Cleveland State University EngagedScholarship@CSU ETD Archive 2013 Influence of Earthworms on Plant and Soil Invertebrate Communities of the Cleveland Metroparks Anton F. Schermaier Cleveland State University How does access to this work benefit you? Let us know! Follow this and additional works at: http://engagedscholarship.csuohio.edu/etdarchive Part of the Environmental Sciences Commons Recommended Citation Schermaier, Anton F., "Influence of Earthworms on Plant and Soil Invertebrate Communities of the Cleveland Metroparks" (2013). ETD Archive. Paper 771. This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. INFLUENCE OF EARTHWORMS ON PLANT AND SOIL INVERTEBRATE COMMUNITIES OF THE CLEVELAND METROPARKS ANTON F. SCHERMAIER Bachelor of Electrical Engineering Cleveland State University June, 1989 submitted in partial fulfillment of requirements for the degree MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE at the CLEVELAND STATE UNIVERSITY May, 2013 This thesis has been approved for the Department of BIOLOGICAL, GEOLOGICAL, and ENVIRONMENTAL SCIENCES and the College of Graduate Studies Thesis Committee Chairperson, B. Michael Walton, Ph.D. Department of Biological, Geological, and Environmental Sciences Cleveland State University Date Thesis Committee Member, Yung-Tse Hung, Ph.D. Department of Civil Engineering Cleveland State University Date Thesis Committee Member, Robert A. Krebs, Ph.D. Department of Biological, Geological, and Environmental Sciences Cleveland State University Date Thesis Committee Member, Julie A. Wolin, Ph.D. Department of Biological, Geological, and Environmental Sciences Cleveland State University Date ACKNOWLEDGEMENTS This research was made possible with funding provided through an NSF ULTRAEx grant and the CSU Department of Biological, Geological, and Environmental Sciences. I extend my deepest gratitude for the financial assistance provided without which, this journey would have been much more difficult. Many thanks to the Cleveland Metroparks, in particular, Terry Robison, Connie Hausman, and all PCAP personnel involved in not only characterizing the soil and vegetation of the study plots but also assisting in the collection of worm and litter samples. It is through their efforts that the detail of this study was made possible. Thanks also to Nidia Arguedas for furnishing a sample population of preserved Amynthas spp. which was instrumental in developing the corresponding allometric equation and for sharing her passion and knowledge of earthworms. Thanks to graduate and undergraduate students Sarah Cutteridge, Courtney Brennan, Kelly Thompson, Klaire Freeman, Anthony Rodgers, Susan Blair, and Paul Santovin for their help with sample preparation and invertebrate identification. Thanks to Mike Walton and Julie Wolin for the use of their laboratories, resources, and expertise. My sincere appreciation goes to committee advisors, Bob Krebs, Julie Wolin, and Yung-Tse Hung for their time, feedback, and helpful suggestions in creating a better thesis. Special thanks to Mike Walton for his guidance, insights, and unquenchable passion for all things ecological. I send my love and gratitude to Mom & Dad for their unconditional love and moral support in pursuing my aspirations, even those that defy conventional wisdom. Thanks to my partner, Deb, for her encouragement, understanding, and love, and to my friends, for their support and encouragement, particularly Patrick, who planted the first seed to pursue an advanced degree. Finally, my gratitude goes to Jeff Dean for giving me the chance to prove myself. INFLUENCE OF EARTHWORMS ON PLANT AND SOIL INVERTEBRATE COMMUNITIES OF THE CLEVELAND METROPARKS ANTON F. SCHERMAIER ABSTRACT No native earthworms exist in the Great Lakes region of Ohio. All earthworms found in previously glaciated areas of the United States either migrated from unglaciated areas or were introduced as a result of human activities such as agriculture and sport fishing. Non-native earthworms may facilitate dramatic changes in structure and function of plant and invertebrate communities of forest ecosystems. This study examined how the presence of non-native earthworms within the Cleveland Metroparks may correspond with plant and soil invertebrate communities. Special attention was given to the Asian earthworm, Amynthas spp., a recent arrival to northeastern Ohio and a particularly aggressive colonizer. Earthworms and leaf litter were sampled at a set of well-characterized study plots. Length-based allometric equations available in the literature were applied to measure earthworm biomass of most species, and here a new equation for Amynthas was derived. A computer-based method was used to measure length and required less time and effort and produced values of significantly lower variability than the traditional ruler method. Higher abundances and biomasses of earthworms were associated with degraded plant communities. Although decreased litter mass correlated with greater earthworm activity, invertebrate communities were not degraded; in fact there appeared to be a modest beneficial effect. Earthworm activity changed soil chemistry as demonstrated by selective decreases in soil carbon, nitrogen, and phosphorus. Soil composition also iv affected earthworm communities as low pH favored an acid–tolerant species and was associated with moderate earthworm densities. A strong negative interaction between abundances of Amynthas and those of other exotic earthworms was found, yet Amynthas did not exert a distinctive influence upon plant or invertebrate communities. v TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iv LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ............................................................................................................ x CHAPTER I. GENERAL INTRODUCTION ............................................................................... 1 1.1 Historical Context ................................................................................. 1 1.2 Earthworms in Northeastern Ohio ........................................................ 3 1.3 Earthworm Ecological Groups .............................................................. 5 1.4 The Arrival of Amynthas ....................................................................... 6 1.5 Biomass Estimation and Allometry ...................................................... 7 1.6 Hypotheses ............................................................................................ 8 1.7 The Structure of this Thesis ................................................................ 10 II. ALLOMETRY OF AMYNTHAS .......................................................................... 11 2.1 Methods............................................................................................... 12 2.1.1 ImageJ Verification .............................................................. 14 2.1.2 Statistics ............................................................................... 14 2.2 Results ................................................................................................. 15 2.3 Discussion ........................................................................................... 18 III. CLEVELAND METROPARKS COMMUNITY ASSESSMENTS .................... 23 3.1 Methods............................................................................................... 23 3.1.1 Plant Community and Soil Assessments.............................. 23 3.1.2 Earthworm Sampling ........................................................... 26 vi 3.1.3 Invertebrate Community Quantification .............................. 31 3.1.4 Statistical Analyses .............................................................. 33 3.1.4.1 Earthworm – Plant Interactions ........................................ 33 3.1.4.2 Earthworm – Invertebrate – Litter Interactions ................ 34 3.1.4.3 Earthworm – Earthworm Interactions ............................... 34 3.1.4.4 Earthworm – Soil Interactions .......................................... 35 3.2 Results ................................................................................................. 36 3.2.1 Plant Communities ............................................................... 37 3.2.2 Invertebrate Communities .................................................... 38 3.2.3 Earthworm Communities ..................................................... 39 3.2.4 Soil Chemistry ..................................................................... 45 3.2.5 Earthworm – Plant Interactions ........................................... 46 3.2.6 Earthworm – Invertebrate Interactions ................................ 47 3.2.7 Litter – Invertebrate/Earthworm Interactions ...................... 48 3.2.8 Earthworm – Earthworm Interactions .................................. 49 3.2.9 Earthworm – Soil Interactions ............................................. 51 IV. DISCUSSION ....................................................................................................... 55 4.1 Hypotheses .......................................................................................... 55 4.2 Octolasion and Succession ................................................................. 58 4.3 The Dendrobaena Puzzle.................................................................... 59 4.4 Land Use History and Earthworm Influence ...................................... 60 4.5 The Influence of Amynthas ................................................................. 62 4.6 Sampling Methods and Weather Conditions ...................................... 63 vii 4.7 Future Work ........................................................................................ 65 4.8 Final Thoughts .................................................................................... 65 BIBLIOGRAPHY ............................................................................................................. 68 APPENDICES A Earthworm Allometry: Raw Data…………………………………………… 81 B. Earthworm Allometry: Source Equations…………………………………… 85 C. Earthworm Allometry: Ruler Method Subsample Data……………………... 86 D. Metroparks Field Study: Plant Community Data……………………………. 87 E. Metroparks Field Study: Soil Chemistry Data………………………………. 90 F. Metroparks Field Study: Earthworm Raw Data…………………………….. 92 G1. Metroparks Field Study: Plot Profile, by Earthworm Species……………… 123 G2. Metroparks Field Study: Plot Profile, by Earthworm Genus………………. 127 H. Metroparks Field Study: Litter Data………………………………………… 129 I. Earthworm – Plant Community Interactions………………………………… 131 J. Earthworm – Invertebrate Community / Litter Interactions…………………. 132 K. Earthworm – Earthworm Community Interactions………………………….. L. Earthworm Community – Soil Chemistry Interactions……………………… 136 M. Metroparks Field Study: Invertebrate Raw Data……………………………. 138 N. Earthworm Identification Table……………………………………………... 141 viii 135 LIST OF TABLES Table Page I. AFDM Determination Using ImageJ Method ……………………............... 16 II. Subsample Comparison of ImageJ vs. Ruler Methods……………………... 16 III. Subsample Comparison of Actual vs. Predicted AFDM's…………............. IV. Feature Comparison between ImageJ and Ruler Methods…………………. 21 V. Earthworm Ecological Groups……………………………………............... 31 VI. Earthworms of the Cleveland Metroparks…………………………………. ix 16 41 LIST OF FIGURES Figure Page 1. Arc Approximation Comparisons…………………………………………… 13 2. Ordinary Least Squares Regression for Amynthas spp……………………… 17 3. Regression Comparing ImageJ and Ruler Methods………………………….18 4. Comparison of Actual and Predicted AFDM‘s for ImageJ and Ruler Methods…………………………………………………. 20 5. PCAP Plot Locations for Earthworm and Litter Samples…………………... 25 6. Typical PCAP Plot Module Layout………………………………………… 26 7. Color Negative Digital Image of Earthworm Specimen…………………….. 28 8. Plant Community Characteristics…………………………………………… 37 9. Invertebrate Community Characteristics…………………………………… 38 10. Relative Earthworm Abundance and Biomass by Plot ID………………….. 