )
r
Epigeic
Endogeic
Anecic
N=54
P
-0.34 0.01
-0.20 0.15
-0.16 0.25
r
P
-0.36 0.01
-0.28 0.04
-0.19 0.18
Organic
Matter
(%)
r
P
-0.24 0.08
-0.21 0.13
-0.14 0.30
pH
r
P
-0.05 0.71
0.16 0.26
-0.14 0.33
b2) Earthworm Biomass by Ecological Group vs. Soil Parameters 2.
Phosphorus, Phosphorus,
P1
(ppm) P2
(ppm)
(m-2)
r
Epigeic
Endogeic
Anecic
N=54
P
-0.18 0.21
-0.27 0.05
-0.06 0.69
r
P
-0.04 0.78
-0.05 0.73
-0.13 0.36
Potassium
(ppm)
r
P
-0.23 0.10
-0.04 0.76
-0.05 0.70
Magnesium
(ppm)
Calcium (ppm)
r
P
-0.08 0.59
0.10 0.50
-0.16 0.24
r
P
-0.10 0.50
0.06 0.67
0.21 0.13
No Earthworms
Amynthas
Other Genera
N=
Earthworms
c) Soil Chemistry Comparisons between:
Pa, plots with and without earthworms and
Pb, plots with Amynthas and plot with earthworms other than Amynthas.
Pa
Pb
0.40
0.54
Total Carbon (%)
0.89
0.67
d) T-test between Plots with Dendrobaena
Total Nitrogen (%)
0.08
0.51
and those with Other Genera by Soil pH.
Organic Matter (%)
0.17
0.58
P < 0.001
pH
Phosphorus,
0.98
0.19
Bray-P1 (ppm)
Phosphorus,
0.92
0.77
Bray-P2 (ppm)
0.10
0.25
Calcium (ppm)
0.01
0.45
Magnesium (ppm)
0.92
0.73
Potassium (ppm)
54
9
12
42
137
Metroparks Field Study: Invertebrate Raw Data
subclass
order
genus
5
4
2
7
1
5
1
3
1
12
4
12
6
78 74 27 65
4
7
4
2
2
1
1
1
3
1
7
4
5
4
1
1
2
4
1
1
3
2
1
1005
005
1006
006
1008
007
1009
008
1010
24
1
1
1
15
7
12 88 183
1
2
3
004
1
1
1004
1
003
1
1003
57 132
5
1
9
39 65 15 47
32
4
2
2
1
1002
002
Total
Total Types
Count Site ID
1
001
APPENDIX M
138
family
Unidentified
winged pupa
malacostraca eumalacostraca
isopoda
sow bugs
insecta
psocoptera
barklouse
insecta
hymenoptera
tenthredinidae
saw fly
insecta
hymenoptera
formicidae
ant
insecta
hymenoptera
wasp
insecta
hymenoptera
wasp/bee/ant 1
insecta
hemiptera
tingidae
lace bug
insecta
hemiptera
true bug 1
insecta
hemiptera
locust-form
insecta
hemiptera
nymph
insecta
hemiptera
true bug 2
insecta
diptera
fly larva
insecta
diptera
chironomidae
chironomid larva
insecta
diptera
adult midge
insecta
diptera
midge 1
insecta
pterygota
thysanoptera
thrips
insecta
pterygota
lepidoptera
moth 2
insecta
pterygota
lepidoptera
moth larva
insecta
pterygota
lepidoptera
catepillar
insecta
pterygota
lepidoptera
moth 1
insecta
pterygota
coleoptera
staphylinidae
rove beetle
insecta
pterygota
coleoptera
nitulidae
sap beetle
insecta
pterygota
coleoptera
elateridae
click beetle
insecta
pterygota
coleoptera
derodontidae
fungus beetle
insecta
pterygota
coleoptera
wevil
insecta
pterygota
coleoptera
scaraboid beetle
insecta
pterygota
coleoptera
beetle larva
insecta
pterygota
coleoptera
beetle 1
insecta
dermaptera
earwig
gastropoda
shelled snail
entognatha
collembola
sminthuridae
globular springtail
entognatha
collembola
snowflea springtail
entognatha
collembola
springtail
entognatha
diplura
campodea
diplurans
diplopoda
millipede
clitellata
worm
chilopoda
lithobiomorpha
stone centipede
chilopoda
geophilomorpha
soil centipede
arachnida
dromopoda
pseudoscorpiones
pseudoscorpion
arachnida
dromopoda
opilliones
harvestmen
arachnida
acari
oribatid mite
arachnida
acari
gamasid mite
arachnida
acari
mite
arachnida
araneae
spider
class
Metroparks Field Study: Invertebrate Raw Data
Total
2
1
5
1
1
2
5
3
4
1
14
1
14
1
1
5
1
18
46
12
2
2
9
1
13
3
16
1
9
8
73 113 95 12 17 85 57
21
24
6
5
2
5
3
1
3
3
10
8
1
1
1
5
6
5
16 67 116 18 41
1
1
1
1
2
1
23
6
4