40 11. Soil Chemistry Summary…………………………………………………... 45 12. Significant Earthworm-Plant Interactions………………………………….. 46 13. Significant Earthworm-Invertebrate Interactions…………………………… 47 14. Significant Litter-Invertebrate/Earthworm Interactions……………………. 48 15. Correlations between Aporrectodea, Lumbricus, and Octolasion…………... 49 16. Earthworm Abundance by Genus for Plots with and without Amynthas ……50 17. Earthworm Biomass for Plots with and without Amynthas ………………… 50 18. Significant Earthworm-Soil Interactions……………………………………. 52 19. Soil pH at Plots with Dendrobaena and Those without…………………….. 53 20. Regression Lines for pH vs. Mg for Plots with and without Earthworms…... 53 x CHAPTER I GENERAL INTRODUCTION 1.1 Historical Context Earthworms have not been native to the northern temperate forests of North America since the end of the Wisconsinan glaciations 12,000 years ago. Their reintroduction began in the 1700‘s with the arrival of European settlers and continues today through human activities such as agriculture, sport fishing, road building, and recreation (Hale et al. 2004; Hendrix 2006; Cameron et al. 2007). Earthworms have long been recognized as beneficial agents in gardens because they facilitate soil aeration and turn-over and increase availability of soil nutrients to plants (Briones et al. 2011; Eriksen-Hamel & Whalen 2007; Schrader & Seibel 2001; Bhadauria & Ramakrishnan 1996). However, in native forests of the Great Lakes region, the effects of invasive earthworms are largely detrimental (Hale et al. 2005; Frelich et al. 2006). Non-native earthworms alter foodwebs and degrade plant and invertebrate communities; they also change the structure and chemistry of the litter and soil layers of 1 the forest floor (Frelich et al. 2006; González et al. 2003; Bohlen et al. 2004; Dechaine et al. 2005; Hale et al. 2005; Holdsworth et al. 2008; Costello & Lamberti 2008). Longterm impacts may include successional changes in both forest under- and overstories as well increased nutrient loads in the surface water runoff, thus overwhelming the nitrogen buffering capacity of riparian zones, ultimately altering the nutrient balances in downstream aquatic ecosystems (Costello & Lamberti 2008). Non-native earthworms compete with other organisms both directly and indirectly. They compete directly for food (Snyder et al. 2008). Depending on their ecological group, earthworms may consume litterfall or soil organic matter (Ernst et al. 2009; Sackett et al. 2013) and negatively influence seedling establishment (Asshoff et al. 2010). The forest floor food web is highly dependent upon this organic matter as both a source of nutrition and environmental stability. Additionally, the litter serves as a nursery for understory plants. Once organic material is processed through an earthworm, it is mineralized into a highly water soluble form that is easily washed away by normal precipitation. The benefit of nutrient processing in place becomes compromised thereby mobilizing nutrients and increasing the riparian nutrient processing burden. Uncaptured nutrients may then enter the watershed to cause additional damage (Burtelow et al. 1997; Costello & Lamberti 2008; Howarth 1995). Within a forest, the majority of all biological activity happens on the forest floor and a healthy forest consists of a thick, protective, multi-year layer of duff which provides protection from excessive drying, heat, and cold. By limiting moisture loss, it maintains a high humidity within its layers. 2 Non-native earthworms, namely epigeic and anecic varieties, also compete indirectly with other organisms through accelerated leaf litter consumption and thus consume the physical environment that other forest floor organisms depend upon. In some cases, excessive litter consumption will leave a forest floor bare, dry, and mineral poor. 1.2 Earthworms in Northeastern Ohio There are no native earthworms in the Great Lakes region of Ohio, yet due to human activity, exotic earthworms are now widespread in northeastern (N.E.) Ohio. The exotic earthworms of N.E. Ohio, as well as the rest of North America, are so-called ―peregrine‖ species that are able to colonize a broad range of environmental conditions. Hence, these worms, originally of European and Asian origin, now occur on every continent except Antarctica (Bohlen et al. 2004). Although these non-native taxa, such as Lumbricus and Aporrectodea are wellestablished, their effects on local forests have received little study and are poorly understood. Previous studies of the ecological impact of exotic earthworms have primarily focused on the impacts of earthworms within largely undisturbed forests into which earthworms were new arrivals (Hale et al. 2005; Frelich et al. 2006). The focus on recent colonization is understandable from the perspective of the need to suppress the spread of worms to protect sensitive and high-value forest resources. However, exotic earthworms are likely to have been residents of the forests of N.E. Ohio for decades, especially those within or near urban areas. Cities are centers of activities that promote earthworm introductions (e.g., international commerce, lawn care and gardening), and 3 cities like Cleveland, have been the points of entry for earthworms into the Great Lakes region, although actual dates of entry are difficult to discern (Steinberg et al. 2005; Szlavecz et al. 2006). Therefore, the forest ecology of N.E. Ohio is likely to represent the long-term effects of exotic earthworms. From this perspective, the study of earthworms of N.E. Ohio is of interest, since the ecology of the region‘s forests may provide insight into what is in store for locations at which earthworms have only recently arrived, and may reveal the extent to which forests adjust to the long-term effects of earthworms. In addition, earthworms have been demonstrated to interact with other stressors in urban/suburban forests. Hence, N.E. Ohio provides opportunities for investigating interactions of earthworm invasions with respect to land use history (Szlavecz et al. 2011; Frelich et al. 2006), understory damage due to excessive deer browse (Cotè 2004;Holdsworth et al. 2007; Nuzzo et al. 2009), invasive plant competition (Aronson & Handel 2011), and anthropogenic habitat degradation (Matlack 1993). Furthermore, N.E. Ohio may be an especially important location for investigations of exotic earthworms because it is currently undergoing the invasion of a particularly aggressive Asian exotic earthworm, Amynthas spp., thus providing an opportunity to investigate the invasion dynamics of a new arrival into a region where European exotics are already wellestablished. Amynthas is also colonizing some of the remaining forests of N.E. Ohio that were devoid of earthworms (B. M. Walton, per. comm.) in the Cuyahoga Valley National Park. 4 1.3 Earthworm Ecological Groups Earthworms are generally categorized into ecological groups that reflect feeding preferences and burrowing behaviors. Although there is not universal agreement on all classifications, three major groups are delineated as follows. Epigeic earthworms are surface dwellers; they both live in and feed on litter and do not burrow significantly. Endogeic earthworms are found in the top layers of the soil horizon and consume the organic matter contained within; they are known to create superficial burrows that run in approximately horizontal directions. Anecic earthworms tend to be larger than other groups; they create permanent vertical burrows that may extend as deeply as two meters, yet return to the surface to feed on litter (Hale 2007; Asshoff et al 2010). Additional classifications are beginning to come into wider usage to reflect the continuum of behaviors observed in specific taxa. They are epi-endogeic, endo-anecic, and epi-anecic. In each case, earthworms of these subcategories share characteristics of both groups. For example, L. rubellus is classified as an epi-endogeic and is larger than typical epigeics; it is often found near the surface yet still burrows in topsoil horizons and consumes organic matter like other endogeics. L. terrestris is another example of a mixed group; it is considered an epi-anecic, since as a juvenile, it behaves more like an epigeic earthworm, feeding on and dwelling in the litter. Once mature, its behavior reflects that of an anecic species, spending most of its time deep within its burrow, when not foraging at the surface (Asshoff et al. 2010; Felten & Emmerling 2009). 5 1.4 The Arrival of Amynthas Of great interest is the recent arrival of the Asian earthworm Amynthas; it is a particularly aggressive colonizer with a high metabolic and reproductive rate. Established populations were first documented in N.E. Ohio forests in 2009 by Nidia Arguedas, Conservation Planner with the Cleveland Metroparks (unpublished data), though their presence in the landscaped environment was observed since the late 1980s in Summit County and early 1990‘s in Lake County (Arguedas 2012, email communication, November 13th). Since Amynthas is a newcomer, its reproductive and feeding strategies may be sufficiently novel to allow it to outcompete native or naturalized organisms as was documented with other non-native species of earthworms by Tiunov et al. (2006). The effects of Amynthas may be especially significant for forests that have experienced few earthworm invasions and are likely to have ―at risk‖ native specialist organisms as was found in one study in the Great Smoky Mountains National Park where densities of Amynthas agrestis suppressed the abundance and diversity of native millipedes (Snyder et al. 2008). In a stand of mature forest at the Smithsonian Environmental Research Center, Amynthas hilgendorfi has been shown to have a stronger effect on forest floor biogeochemistry than other non-native earthworms (Szlavecz et al. 2011). The earthworms in this study that are identified as Amynthas spp., belong to the Amynthas hilgendorfi species-complex as established by Blakemore (2003) and are hereafter referred to as ―Amynthas spp.‖ or simply ―Amynthas‖, although the two most likely representative members are Amynthas hilgendorfi and Amynthas agrestis. DNA barcoding positively identified these two species from collection sites within the Cleveland Metroparks (Arguedas 2010). The taxonomy of Japanese earthworms contains 6 many ambiguities and identification errors that are most likely due to their tendencies toward parthenogenetic polymorphism, where some species names are based upon degraded morphs (Blakemore 2008). 1.5 Biomass Estimation and Allometry Biomass is a relative indicator of the amount of matter and energy that is being drawn from an environment by an organism (Begon et al. 2006). If the biomass of an invading community is known, its potential impact can be estimated. The fresh weight of an organism, however, is unreliable as a measure, particularly for earthworms, since their water content is highly variable. Ash-free dry mass (AFDM) is therefore, the preferred method of biomass estimation (Hale et al. 2007). AFDM also has the additional advantage of being the approximate equivalent of carbon that is bound within an earthworm population. Unfortunately, AFDM is a laborious and time-consuming process wherein the specimen is ultimately destroyed. Allometry provides a reasonable alternative at a fraction of the time and resources and does not require destruction of the specimen. An allometric equation is one that predicts the measurement of one body characteristic based upon the actual measurement of another. In this case, the length of an earthworm is used to predict its ash-free dry mass. To derive this equation, a representative sample set is required, where the actual AFDM is known. Afterward, a simple centerline measurement of subsequent specimens produces a reasonably good estimate of biomass. To date, only a few papers have been published that provide allometric equations for biomass estimation of a number of species (Hale et al. 2004; Greiner et al. 2010). 