1
4
11
3
1
3
1
1
1034
028
1035
029
1038
030
1039
031
1040
032
1041
033
1044
034
1047
035
1048
036
1050
1
1
8
5
8
2
1
37 20 82 66 29
1
2
2
1
2
3
1
11 11 10
2
2
2
1
1
3
3
17
2
5
6
1
1
2
1
5
2
1
3
6
1
1
1
4
5
2
3
1
1
2
4
027
14
6
1
1
1
4
4
1
2
3
2
1
3
1033
1
026
1
1031
1
025
1
1
1030
1
024
1
1029
1
1
15 12 44 30 16 18 26
1
1
1
1
1
3
1
10
1
3
2
2
1
2
1
1
1
1028
023
1
4
022
8
1
2
1026
1
021
1
1025
2
1024
020
69
12
8
019
11 44
9
3
1
1022
139
15 102 50
6
2
1021
018
2
2
017
2
2
1
25
5
1019
1
1
016
5
37 56 24
11 1 1
1018
2
3
2
1017
015
2
6
4
014
4
16
1016
4
8
013
2
38 24
1015
20
1
2
1
5
3
1014
012
1
011
2
1013
3
1012
010
2
009
2
Total Types
4
winged pupa
sow bugs
barklouse
saw fly
ant
wasp
wasp/bee/ant 1
lace bug
true bug 1
locust-form
nymph
true bug 2
fly larva
chironomid larva
adult midge
midge 1
thrips
moth 2
moth larva
catepillar
moth 1
rove beetle
sap beetle
click beetle
fungus beetle
wevil
scaraboid beetle
beetle larva
beetle 1
earwig
shelled snail
globular springtail
snowflea springtail
springtail
diplurans
millipede
1
worm
stone centipede
soil centipede
1
pseudoscorpion
harvestmen
oribatid mite
12
gamasid mite
mite
spider
1
Count Site ID
Metroparks Field Study: Invertebrate Raw Data
6
7
1
7
1
1
1
1
2
18
4
5
5
2
3
1
24
8
18
9
2
7
1
3
1
1
9
13
36
1
6
7
6
1
2
1
19
1
21
3
2
2
15
1
4
2
10
048
1074
049
1083
050
1136
051
1376
052
1388
053
3420
5
11
054
3484
9
3
055
3596
056
3668
057
3732
058
AT01
1
1
1
6
9
9
93 128 161 13 39 16 181 36 46 220 3211
14 10
1
7
1
3
13
8
5
10
5
1
9
4
1
3
1
1
1
8
1
1
1
2
1
1
3
39
1
1
14
8
1
1
5
4
1
5
1
2
15 12 32 58 26 101 82 103 82 67 42
7
1
1072
1
1071
047
1
046
3
2
1070
Total
Total Types
1
7
1
1
1
045
1
5
60 102
9 10
1068
1
7
8
044
1
48 32
15 8
1067
2
56
7
043
1
44
10
1060
1
37
5
042
1
5
1058
2
19
10
041
81
2
1
6
6
1055
3
2
3
1054
040
1
4
039
2
10 7 5 14
1
3
1
29
1
1
1
64
14
12
1
0
0
33
5
3
13
1
1
3
6
14
0
0
1
3
7
2
1
3
13
4
30
2
1
2
44
3 1
71
1
1
1
5
4
94
29
20 1 3 65 466
47
1
3
37
8
2
4
1
13
4
1
9
35
1
106 15 27 110 1727
38 12 14 13 300
8
68
1053
2
038
1
1051
3
037
140
TOTAL
winged pupa
sow bugs
barklouse
saw fly
ant
wasp
wasp/bee/ant 1
lace bug
true bug 1
locust-form
nymph
true bug 2
fly larva
chironomid larva
adult midge
midge 1
thrips
moth 2
moth larva
catepillar
moth 1
rove beetle
sap beetle
click beetle
fungus beetle
wevil
scaraboid beetle
beetle larva
beetle 1
earwig
shelled snail
globular springtail
snowflea springtail
springtail
diplurans
millipede
worm
stone centipede
soil centipede
pseudoscorpion
harvestmen
oribatid mite
gamasid mite
mite
spider
Count Site ID
Earthworm Identification Table
In Study
Setae
Species
Family
Ecological Group
Pigmentation
Live color
Pairing
Location
Aporrectodea
calignosa
Lumbricidae
endogeic
none
pink nose or tail
closely
ventral
Aporrectodea
tuberculata
Lumbricidae
endogeic
none
pink nose or tail
closely
ventral
Aporrectodea
trapezoides
Lumbricidae
endogeic
none
pink nose or tail
closely
ventral
x
Aporrectodea
longa
Lumbricidae
endogeic
may have light head pigmentation
closely
ventral
x
Aporrectodea
rosea
Lumbricidae
endogeic
none
very pink nose or tail
closely
ventral
Allolobophora
chlorotica
Lumbricidae
endogeic
none
distinct greenish
closely
ventral
x
Octolasion
tyrtaeum
Lumbricidae
endogeic
none
grey, blue, or pink
widely
circumf.
x
Octolasion
cyaneum
Lumbricidae
endogeic
none
widely
circumf.
x
Dendrobaena
octaedra
Lumbricidae
epigeic
strongly: red to dark brown
separate
circumf.
x
Dendrodrilus
rubidus
Lumbricidae
epigeic
moderate: red to dark brown; less
on tail
widely
circumf.
x
Lumbricus
terrestris
Lumbricidae
anecic
strongly red-brown back; pale
yellow, purple irrid belly
closely
ventral
x
Lumbricus
rubellus
Lumbricidae
epi-endogeic
strongly red-brown back; pale
yellow, purple irrid belly
closely
ventral
x
Eisenia
fetida
Lumbricidae
epigeic
strongly red on back
closely
ventral
Eiseniella
tetraedra
Lumbricidae
epigeic
strongly dark brown back; golden
yellow belly
closely
ventral
Eiseniella
eiseni
Lumbricidae
epigeic
closely
ventral
Amynthas
spp.
Megascolecidae
epi-endogeic
bristle
circumf.
x
141
x
strongly red-brown on back; less on
belly
light or dark; no contrast between
back & belly
yellow bands between
segments
APPENDIX N
Genus
Earthworm Identification Table
Segment Position
x
Octolasion
tyrtaeum
M
T
T
T
x
Octolasion
cyaneum
M
T
T
T
x
Dendrobaena
octaedra
m
T
T
T
x
Dendrodrilus
rubidus
T
t
x
Lumbricus
terrestris
m M m
x
Lumbricus
rubellus
m
T
x
Eisenia
fetida
M
G G G tG TG TG TG tG G
Eiseniella
tetraedra
Eiseniella
eiseni
Amynthas
spp.
T
t
T
T
T TG T TG TG
T
T
T
T
T
T
T
T
M
smooth,
annular
T
T
G T TG TG TG
T
M
T
T
…
T
T
t
T
T
T
T
T
T
T
T
M = Male Pore
T = Tuberculata Pubertatis
G = Genital Tumescence
lowercase letters are used to indicate that the landmark may or may not pe present
probable clitellum location bounded in bold
142
x
G T TG T G
M
usually
37
T
36
M
35
chlorotica
33
Allolobophora
very flared
32
rosea
31
Aporrectodea
30
x
29
T
28
m M m
27
longa
26
Aporrectodea
25
x
24
G
23
M
22
trapezoides
21
Aporrectodea
20
M
19
tuberculata
18
Aporrectodea
17
M
16
calignosa
qualifier
15
Aporrectodea
x
Shape
14
Species
13
Genus
34
In Study
Clitellum
Earthworm Identification Table
Length (cm)
Range
Genus
Species
Tuberculata
Pubertatis
Genital
Tumescence
Probocis
Lo
Hi
Aporrectodea
calignosa
notched, adult
alt seg only
epilobic
09
15
Aporrectodea
tuberculata
notched, adult
alt & cons segs
epilobic
09
15
Aporrectodea
trapezoides
unnotched
alt & cons segs
epilobic
08
x
Aporrectodea
longa
elliptical
alt & cons segs
epilobic
x
Aporrectodea
rosea
elliptical
not pres
Allolobophora
chlorotica
button or
suckerlike discs
x
Octolasion
tyrtaeum
x
Octolasion
cyaneum
x
Dendrobaena
octaedra
x
Dendrodrilus
x
Max
In Study
Clitellum Landmark Config
Prevalence
Common Name(s)
most common & widely dist.
endogeic
A. calignosa
complex
14
common & widely dist. endogeic
Angle Worm,
Canadian Gray
Worm
09
15
common in agriculture; less
common in forests
Black Head Worm
epilobic
02
05
less common than other species
in genus
Rose Worm
maybe
epilobic
03
07
less common than Aporrectodea
& Octolasion
Swamp Worm,
Green Worm
prefers wet or
swampy conditions
maybe
epilobic
03
07
18
much less common than
Aporrectodea; patchy
Field Worm
maybe
epilobic
03
07
18
less common than O. tyrtaeum
clitellum may be
orange, red, or yellow
clitellum is usually
yellowish or beige
linear, threadlike
not pres
epilobic
01
03
06
most common & widespread
species in world
Small Leaf Worm
rubidus
small ovals,
ventral edge, if; 2930
not pres
epilobic
02
05
09
much less common than D.
octaedra
Small Litter Worm
Lumbricus
terrestris
broadly oval
maybe
tanylobic
09
15
30
very common in N. America
Night Crawler
flattened tail
x
Lumbricus
rubellus
broadly oval to
slightly notched
maybe
tanylobic
05
10
15
extremely common
Beaver Tail
flattened tail
x
Eisenia
fetida
linear oval
if present
epilobic
03
13
not found in natural habitats
Red Wriggler,
Compost Worm
Eiseniella
tetraedra
typically broad
not usu pres
epilobic
02
06
uncommon
Small Brown-nosed
Litter Worm
Eiseniella
eiseni
not pres
maybe
epilobic
03
06
uncommon
Brown Litter Worm
Amynthas
spp.
not pres
not pres
04
20
increasing
Alabama Jumpers
x
143
x
linear, oval;
contrasts clitellum
puckered appear;
contrasts
08
Comments
nose and tail are
more pointed