7 Greiner et al. (2010) developed an allometric equation for A. hilgendorfi from a population of earthworms collected in southeastern Michigan. In this thesis, I present an allometric equation for biomass estimation of Amynthas, based upon a collection of specimens from N.E. Ohio forests that spans a wider range of body lengths. This equation also provided a test for the applicability of allometric equations of Amynthas obtained from geographically different populations. In addition, I developed a computerbased method for length measurement that uses digital imagery and image analysis software. This method of length measurement is faster and easier than the traditional ruler method and has the added benefit that a specimen can be re-measured any number of times even after it is no longer physically available. I also repeated the length measurements using the ruler method on a subsample (n=30) of the dataset and present a statistical comparison between the two methods. Both the similarity of means and the variability of measurements were examined to demonstrate that the computer-based method is capable of producing more consistent, higher quality measures of length. 1.6 Hypotheses During the summer of 2010, the Cleveland Metroparks initiated a multi-year Plant Community Assessment Program. They conducted an extensive survey of 108 randomly selected study plots within the park system of N.E. Ohio. The survey included parameters such as soil composition, plant habitat quality, and plant community composition. Afterward, 63 of these plots were randomly selected and sampled for both earthworms and leaf litter. This was a unique opportunity to leverage extensive plant community data against corresponding earthworm abundance and diversity. 8 The majority of my work focused on characterizing earthworm abundance and diversity at those 63 study plots, to determine how they correlated with plant and soil invertebrate community composition. Special attention was given to Amynthas to determine if it exerted any measureable effects upon the ecosystems it invaded, and to identify those characteristics corresponding to an invasion. The central question is: Do earthworms exert a measurable influence on forest ecosystems within the Cleveland Metroparks as indicated by measures of soil chemistry and plant and soil invertebrate community composition? I address this question by proposing these five hypotheses: 1. Higher abundances and/or biomass of non-native earthworms are associated with degraded plant communities. 2. Higher abundances and/or biomass of non-native earthworms are associated with degraded soil invertebrate communities. 3. Higher abundances and/or biomass of Amynthas are associated with degraded plant communities. 4. Higher abundances and/or biomass of Amynthas are associated with degraded soil invertebrate communities. 5. Earthworm activity and soil composition mutually influence one another. 9 1.7 The Structure of this Thesis This thesis consists of two interconnected themes. The first focuses on deriving an allometric equation for Amynthas to be incorporated into the second theme, that of determining the influence of earthworms on plant and invertebrate communities. Chapter II, ALLOMETRY OF AMYNTHAS, is self-contained; it consists of methods, results, and discussion. In addition to the derived equation, I also present a new procedure for specimen length determination. After this chapter, no further references are made to allometry or its procedures beyond the equations used for predicting biomass. Chapter III, CLEVELAND METROPARKS COMMUNITY ASSESSMENTS, focuses the methods and results used to characterize the influence of earthworms within the Cleveland Metroparks. The methods sections present techniques used to collect data and to characterize each community and potential interactions. The results sections follow with community summaries and respective interactions. Chapter IV, DISCUSSION, concludes with my insights on the results from the previous chapter. 10 CHAPTER II ALLOMETRY OF AMYNTHAS In this chapter, I describe new procedures for developing allometric equations for estimating earthworm biomass and illustrate the use of this procedure for estimating AFDM for the invasive earthworm, Amynthas spp. found in N.E. Ohio. In addition, I present analyses of the accuracy and precision of the new method compared to the traditional method. There are a number of potential sources that contribute to the error of predicted AFDM. One such error originates during length measurement. Limitations in eye discrimination and in measurement tools make manual measurements more prone to error as object size decreases. The ImageJ and ruler methods were compared to determine if such limitations exist. A significant correlation would indicate that the precision of a given method was limited by the size of the specimen. Another possible source of length error may be the degree of curviness (sinuosity) of a specimen. This could be expected since the centerline of a perfectly straight specimen is much easier to determine than one that sharply curved. I quantify specimensinuosity and test for a relationship with the magnitude of predicted AFDM error. 11 2.1 Methods A set of 160 preserved earthworms were used for the allometry study. The earthworms were collected from N.E. Ohio forests managed by Cleveland Metroparks during 2009 and identified as members of the Amynthas hilgendorfi species-complex. Specimens were set in 10% formalin for a minimum of 24 hours then transferred to 80% isopropanol for long-term storage. Earthworm specimens were photographed using a Canon EOS Digital Rebel XT camera body and an EF-S18-55mm f3.5-5.6 lens. Images were stored as 12 megapixel, monochrome, high-resolution data files. Files were subsequently transferred to a computer system installed with ImageJ (v1.42q) image analysis software that was downloaded from http://imagej.nih.gov/ij/. Length measurements were made for each specimen using its corresponding digital image. The process was similar to the ruler method except that with ImageJ, the image was typically magnified to 12 times its original size and then measured using a 2 µm resolution virtual ruler by clicking down a series of line segments along the centerline to yield the total length. Just as the total length of 3 line segments used to approximate an arc will be shorter than 12 line segments used to approximate the same arc, a better approximation of centerline length is accomplished using shorter, more numerous segments (Fig. 1). This is especially true when measuring a specimen that has sharp curves along its length. Each individual was measured three times and the mean taken. Individuals were placed in a drying oven for a minimum of 48 hours at 65 ˚C. Upon removal, dry weights were immediately recorded (± 0.1 mg). Dried individuals were placed in ceramic 12 crucibles and ashed at 500˚C for a minimum of 4 hours then removed and cooled in a desiccator. Subsequent ash weights were recorded. Ash-free dry mass (AFDM) was determined by subtracting ash mass from dry mass for each individual to yield a standardized mass of organic matter per individual. Figure 1. Arc Approximation Comparisons. The top arc is approximated by 3 line segments. Its reproduction is a crude representation and obviously shorter than the original. The bottom arc is approximated by 12 line segments. Its reproduction is a significant improvement over the 3 segment arc and is also slightly longer since it is a more faithful approximation. 13 2.1.1 ImageJ Verification I compared the performance of ImageJ-based length measurements to the standard method of length measurement using a ruler. A subset of individuals was selected to be re-measured using the ruler method. Selection of individuals proceeded as follows. The span between the shortest and longest individuals (n=160) was divided into three equal ranges, designated as small, medium, and large. Ten individuals were randomly selected from each of the size ranges (Appendix C) using random numbers generated by random.org. To ascertain whether ImageJ yielded comparable results, the sub-sampled individuals (n=30) were measured with a ruler along the centerline and recorded to the nearest 0.5 mm. Each individual was measured three times and the mean taken. 2.1.2 Statistics Microsoft Excel 2007, version 12.0.4518.1014, was used to perform all t-tests and regressions. Systat MYSTAT 12 for Windows, version 12.02.00, was used for all Pearson correlations. Ordinary least squares regression was performed for overall length vs. AFDM. Predicted AFDM‘s were calculated for the ―Schermaier‖ equation (presented in section 2.2) using both ImageJ and ruler methods along with the equation published by Greiner et al. (2010): , R2 = 0.85 Two-tailed t-tests and percent errors were calculated for comparisons between actual and predicted values (Schermaier equation using ImageJ method, Schermaier 14 equation using ruler method, and Greiner equation using ruler method). Percent error was calculated as follows: A Pearson correlation was performed for both ImageJ and ruler methods for mean lengths and coefficients of variation (C.V.) to determine if the specimen size was related to the variability of its measured length. The formula for sinuosity index was adapted to earthworm specimens: A Pearson correlation was performed on sinuosity vs. the percent error for ImageJ Predicted AFDM to test for a relationship. 2.2 Results Overall length, dry mass, ash, and AFDM values are summarized in Table I. Figure 2 represents the allometric equation (subsequently referred to as the Schermaier equation) relating overall length to AFDM of Amynthas spp. from N.E. Ohio. The ruler method produced a length that was an average of 3.4% less than the ImageJ method. Predicted AFDM‘s were determined using the Schermaier equation for both ruler and ImageJ length measurements and subsequent percent errors calculated. The ImageJ method (-0.2% error) was better than the ruler method (7.5% error) at predicting AFDM across the entire sample. 15 Table I: AFDM Determination Using ImageJ Method. Following equations determined using ordinary least squares method. Length (mm) Dry mass (mg) Ash mass (mg) AFDM (mg) N=160 Mean S.E. 58.8 2.5 225.8 22.7 131.5 14.8 94.3 8.2 Min 13.3 1.7 0.2 1.0 Max 145.7 1127.4 760.5 469.7 Table II: Subsample Comparison of ImageJ vs. Ruler Methods. P-Values are for two-tailed t-tests between ImageJ and ruler methods for quantities of length and C.V. ImageJ Method Mean S.E. Min Max Length (mm) 63.4 5.5 20.6 109.1 C.V. 0.003 0.0002 0.001 0.006 N=30 of 160 Ruler Method Mean S.E. Min Max 61.4 5.4 19.3 105.5 0.013 0.0019 0 0.035 P 0.8 <0.001 Table III: Subsample Comparison of Actual vs. Predicted AFDM's. P-values determined using twotailed t-tests between actual AFDM and each of the predicted AFDM‘s. The Schermaier and Greiner equations are being compared to establish that they are comparable. The ImageJ and ruler methods are being compared to determine if the two techniques for ascertaining length are equivalent. The intent is to establish that the Schermaier / ImageJ combination is at least as precise and accurate as the alternatives. Actual Schermaier / ImageJ Method, Predicted Schermaier / Ruler Method, Predicted Greiner / ImageJ Method, Predicted N=30 of 160 Mean 108.7 104.5 97.2 128.0 AFDM (mg) S.E. Min 18.7 6.6 17.1 5.3 15.9 4.5 21.3 5.7 Max P 320.6 280.0 0.87 258.5 0.64 349.9 0.50 The mean lengths obtained with ImageJ did not differ significantly from lengths measured using a ruler (Table II). However, lengths obtained by ruler were much more 16 variable than those obtained with ImageJ (Table II). The coefficient of variation (C.V.) for ruler measures was 5-fold greater than the C.V. for ImageJ length measures. For the ruler method, length and C.V. are related (r=-0.61, P=0.001) but not for the ImageJ method (r=-0.17, P=0.36). This reveals that the precision the ImageJ method is not significantly affected by specimen size (Fig. 3). The curviness of a specimen does not appear to contribute to length error when using the ImageJ method since a correlation between sinuosity and percent error of predicted AFDM produced no significant relationship (r=0.09, P=0.63). Each predicted AFDM (Schermaier/ImageJ method, Schermaier/ruler method, and Greiner/ImageJ method) was compared to the actual AFDM using a t-test; no significant differences were found (Table III). 0.00 -1.00 AFDM (ln g) -2.00 ln(AFDM) = 2.38*ln(Length) - 12.45 -3.00 R2 = 0.96 -4.00 -5.00 -6.00 -7.00 -8.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Length (ln mm) Figure 2. Ordinary Least Squares Regression for Amynthas spp. The trendline represents the allometric relationship between earthworm length and its corresponding biomass. 17 0.040 0.035 ImageJ By Ruler Linear (ImageJ) Linear (By Ruler) 0.030 C.V. 0.025 0.020 0.015 0.010 0.005 0.000 20.6 28.7 44.3 60.4 Length (mm) 89.7 99.0 Figure 3. Regression Comparing ImageJ and Ruler Methods. Ordinary least squares regression. The horizontal line of the ImageJ method indicates no relationship between specimen size and variability in the measures of length. The declining line of the ruler method indicates that length variability decreases as specimen size increases. 2.3 Discussion Figure 2 represents the resultant allometric relationship between overall length and AFDM. The predictive power for this dataset, as represented by R2 (the coefficient of determination) is very good, indicating that nearly 96% of the variation can be explained by the statistical model. This suggests that the equation will be highly applicable to subsequent sample populations of Amynthas spp. that are derived from comparable environments. Using the Schermaier equation to predict AFDM yields a mean error of -4.1%. Although any individual prediction is susceptible to error, a sufficiently large sample set is likely to produce a very reasonable estimate of AFDM for Amynthas spp. 18 Applying the Greiner equation to the same study population yields a mean error of 21.7%. Table III demonstrates that there are no statistically significant differences between the Schermaier and Greiner equations or the ImageJ and ruler methods. This verifies that both the Schermaier and Greiner equations are comparable for geographically separate Amynthas populations. It also confirms that length measurement using ImageJ is a suitable alternative to the ruler method. Although sinuosity does not appear to contribute to length errors, death and preservation may still be a source of error. For example, the proboscis is sometimes fixed while fully extended in some individuals, whereas, it is contracted in others. Similarly, various regions along the length of an earthworm might also be non-uniformly relaxed or contracted, thus causing some fraction of error in the allometric relationship. The ruler method produced consistently shorter and more variable measures of length than did the ImageJ method. One factor that contributed to this was that the measuring tool used by ImageJ was of a higher resolution (2 µm vs. 500 µm for the ruler method); another factor was that the effective specimen size was much larger due to image magnification, thus permitting shorter line segments to be used to measure overall length. Note that in 23 out of 30 samples, the predicted AFDM‘s were closer to each other in value than they were to the actual AFDM (Fig. 4). This suggests that the two length measurement methods were not only reliable and comparable but that the error was caused by a variation in AFDM that was not accounted for in the actual AFDM determination. 19 350.00 Actual AFDM 300.00 Schermaier Predicted AFDM / ImageJ Method Schermaier Predicted AFDM / Ruler Method AFDM (mg) 250.00 200.00 150.00 100.00 50.00 0.00 Ascending Length Figure 4. Comparison of Actual and Predicted AFDM's for ImageJ and Ruler Methods. Actual AFDM refers to values determined through ash-free dry mass determination. The Schermaier Predicted AFDM‘s are estimated values of AFDM using the Schermaier allometric equation. In one case, lengths determined using the Image-J method were used as inputs to the allometric equation, in the other, ruler-based lengths were used. 20 Table IV: Feature Comparison between ImageJ and Ruler Methods. Maximum resolution is a function of the original magnification of the camera lens. Greater image resolution is possible using a lens with higher magnification. ImageJ Method Ruler Method Required Equipment Digital camera, stand, lighting, computer, ImageJ, labels, and ruler Ruler, specimen probes Setup Moderate: requires camera setup, photographing, and transfer to computer None, though may use dissecting scope Measurement Re-measurability Time-consuming and Quick and easy since measuring is laborious; accuracy may done using a pointing device and a suffer due to worker fatigue; magnified specimen image; specimen subject to drying minimal handling of specimen (only and mechanical damage. when photographing) Longer worker exposure to chemical preservatives Unlimited: multiple digital copies of specimen may be stored and distributed Only possible if original specimen is still available and intact Maximum Image Magnification 60 : 1 1:1 **Maximum Resolution 2 µm 500 µm Length Stability: Mean C.V. 0.00262 0.0131 Applicability Especially good for large datasets or where high archival integrity is desired Best for small or ad hoc measurements or when specialized equipment is not available Gut contents are the most likely source of error between actual and predicted values, and may also account for disagreement between the equations, since they were derived from different sample populations. Studies reveal that the contents of an earthworm‘s gut can constitute as much as 20% of its AFDM (Edwards & Bohlen 1996; 21 Lee 1985). Therefore soil composition and feeding state exerts a direct influence upon AFDM through the quantity of non-organismal carbon contributed by the gut. Although not performed for this study, gut flushing prior to drying has been proposed as a method to minimize this source of variation (Hale et al. 2004). I propose that the ImageJ method of specimen measurement be an addition to, not a replacement for, the ruler method. There are situations where either method may be more appropriate, Table IV. 22 CHAPTER III CLEVELAND METROPARKS COMMUNITY ASSESSMENTS 3.1 Methods The Cleveland Metroparks launched a long-term vegetation monitoring program during the summer of 2010 to develop a baseline dataset of terrestrial natural resources. The Plant Community Assessment Program (PCAP) was based upon hundreds of randomly selected geographic locations distributed throughout the Cleveland Metroparks holdings at which study quadrats were established for quantification of a standardized suite of plant community and soil measures. During the first year of the PCAP, park technicians surveyed 108 plots distributed among 14 park reservations. 3.1.1 Plant Community and Soil Assessments Once Cleveland Metroparks personnel completed the plant community assessments for the initial 108 plots, they assisted me in sampling earthworms and litter from a subset of these plots. This sampling was performed between September and October of 2010, where 63 of the 108 plots were randomly selected and sampled (Fig. 5). Plant community data provided by the Cleveland Metroparks was used to evaluate the interactions between earthworms and plant community structure and quality. Plant 23 community measures used in this thesis were: percent coverage by sensitive plants, percent coverage by tolerant plants, percent bare ground, and Floristic Quality Assessment Index (FQAI), an aggregated index of plant habitat quality. Standard measures of diversity, such as Shannon-Weiner Diversity Index, cannot discriminate between disturbed and healthy communities, whereas FQAI is calibrated to local native plant communities to provide a measure of the quality of a given plant community based upon the taxa identified and the area each covers (Andreas et al. 2004). It is therefore suitable for quantifying ecological disturbances as well as diversity (Andreas et al. 2004). Soil composition was also analyzed as part of the PCAP. Measures that were of particular interest included total carbon, total nitrogen, organic matter, and pH, since they can affect and be affected by earthworm activity (Addison 2009; Sackett et al. 2013; Eisenhauer et al. 2000; Edwards & Bohlen 1996). The following measures were obtained from the PCAP data to test for interactions with earthworm activity: total carbon (%), total nitrogen (%), organic matter (%), pH, phosphorus Bray-P1 (ppm), phosphorus BrayP2 (ppm), potassium (ppm), magnesium (ppm), and calcium (ppm). Soil plot data were grouped by presence or absence of earthworms to identify those characteristics that potentially either deter or facilitate colonization. Such grouping could also capture soil characteristics that changed in the presence of earthworm activity. 24 Figure 5. PCAP Plot Locations for Earthworm and Litter Samples. By study plot ID. 25 3.1.2 Earthworm Sampling At each plot, the study area was typically organized into a 2 x 5 grid of 0.1 hectare modules (10 m x 10 m) where the centerline was oriented to keep the plots within the same plant community (Fig. 6). Four of the ten modules (02, 03, 08, and 09) were more intensively studied; these were the modules where earthworm and litter sampling was performed. At each plot, litter was only collected from one of the intensive modules; this was typically the lowest numbered one (02). Some plots could not be laid out with the standard 2 x 5 grid due to topographic limitations such as an intervening cliff or river. In such cases, a smaller grid was used to accommodate the circumstances. Figure 6. Typical PCAP Plot Module Layout. Wherever study plots were large enough to accommodate a 2 x 5 grid, intensively studied modules were always assigned to modules 02, 03, 08, and 09 for consistency. Each of the four intensive modules was sampled for earthworms using a ⅓ meter frame constructed from PVC pipe. The location within a module was randomly selected by tossing the square over one‘s shoulder into the perimeter of the module. Collection was performed wherever the square landed. In the event that an obstruction such as a 26 large branch or rock prevented effective sampling, the square was repositioned to the nearest adjacent suitable location. Earthworms were collected using the mustard extraction method (Hale, 2007). I prepared a solution of 10 grams regular yellow mustard powder (purchased at penzeys.com) per liter of water. Since it was impractical to transport as much as 32 gallons of solution into the field, a concentrated premix was prepared. On the day prior to collection, 453 grams of dry mustard powder were placed into a container and filled with warm water to the volume of one gallon (3.79 liters). The contents were shaken until reasonably mixed then refrigerated until the following day. Once in the field, the concentrate was shaken again prior to use. The quantity of 355 milliliters of concentrate was poured into an empty container and then filled with water to the volume of one gallon (3.79 liters). This dilution yielded a mixture with a mustard concentration of approximately 10 g / L. The top layer of litter or grass was removed so that only bare ground remained. Approximately 4 liters of liquid mustard mix was poured slowly over the sample area. All earthworms that emerged within the area during 10 minutes were collected. Specimens were fixed in 10% formalin within 24 hours of collection for at least 24 hours and then transferred to ethanol for long-term storage. During the first several collections, 90% isopropyl alcohol was used to anesthetize and transport the earthworms since it was readily available, but I found that the preserved specimens lost noticeable water content and suffered in quality, so I switched to 95% ethanol for subsequent sample collections. Specimens were fixed in 27 10% formalin within 24 hours of collection for at least 24 hours and then transferred to ethanol for long-term storage. Earthworm specimens were wet-weighed to 0.1 mg then photographed using a Canon EOS Digital Rebel XT camera body and an EF-S18-55mm f3.5-5.6 lens. Images were stored as 12 megapixel, color, high-resolution data files. Files were transferred to a computer system installed with ImageJ (v1.42q) image analysis software that was downloaded from http://imagej.nih.gov/ij/. Length measurements were made along the centerline for each specimen using its corresponding digital image. Each individual was measured three times and the mean taken. The images were converted to digital negatives at the time of measurement to sharpen the specimen boundaries and to facilitate speedier measurements (Fig.7). Figure 7. Color Negative Digital Image of Earthworm Specimen. Adult endogeic species, Octolasion tyrtaeum; length: 43mm; wet weight: 462mg. 28 Each sample was identified to genus or, if sexually mature, to species, using a dissecting microscope and an earthworm identification guide (Hale 2007; Appendix F; Appendix N). One of the features used to identify earthworm species is the arrangement of setae patterns, tiny bristle-like projections used for locomotion. These landmarks can often be difficult to discern, especially for small individuals. I found that illumination with an ultraviolet light causes the bristles to fluoresce, making identification much easier. AFDM was estimated for each individual using the Schermaier equation and other previously published equations (Hale et al. 2004; Greiner et al. 2010; Appendix B). Corresponding biomasses by genus, species, and community as well as plot biodiversity and relative earthworm densities were then determined. Sample collection occurred between September 20, 2010 and October 15, 2010. The weather conditions for the first two weeks of collection were uncommonly hot and dry. We (Cleveland Metroparks personnel and I) suspected that such conditions might have been suppressing the sample counts below typical field conditions. Two plots were therefore re-sampled (1025 and 1072) in an attempt to establish more representative levels. For any given plot visit, 4 samples were taken and averaged. To remain consistent with this strategy I chose to average the values from the first and second visits rather than simply replacing the original data. Within the dataset, the plots were identified as 1025M and 1072M, respectively, to indicate that they consisted of merged values. Of the 922 individuals originally collected, 16 were excluded from the dataset for a number of reasons. The majority of exclusions, numbering 11, were actually 29 earthworm fragments; even if the genus or species could have been identified, the biomass would still have been indeterminate. The reason for partial earthworm samples was most likely due to the zeal of collectors trying to capture earthworms that were intent upon escaping. An additional 3 individuals were not earthworms at all. One individual was a perfect specimen but had been inadequately labeled and could not be placed. The final excluded sample was lost before it could be processed. It was a tiny individual that accidentally shot across the lab from the end of a teasing needle and could not be located. I performed analyses of both earthworm abundance and biomass using specimens that were grouped either by genus or by ecological group. Although genus grouping is expedient and more mathematically precise, it fails to quantify the effects of earthworms in terms of ecological behavior. The difficulty with using ecological groups is that L. rubellus and L. terrestris, while of the same genus, belong to different groups yet are physically indistinguishable as juveniles. This potentially confounds any analysis based upon ecological groups. In a study by Asshoff et al. (2010), L. terrestris juveniles behaved as epigeic earthworms. For their study, hatchlings (fresh body weight < 0.5g) were treated as epigeics. Using the simplified classifications of epigeic, endogeic, and anecic, I grouped all L. rubellus adults as well as all Lumbricus juveniles as epigeics. Only L. terrestris adults were classified as anecic (Table V). Admittedly, a number of the Lumbricus juveniles identified in my dataset were significantly larger than 0.5 g and were therefore engaging in some burrowing activities not indicative of epigeics, yet both epigeic and anecic earthworms consume litter. One of the major differences between them is that anecic earthworms are potent translocators of organic matter and mineral soils within the soil 30 horizon; epigeic earthworms have little direct effect on soil. By using this categorization, I expected that the influence of epigeic earthworms on litter consumption could be overestimated, whereas that of anecic earthworms could be underestimated. Additionally, any potential soil-mixing and soil chemistry changes caused by L. terrestris juveniles would be attributed to either epigeic or endogeic categories. In summary, the desired interactions would be captured; however, their attribution to L. terrestris would likely be underestimated. Table V: Earthworm Ecological Groups. The ―Native Ecological Group‖ refers to how earthworm species are often identified in published papers. ―Grouping for Analysis‖ is how the taxa were organized to facilitate analysis based on ecological influence. Expanded Ecological Groups Dendrobaena octaedra Epigeic Dendrodrilus rubidus Eisenia fetida Lumbricus rubellus Epi-endogeic Amynthas spp. Endogeic Aporrectodea calignosa Aporrectodea rosea Octolasion cyaneum Octolasion tyrtaeum Endo-anecic Aporrectodea longa Epi-anecic Lumbricus terrestris Basic Ecological Groups Dendrobaena octaedra Dendrodrilus rubidus Eisenia fetida Epigeic Lumbricus rubellus adults Lumbricus juveniles Amynthas spp. Aporrectodea calignosa Aporrectodea rosea Endogeic Octolasion cyaneum Octolasion tyrtaeum Aporrectodea longa Anecic Lumbricus terrestris adults 3.1.3 Invertebrate Community Quantification Leaf litter collection was performed just prior to earthworm extraction. All litter found within the ⅓ meter PVC frame was collected down to bare ground and placed in a large Ziploc bag. Litter was collected from only one of the intensive modules at each 31 plot, typically the lowest numbered module (02). Sample bags were labeled on their exteriors or with a label placed inside the bag. The total wet weight of the sample was recorded. A portion of each sample was sub-sampled, weighed, and placed in a Berlese extractor until the litter was completely dry, but always for a minimum of 36 hours. Specimens were stored in 95% ethanol. Dried litter was promptly reweighed to determine percent moisture and dry mass of each sample. Invertebrates were counted and identified using a dissecting microscope and identification guides. Specimens were classified to the most specific taxonomic level possible, typically family or order. Data collected included abundance (m-2), species richness (S), Shannon-Weiner Diversity Index (H'), and evenness (E): In previous studies, microarthropods, particularly the taxa of Acari and Collembola, were most heavily influenced by earthworm activity (Eisenhauer, 2010; Cameron et al. 2013; González et al. 2003) I therefore calculated species richness and diversity indices (Figure 9) where specimens were grouped at the taxonomic level of Order to pool the significance of potential effects. I also determined diversity using morphospecies without grouping taxa, but values did not differ significantly from those shown in Figure 9. Finally, I tested abundance (m-2) against both dry litter mass (g/m2) and Evenness using Pearson correlation. Since litter mass may depend upon the intensity of earthworm 32 foraging, only plots (N=49) containing both earthworms and litter were included in the correlations. Plots 1011, 1045, 1063, 1064, and AT02 contained earthworms but no litter, whereas plots 1009, 1014, 1038, 1053, 1074, 1136, 1376, 3484, and 3737 contained litter but no earthworms. 3.1.4 Statistical Analyses Microsoft Excel 2007, version 12.0.4518.1014, was used to calculate all ordinary least squares regressions and t-tests. Systat MYSTAT 12 for Windows, version 12.02.00, was used for all Pearson correlations. The data for all correlations, regressions, or t-tests were transformed as follows, unless otherwise specified. All proportions and percentages were arcsine square root transformed to stabilize the variance with respect to the mean; for statistical tests, FQAI was divided by 100 and treated as a percentage. Logarithmic functions such as pH were not transformed. All other quantities such as mass, length and abundance were natural log transformed to establish log-normal distributions. 3.1.4.1 Earthworm – Plant Interactions Both abundance (m-2) and biomass (AFDM mg/m2) for all earthworm genera (Aporrectodea, Dendrobaena, Dendrodrilus, Eisenia, Lumbricus, Octolasion, and Amynthas) were tested against plant community metrics (FQAI, Sensitive Plants, Tolerant Plants, and Bare Ground) using Pearson correlations. In a similar manner, earthworm biomass by ecological group (Epigeic, Endogeic, and Anecic) was tested against the same plant community metrics. 33 3.1.4.2 Earthworm – Invertebrate – Litter Interactions Analysis of these interactions includes a number of permutations. First, abundance (m-2) and biomass (AFDM mg/m2) for all previously listed earthworm genera were set against aggregated invertebrate community metrics (Abundance and Evenness) using Pearson correlations. I chose not to include diversity (H') in the analysis since Evenness provides better insight into the equitability of resource use within the invertebrate community and a degraded community is likely to display more unevenness than one that is intact. Dry litter mass (g/m2) was then compared against earthworm abundance and biomass by genus as well as earthworm biomass by ecological group, as previously listed. Finally, the top five most numerous invertebrate orders in the dataset (Acari, Arachnida, Coleoptera, Collembola, Hymenoptera) were tested, by abundance, against both the abundance and biomass of earthworms that were grouped by genus, using Pearson correlations. In the same way, the above invertebrate orders were also tested against earthworm biomass, sorted by ecological group. 3.1.4.3 Earthworm – Earthworm Interactions All genera of earthworms, as listed above, were tested for interactions with one another, first by abundance and then by biomass, using Pearson correlations. This testing was repeated with earthworms sorted by ecological group but only for biomass. Earthworm abundances by genus were compared between plots containing Amynthas (N=12) and those containing other earthworms (N=42), using a t-test assuming 34 unequal variances. A similar set of comparisons was performed for plots containing Dendrobaena (N=12) and those containing other earthworms (N=42). The final analysis for this section examined Abundance vs. Biomass at plots containing Amynthas and those containing other earthworms, using ordinary least squares regressions, where trendlines and R2 values were determined. 3.1.4.4 Earthworm – Soil Interactions Earthworm abundance and biomass by both genus and ecological group were tested against all soil parameters (total carbon, total nitrogen, organic matter, phosphorus Bray-P1, phosphorus Bray-P2, potassium, calcium, magnesium, and pH), using Pearson correlations. Plots were also sorted by those containing earthworms (N=54) and those without (N=9); all soil parameters were then compared using a t-test assuming unequal variances. The same testing was also performed for plots containing Amynthas (N=12) and those containing other earthworms (N=42). In an additional grouping, plots containing Dendrobaena (N=12) were compared with respect to pH, to those containing other earthworms (N=42) and using the same t-test assumptions. Finally, soil magnesium (ppm) vs. soil pH was examined for plots containing earthworms and those without, using ordinary least squares regressions, where trendlines and their R2 values were determined. 35 3.2 Results The following sections present data that characterize plant, invertebrate, and earthworm communities as well as dry litter mass and soil composition. Subsequently, these data are analyzed for significant relationships. 36 3.2.1 Plant Communities Figure 8 illustrates the ranges of the habitat characteristics that were determined at the sample plots. Note that for earthworm – plant community interactions, only those plots (N=54) providing earthworm data were tested. 100 90 Plant Community Characteristics (%) 80 70 60 50 40 30 20 10 0 FQAI Sensitive Tolerant Bare Ground Figure 8. Plant Community Characteristics. The above selected plant characteristics represent the spread of values across all plots (N=63). The following four plant community characteristics were reported for each plot: FQAI (Floristic Quality Assessment Index), Sensitive Plant Coverage (%), Tolerant Plant Coverage (%), and Bare Ground Coverage (%). 37 3.2.2 Invertebrate Communities Of the 63 study plots visited, 58 were successfully sampled for leaf litter and subsequently produced invertebrate data. Figure 9 presents the ranges of abundance and diversity calculations across the study plots. All plots that produced usable litter also 2,000 2.5 8.0 45% 7.0 40% 16 2.0 1.0 4.0 500 12 25% 20% 15% 0.5 1.0 0 30% 10 8 6 3.0 2.0 0.0 14 5.0 Evenness 1.5 Maximum Diversity (Hmax) Shannon Diversity (H') 1,500 1,000 Invertebrate Abundance (m-2) 6.0 N=58 35% Number of Plots 2,500 yielded invertebrate specimens. 0.0 10% 5% 0% 4 2 0 1 3 5 7 9 11 Species Richness Figure 9. Invertebrate Community Characteristics. Invertebrate Abundance, Shannon-Weiner Diversity Index, Maximum Diversity, Evenness, and Species Richness are based upon specimens grouped at the taxonomic level of Order. The above measures represent the spread of values across plots (N=58) tested for earthworm-invertebrate interactions. The Species Richness bar graph illustrates the frequency of richness across the tested plots. 38 Five of the plots (1011, 1045, 1063, 1064, and AT02) did not produce invertebrate data. At four plots, the sample site was already bare, so litter was not available for collection. The remaining plot did produce litter; however, the sampling bag was not identifiable due to inadequate labeling measures, so it is not known from which of the five it came. 3.2.3 Earthworm Communities Earthworms were collected from 55 of the 63 plots sampled; no earthworms were found at plots 1009, 1014, 1038, 1053, 1136, 1376, 3484, and 3737. Although plot 1074 was counted as having yielded earthworms, it produced a single specimen fragment and therefore, no usable data. Of the 922 individuals collected, 906 were complete, usable earthworm specimens. The average abundance per plot was 38/m2 with a maximum of 164/m2 (Fig. 10). Note the substantial range of variation across the dataset, where 17% of the plots (N=9) accounted for 62% of the total AFDM, whereas 19% of the plots (N=10) accounted for 57% of the total abundance. Seven genera of earthworms were collected. Lumbricus was the most numerous and also had the greatest biomass. Aporrectodea and Amynthas were the next most numerous, respectively. Although Aporrectodea was substantially more abundant than Amynthas, Amynthas had a slightly greater biomass, indicating that Amynthas was generally a larger genus of earthworm (Table VI: a1, a2). 39 20% 18% 16% Contribution of Each Plot 14% 12% 10% 8% 6% 4% 2% 1006 1033 1047 1048 1071 1004 1026 1030 1070 1031 3596 1019 1028 1045 1072M 1012 1013 1051 1054 3420 1018 1017 1060 1002 1005 1021 1388 1022 1008 1039 AT02 1003 1024 1035 AT01 1068 1029 1050 1064 1015 1010 1044 1025M 1040 1011 1041 1034 1058 1016 1055 3668 1067 1063 1083 0% Plots Sorted by Increasing Abundance Abundance AFDM Figure 10. Relative Earthworm Abundance and Biomass by Plot ID. Abundance (individuals/m2) and Biomass (AFDM mg/m2) were determined for each plot. Blue bars represent the percent contribution of earthworm abundance with respect to all plots containing earthworms. Red bars represent the percent contribution of earthworm biomass with respect to all plots containing earthworms. For example, if all red bars were stacked together, it would equal 100% of estimated earthworm biomass over all plots containing earthworms. 40 Table VI: Earthworms of the Cleveland Metroparks. 57.4 22.2 9.3 1.9 70.4 44.4 22.2 AFDM (mg) 31 12 5 1 38 24 12 54 AFDM (mg) 346 38.2 33 3.6 14 1.5 1 0.1 380 41.9 50 5.5 82 9.1 906 100.0 % Total Biomass Length (mm) % Average Wet Wt. (mg) Presence In Plots Count Genus Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas All Genera Specimen Count a1) Specimen Summary by Genus. Values are in terms of the plots where each genus was found. ―Presence in Plots‖ indicates the number of plots where a given genus was found. The corresponding percentages do not equal 100% since occurrences of genera among plots are rarely mutually exclusive; the appearance of one or more different genus at any single plot is a common event. % 145.5 23.1 98.7 273.5 239.2 170.8 887.5 262.6 29.3 14.8 16.6 15.4 31.0 27.4 62.6 28.2 19.6 4.2 5.6 6.2 38.9 19.4 87.2 25.9 6790.7 137.2 78.7 6.2 14766.1 969.5 7148.1 29896.5 22.7 0.5 0.3 0.0 49.4 3.2 23.9 100.0 a2) Abundance and Biomass (m-2) by Genus. This is a continuation of the above table (a1). 41 Max 7.0 1.9 1.1 22.5 36.9 19.0 1.1 235.5 6.3 2.5 2.3 13.5 35.4 15.4 5.4 92.0 2.3 n/a 2.3 2.3 13.9 n/a 13.9 13.9 22.0 3.3 2.3 78.8 899.5 206.8 2.9 5943.6 4.5 0.7 2.3 15.8 90.1 22.4 0.8 440.3 15.4 3.7 2.3 42.8 1341.9 480.8 78.9 6215.5 38.0 5.7 2.3 164.3 1265.1 244.1 1.1 7606.1 491.4 176.1 Min Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas All Genera S.E. 5.8 2.3 110.3 Mean 25.9 Max Aporrectodea Genus Min S.E. Biomass (AFDM mg/m2) Mean Abundance (m-2) 3.0 3969.6 Table VI: Earthworms of the Cleveland Metroparks (continued). 5 1 1 11 5 1 17 8 2 12 12 46 10.9 2.2 2.2 23.9 10.9 2.2 37.0 17.4 4.3 26.1 26.1 524.1 444.8 133.1 23.1 46.7 43.2 333.2 2010.0 140.0 321.0 895.2 446.8 59.7 63.1 31.8 14.8 16.6 15.4 39.6 99.0 32.5 39.6 62.6 43.2 66.5 2127.5 11.9 71.8 71.8 0.4 16.2 16.2 0.1 4.2 137.2 0.8 5.6 78.7 0.4 6.2 6.2 0.0 47.2 1321.3 7.4 324.5 6166.2 34.6 19.8 39.6 0.2 38.1 723.2 4.1 87.2 7148.1 40.1 62.5 17836.0 100.0 AFDM (mg) AFDM (mg) 32 13.8 1 0.4 1 0.4 33 14.2 14 6.0 1 0.4 28 12.1 19 8.2 2 0.9 19 8.2 82 35.3 232 100.0 % Total Biomass Length (mm) % Average Wet Wt. (mg) Count Genus A. calignosa A. longa A. rosea D. octaedra D. rubidus E. fetida L. rubellus L. terrestris O.cyaneum O. tyrtaeum Amynthas spp. All Adults Individual Presence in Plots Count b1) Specimen Summary of Adults by Species. Values are in terms of the plots where each adult was found. ―Presence in Plots‖ indicates the number of plots where a given species was found. The corresponding percentages do not equal 100% since occurrences of species among plots are rarely mutually exclusive; the appearance of one or more different species at any single plot is a common event. % b2) Abundance and Biomass (m-2) of Adults by Species. This is a continuation of the above table (b1). Max Min 2.3 2.3 2.3 1.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 0.0 S.E. 5.5 0.0 0.0 1.4 2.5 0.0 0.7 1.6 0.0 0.6 3.7 1.5 Biomass (AFDM mg/m2) Mean Min 13.7 2.3 2.3 5.0 6.3 2.3 3.6 5.6 2.3 3.6 15.4 9.1 Max S.E. Genus A. calignosa A. longa A. rosea D. octaedra D. rubidus E. fetida L. rubellus L. terrestris O.cyaneum O. tyrtaeum Amynthas spp. All Adults Mean Abundance (m-2) 31.5 923.2 395.8 171.0 2380.3 2.3 161.6 0.0 161.6 161.6 2.3 36.3 0.0 36.3 36.3 13.5 31.0 17.3 1.1 200.8 13.5 35.4 15.4 5.4 92.0 2.3 13.9 0.0 13.9 13.9 13.5 172.1 31.5 16.2 504.2 15.8 1818.8 525.6 406.6 4941.9 2.3 44.5 4.0 40.5 48.5 9.0 137.3 36.8 42.8 440.3 42.8 1341.9 480.8 78.9 6215.5 45.0 884.0 179.0 1.1 6215.5 42 Table VI: Earthworms of the Cleveland Metroparks (continued). Total Biomass % AFDM (mg) Genus Adults Juveniles All Individual Count c) Specimen Summary for Adults vs. Juveniles. % 223 683 906 24.6 75.4 100.0 17805.8 12090.6 29896.4 59.6 40.4 100.0 d1) Specimen Summary by Effective Ecological Group. Values are in terms of the plots where each ecological group was found. ―Presence in Plots‖ indicates the number of plots where a given group was found. The corresponding percentages do not equal 100% since occurrences of different ecological groups among plots are rarely mutually exclusive; the appearance of one or more different group at any single plot is a common event. Note that the ―Epigeic‖ ecological group includes all juvenile Lumbricus specimens. 491 396 19 906 54.2 43.7 2.1 100.0 50 37 8 54 Total Biomass % 92.6 68.5 14.8 AFDM (mg) % Count Genus Epigeic Endogeic Anecic All Presence in Plots Count Individual % 15970.1 7760.2 6166.2 29896.5 53.4 26.0 20.6 100.0 d2) Biomass and Abundance (m-2) by Effective Ecological Group. This is a continuation of the above table (d1). Max Min S.E. Mean 2.6 5.2 1.6 5.7 Biomass (AFDM mg/m2) Max 21.9 24.6 5.6 38.0 Min S.E. Genus Epigeic Endogeic Anecic All Mean Abundance (m-2) 2.3 74.3 727.4 134.8 1.1 6215.5 2.3 110.3 470.1 150.3 3.0 3969.6 2.3 15.8 1818.8 525.6 406.6 4941.9 2.3 164.3 1265.1 244.1 1.1 7606.1 43 Adults comprised only one quarter of the total number of individuals, yet they accounted for 60% of total biomass (Table VI: c). When only adult, sexually mature individuals were considered, Amynthas was far more abundant than any other genus and had the greatest total biomass, although it was nearly equaled by the biomass of Lumbricus (Table VI: b2). At any given study plot yielding earthworms, an average of 2 genera were found, although some plots contained as many as 5. Across all plots, 7 genera representing 11 species were found (Appendix G1; Appendix G2). Twenty-two percent of the plots with earthworms contained between 1 and 19 individuals of Amynthas (Table VI: a1). 44 3.2.4 Soil Chemistry Soil chemistry data were grouped by plot, according to the presence or absence of 350 3500 8 30 300 3000 7 25 250 2500 15 10 200 150 5 2000 1500 3 1000 2 5 50 500 1 0 0 0 0 16 Phosphorus, Bray-P2 (ppm) 16 12 12 8 4 Earthworms No Earthworms 8 4 0 0 12 0.50 35 0.45 10 6 4 2 0 0.35 0.30 0.25 0.20 0.15 Organic Matter (%) 8 30 0.40 Total Nitrogen (%) Total Carbon (%) 4 100 20 Phosphorus, Bray-P1 (ppm) 6 Soil pH 20 Calcium (ppm) 35 Magnesium (ppm) Potassium (ppm) earthworms. The spread of values are summarized below (Fig. 11). 0.10 25 20 15 10 5 0.05 0.00 0 Figure 11. Soil Chemistry Data. The above figures summarize the observed spread of values for soil parameters that will be tested for earthworm interactions. Green dashes correspond to plots with earthworms; red dashes refer to plots without earthworms. 45 3.2.5 Earthworm – Plant Interactions Earthworm - Plant analysis included 58 plots. Appendix I contains all correlations, but significant interactions are presented in Figure 12. Figure 12. Significant Earthworm-Plant Interactions. Interactions between earthworm communities and plant communities were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against 4 descriptive plant community metrics: FQAI (Floristic Quality Assessment Index), Sensitive Plant Coverage (%), Tolerant Plant Coverage (%), and Bare Ground Coverage (%). This figure presents only those relationships that were significant. As Aporrectodea abundance and biomass increased, FQAI and sensitive plant coverage decreased, whereas tolerant plant coverage increased. Meanwhile, FQAI fell as both Lumbricus and epigeic biomasses increased. Additionally, Octolasion abundance increased with bare ground coverage. 46 3.2.6 Earthworm – Invertebrate Interactions Earthworm - Invertebrate analysis included 58 plots. Of the total 63, five plots produced no invertebrate data (1011, 1045, 1063, 1064, and AT02) and were excluded from the analysis. Nine plots that yielded invertebrates but no earthworms (1009, 1014, 1038, 1053, 1074, 1136, 1376, 3484, and 3732) were included in the analysis so that a comparison between invertebrate communities based upon the presence or absence of earthworms might be made. Figure 13. Significant Earthworm-Invertebrate Interactions. Interactions between earthworm communities and invertebrate communities were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against against 2 aggregate measures of the total invertebrate community metrics: Abundance and Evenness. Invertebrate abundance was also examined using the top 5 most abundant Orders: Acari, Arachnida, Coleoptera, Collembola, and Hymenoptera). This figure presents only those relationships that were significant. Significant interactions are summarized in Figure 13; see Appendix J for all earthworm-invertebrate correlations. As invertebrate evenness increased earthworm biomass increased. Collembola abundance increased with greater biomasses of Amynthas and anecic earthworms. Hymenoptera abundance also increased with abundance of 47 Dendrodrilus. Finally, Coleoptera abundance increased with greater biomasses of Lumbricus and endogeic earthworms. 3.2.7 Litter – Invertebrate/Earthworm Interactions Significant interactions are summarized in Figure 14; see Appendix J for all litterinvertebrate/earthworm correlations. As expected, invertebrate abundance increased with dry litter mass and there was a weak relationship between increasing total earthworm biomass and decreasing litter mass (r=-0.17, P=0.19) but it was not strong enough to be significant. Additionally, when invertebrate abundance was tested against either abundance or biomass of earthworms, no relationship was found. Figure 14. Significant Litter-Invertebrate/Earthworm Interactions. Litter mass and both earthworm and invertebrate communities were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against against Dry Litter Mass. Invertebrate abundance was also tested against dry litter mass, using Pearson correlation. This figure presents only those relationships that were significant. Finally, dry litter mass produced several modest negative correlations for individual genera through biomass for Amynthas, Octolasion, and Anecics and through abundance for Dendrobaena. 48 3.2.8 Earthworm – Earthworm Interactions Significant interactions are discussed below; see Appendix K for all earthwormearthworm correlations. Abundances and biomasses for the genera of Aporrectodea, Lumbricus, and Octolasion correlated with one another indicating that they tended to appear together (Fig. 15). Negative correlations were found for abundance and biomass between Amynthas and both Lumbricus (r=-0.47, P<0.001; r=-0.56, P<0.001) and Octolasion (r=-0.37, P=0.01; r=-0.41, P=0.002); this demonstrated that whenever Amynthas was found, Lumbricus and Octolasion were likely to be less abundant and therefore, presented a correspondingly lower biomass. Figure 15. Correlations between Aporrectodea, Lumbricus, and Octolasion. The left-hand figure illustrates the positive association that these 3 genera have with one another with respect to abundance; the right-hand figure illustrates a similar relationship with respect to biomass. The Pearson correlations are shown above the corresponding relationship arrows. 49 Earthworm Abundance (m-2) 25.0 20.0 Lumbricus spp. P<0.001 Aporrectodea spp. 15.0 P=0.055 Octolasion spp. P<0.001 10.0 Dendrobaena Octaedra P=0.002 05.0 Dendrodrilus rubidus P=0.451 Eisenia fetida 00.0 without Amynthas with Amynthas Figure 16. Earthworm Abundance by Genus for Plots with and without Amynthas. A p-value was determined for each genus using the abundance at plots with Amynthas against those without, using a twotailed t-test and assuming unequal variances. Note that Eisenia fetida was insufficiently represented to perform a t-test. 10 9 ln(AFDM) (mg/m2) 8 7 6 5 4 3 2 1 0 0 1 2 3 ln(Abundance) (m-2) Plots without Amynthas Linear (Plots without Amynthas) 4 5 6 Plots with Amynthas Linear (Plots with Amynthas) R² = 0.61 R² = 0.78 Figure 17. Earthworm Biomass for Plots with and without Amynthas. This figure is an ordinary least squares regression of earthworm abundance vs. biomass (AFDM). The black trendline is based upon those plots containing earthworms other than Amynthas. The dashed red trendline is based upon plots that contain Amynthas. The trendlines demonstrate that the total biomass at plots containing Amynthas is greater than those where it is absent. 50 Analysis by ecological groups revealed that epigeic and endogeic earthworms tended be found together (r=0.48, P<0.001) whereas anecic and endogeic earthworms were not (r=-0.64, P<0.001) (Appendix K: c). The abundances of Lumbricus, Octolasion, Dendrobaena, and Aporrectodea were significantly higher where Amynthas was not present than those where it was (Fig. 16) whereas plots containing Amynthas tended to have higher biomasses than those that did not (Fig. 17). 3.2.9 Earthworm – Soil Interactions Significant interactions are summarized in Figure 18; see Appendix L for all earthworm-soil correlations. Several interactions were found; total carbon and nitrogen decreased with greater endogeic biomass, whereas only total nitrogen decreased with greater epigeic biomass. Plant available phosphorus decreased as the biomasses of Lumbricus and endogeic earthworms increased. As Dendrobaena abundance increased, total carbon and organic matter decreased whereas pH, calcium, and magnesium decreased (Fig. 18). Plots were grouped in three different ways. The first grouping was according to whether plots contained Dendrobaena or other earthworms (Fig. 19). The second grouping was according to whether plots contained Amynthas or other earthworms. In the final grouping, plots were divided by whether earthworms were present. 51 Figure 18. Significant Earthworm-Soil Interactions. Interactions between earthworm communities and soil composition were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against against 9 soil parameters: total carbon, total nitrogen, organic matter, phosphorus-P1, phosphorus-P2, potassium, calcium, magnesium, and pH. This figure presents only those relationships that were significant. 52 8 7 6 Soil pH 5 4 3 2 1 0 Other Earthworms Dendrobaena Figure 19. Soil pH at Plots with Dendrobaena and Those with Other Earthworms. This figure summarizes the spread of pH values between plots containing Dendrobaena (N=12) and those containing earthworms other than Dendrobaena (N=42). Magnesium Availability (ppm) 350 300 250 200 150 100 50 0 0 2 4 6 8 pH Earthworms No Earthworms R² = 0.73 R² = 0.63 Figure 20. Regression Lines for pH vs. Mg for Plots with and without Earthworms. This figure is an ordinary least squares regression of soil pH vs. Magnesium availability. The dashed black trendline corresponds to plots with earthworms (N=42), whereas the solid black trendline corresponds to plots without earthworms (N=12). Although both trendlines indicate an increasing availability of magnesium with pH, there is some evidence that plots containing earthworms have enhanced Mg availability. 53 The pH at plots containing Dendrobaena were significantly different (P<0.001) from those without (Fig. 19). The only other significant relationship was between plots with earthworms and those without, with respect to magnesium availability (P=0.01). Plots yielding earthworms (Mgppm=139) had a 64% higher magnesium availability than those without (Mgppm=82). Regression lines for the two groups were determined for magnesium vs. pH to explore whether pH was primarily driving magnesium availability rather than an earthworm related factor. 54 CHAPTER IV DISCUSSION 4.1 Hypotheses HYPOTHESIS 1 (higher abundances and/or biomass of earthworms correspond to more degraded plant communities) was supported by the data in the following ways: Aporrectodea was the dominant earthworm influence on plant communities; as its biomass increased, FQAI and sensitive plant coverage decreased and tolerant plant coverage increased. Considering that Aporrectodea only constituted a quarter of total biomass, its effects were disproportionately large making it a particularly potent agent. FQAI also declined with Lumbricus biomass. Finally, bare ground coverage increased with greater abundance of Octolasion. HYPOTHESES 2 & 4 (invertebrate communities are degraded by higher abundances and/or biomass of non-native earthworms or by Amynthas considered alone) were not supported by the data, in fact a number of modest beneficial relationships were found. Litter mass was of interest since many earthworms consume it and invertebrates rely upon it for food and environment. Invertebrate abundance correlated positively with litter mass as found in previous studies (Szlavecz et al. 2011; Cameron et al. 2013). Greater earthworm abundance corresponded with decreased litter mass (Holdsworth et al. 55 2008; Holdsworth et al. 2012) yet this increased abundance did not affect overall invertebrate abundance. However, greater earthworm abundance appeared to shift the relative abundances of invertebrate taxa, as was represented by greater Evenness. Additionally, the abundances of Collembola, Hymenoptera, and Coleoptera were enhanced by a number of earthworm groups (Fig. 13). This was contrary to what one might expect since earthworms were consuming the litter that invertebrates apparently relied upon. A previous study by Straube et al. (2009) found a similar effect, where low densities of Octolasion tyrtaeum caused increases in microarthropod taxa diversity and abundance. Several factors could contribute to these paradoxical circumstances. The first was that the forests of N.E. Ohio are already ecologically disturbed. According to Williams (1949), they were once old-growth forests, but nearly all of them were cut down when the region was settled at the start of the 1800‘s. As these forests re-grew, earthworms, to some extent, were probably incorporated into the recovering ecosystem. In the new foodweb, earthworms and other soil invertebrates were already co-existing; interactions between them would likely be muted in contrast to an undisturbed, previously worm-free forest. In comparison to other studies, the densities that I found were quite modest, with a mean of 38 individuals per square meter to a maximum of 164. Previously reported densities of 100 to 200 were common (Suárez et al. 2006) while density spikes as high as 2000 to 3000 occurred in extreme cases (Suárez et al. 2006; Dymond et al. 1997). The Intermediate Disturbance Hypothesis basically states that moderate amounts of upheaval or disruption actually produce beneficial effects because they create new 56 opportunities that might otherwise not be available under equilibrium conditions (Begon et al. 2006). I believe that is what the data was showing; earthworms were disturbing the soil and fragmenting the litter but also stimulating microbial production. This enhanced food resources for those invertebrates that could take advantage of it. If earthworm densities were greatly elevated this benefit would probably vanish. The lack of influence by Amynthas is another situation. At the time of sampling, it was only found in 22% of the plots and constituted 9% of all individuals collected. It is possible that as a recent arrival, Amynthas was not present in the study plots long enough or in sufficient numbers to exert a significant and lasting influence. HYPOTHESIS 3 (higher abundances and/or biomass of Amynthas tend to degrade plant communities) was not supported by the data. Amynthas did not appear to have any distinctive influence upon urban/suburban forest ecosystems beyond that of other nonnative earthworms. As mentioned above, Amynthas was a recent arrival to N.E. Ohio, and its influence could become more notable with the passage of time. HYPOTHESIS 5 (earthworm activity and soil composition mutually influence one another) was supported by the data. Carbon, nitrogen, and phosphorus decreased with increasing biomass of selected earthworm groups (Fig. 18). The likely cause of these decreases was accelerated nutrient mineralization initiated by consumption of litter and soil organic matter. Once mineralized, nutrients were easily leached away from upper soil horizons through normal hydrologic processes. This essentially agreed with a study by Hale et al. (2005) of an invasion of previously worm-free northern hardwood forests that revealed consistent decreases in carbon, nitrogen, and organic matter of the O and A soil horizons. 57 Soil tests measure the portion of nutrients that are likely to become plantavailable; they do not report total quantities present in the soil (Hornbeck et al. 2011). Although earthworms can increase the leachate fluxes of cations, such as magnesium through burrowing activity (Robinson et al. 1996), studies have also shown that earthworms may increase soil pH through casting activities (Bolan & Baskaran 1996; Sackett et al. 2013). Higher average pH, as found at plots containing earthworms, contributed to a higher availability of cations yet the data did not provide clear evidence that pH was the primary mechanism controlling magnesium availability. The regression lines comparing pH/Mg relationships (Fig. 20) at plots with and without earthworms suggested a secondary factor, yet there were insufficient worm-free plots in the dataset to be definitive. 4.2 Octolasion and Succession A relationship was found between dry litter mass and the abundance of individual genera of earthworms (Fig. 14). Previous studies have demonstrated relationships between litter depletion for epigeic and anecic earthworms such as Amynthas and L. terrestris (Holdsworth et al. 2008; Holdsworth et al. 2012), yet Octolasion was a bit of a puzzle, since it primarily consumed soil organic matter and not litter. Earthworm assemblages are often successional (Suárez et al. 2006), where initial invasions consist of epigeics, closely followed by anecic species; this continues until the topsoil has been sufficiently enriched and loosened to facilitate an invasion by endogeics, such as Octolasion. I propose that the higher densities of Octolasion found in litter- 58 depleted areas exerted no direct influence on litter consumption, rather, their presence was incidental as product of earthworm succession. Octolasion tyrtaeum is a peregrine species that tolerates a wide range of environmental conditions (James & Hendrix 2004). Its association with bare ground was consistent with successional litter depletion, yet Octolasion’s endogeic foraging habit through and upon fine root systems could also cause understory plant decline, and thus increase the appearance of bare ground. The Aporrectodea-Lumbricus-Octolasion earthworm assemblage was commonly found within the Cleveland Metroparks. This structure was likely to represent a relatively stable, well-established community since Aporrectodea and Lumbricus represented the first two groups of a successional invasion (epigeic and anecic) and Octolasion represented the final group. 4.3 The Dendrobaena Puzzle Dendrobaena produced some unexpected results; as its abundance increased, soil carbon, organic matter, and dry litter mass increased whereas pH dropped, along with magnesium and calcium availability. This was contrary to everything one would expect since earthworms consume organic materials and decrease in abundance with falling pH (Tiunov et al. 2006). Declining calcium and magnesium availability could be explained, since such cations become less available as pH decreases. A study by Suárez et al. (2006) provides some insight. Dendrobaena is distinguished as being one of the most frost-resistant and acid-tolerant lumbricids in the world. Being tiny, epigeic, and parthenogenetic makes it very well adapted to colonizing 59 worm-free or inhospitable soils. In general, earthworm densities begin to drop off once soil pH falls below 5 (Tiunov et al. 2006). A t-test between plots sorted by Dendrobaena (Fig. 19) confirmed that soil pH was lower at plots where it was present (P<0.001). The evidence suggested that Dendrobaena enjoyed a partial release from inter-species competition because of its tolerance to acidic soil; the reason it was correlated with higher levels of carbon, organic matter, and leaf litter is because there were just not that many other earthworms present to consume the litter that also had a comparable pH tolerance. 4.4 Land Use History and Earthworm Influence Pristine, minimally disturbed forests differ from urban/suburban forests in a number of fundamental ways. In a study of previously worm-free boreal forests of Minnesota, Frelich et al. (2006) found that invasive earthworms caused significant declines in diversity of herbaceous plants and tree seedlings, contributing to ―forest decline syndrome‖ where the successional trajectory of the forest is changed. Although healthy, well-established ecosystems are inherently resilient, they also contain significant numbers of ecosystem specialists that use resources uniquely and are therefore successful. Invasive species, often being generalists, are able to overexploit resources often driving resources to levels lower than can be tolerated by natives (Crowder & Snyder 2010). In contrast to the forests study by Frelich et al. (2006), Snyder et al. (2011) examined the invasion of the non-native earthworm Amynthas agrestis into forests already occupied by indigenous earthworms. Some moderate decreases in the O horizon 60 were observed, but the greater significance was that the invasion front expanded much more slowly and inconsistently than expected. Snyder hypothesizes that a form of biotic resistance in the form of direct competition with a native millipede may be a major factor. The difference in response between the two forest communities highlights their inherent sensitivities to a similar disturbance. For Minnesotan forests that have no ecological equivalent to the earthworm, an earthworm invasion caused great change, yet in the Smoky Mountains, the effects on forest floor structure and diversity were markedly less. Northeastern Ohio forests and Smoky Mountain forests are similar in that they already have a resident earthworm population; however, they differ in at least two ways. The Smoky Mountain forests have been exposed to relatively minor ecological disturbances compared to N.E. Ohio. With few exceptions, the lands of the Cleveland Metroparks are recovering urban/suburban forests. Additionally, all of the non-native earthworms identified are highly adaptable, generalists whereas the indigenous earthworms of the Smokies have been coevolving within their ecosystem for at least tens of thousands of years. I found that the Aporrectodea-Lumbricus-Octolasion assemblage appeared to be a common element among the plots; one study found a correlation between these three genera and a reduction in both leaf litter mass and seedling count (Corio et al. 2009). Even though this community is technically non-native, it probably naturalized to recovering forests and was incorporated into a new level of diversity and interactions that exclude many of the original specialists leading to a biotic homogenization. Such a community would support less diversity and encourage the spread of more tolerant 61 natives (Naaf & Wulf 2010) as well as resident non-natives. Subsequent introductions of the same, or ecologically equivalent species, are more easily assimilated since the conditions for foraging, burrowing, and reproduction have already been established. This does not imply that introductions of new earthworm species or reintroductions of existing species do not cause disturbances in the food web; it is only that those disturbances are likely to cause less severe perturbations in the relative equilibrium, since the ecosystem has ―learned‖ how earthworms use their environment and can respond accordingly. This acquired toughness, however, is paid for through a lower biodiversity and habitat quality. In contrast, worm-free forests do not benefit from this learning and therefore, are far more vulnerable to dramatic changes in forest floor dynamics, understory composition, or even dominant tree species selection over the long term. 4.5 The Influence of Amynthas Amynthas abundance displays a strong negative correlation with the abundances of other non-native earthworms, yet fails to produce a distinctive negative interaction with either plant or invertebrate communities. One explanation is that its potential influence is limited, since it must divert some of its energy budget to compete for resources. Another explanation is that Amynthas will eventually express its influence; it is just that it is taking longer to become established since many of the prime habitats, such as those not subject to desiccation or limited food, are already occupied. Due to its high metabolic rate and necessity to complete its life cycle within one year, Amynthas is 62 more vulnerable to resource limitations and habitat fluctuations than established species that may live for multiple seasons. Figure 17 shows that the biomass at sites containing Amynthas have a greater biomass yet those same sites have reduced abundances of non-Amynthas genera (Fig. 16) indicating that once Amynthas does become established, it draws more carbon from its environment than did previous assemblages; this points to a greater potential for ecological damage by Amynthas once it becomes more deeply established. Disturbances from a new influence on an ecosystem can be expected to manifest through the relative success of the organisms that most directly compete for the same resources, such as other earthworms or millipedes (Snyder et al. 2011). The current earthworm – earthworm interactions could therefore be precursors to a more significant Amynthas influence. 4.6 Sampling Methods and Weather Conditions One of significant challenges with earthworm sampling is the variability of their distributions, which may skew reported abundances and diversities from actual values. Abundance represents the average number of individuals for a given area, yet earthworms can be very patchy and will congregate around areas that offer the best forage and a stable, hospitable environment. Physical site characteristics therefore play a fundamental role in extraction effectiveness. Surfaces that are uncommonly dry, compacted, or matted with roots, may resist the penetration of a mustard solution to a degree that it is largely unabsorbed and 63 rendered ineffective. For excessively pitched surfaces, much of the solution may flow outside of the sample area before being fully absorbed. Earthworm distributions also expand and contract over time, primarily following changes in soil moisture that are usually driven by weather conditions. For this research, earthworm collection extended over a period of four weeks. The first two weeks were very hot and dry, but the final two weeks included a fair amount of rain. One author notes a dramatic reduction in earthworm numbers during very dry conditions (Snyder et al. 2008). It is impossible to estimate by how much the average densities varied between plots sampled during the first half and those sampled during the second, based entirely upon weather conditions. Ideally, though wholly impractical, all sampling would be completed in one day to eliminate the variability due to rainfall. The same difficulty applies to longitudinal studies, where abundance and diversity can be expected to vary from year to year with respect to rainfall and temperature as well as successional changes based on litter and soil conditions. The use of the liquid mustard extraction method is a well-established technique for earthworm sampling, and in that respect, densities across different studies are generally applicable, but the lingering question of how comparable it is to other methods remains. One study by Lawrence et al. (2002) compared the mustard extraction method to hand sorting and found that, the two are quite comparable and differ only slightly. Digging and hand sorting tends to underestimate both the smallest earthworms and those residing below a depth of 25 cm. At present, there appear to be no studies that attempt to ascertain the relationship between earthworm density estimates and their corresponding 64 true densities. All the above considerations illustrate how collected data is ultimately at the mercy of when, where, how often, and how thoroughly sampling is performed. 4.7 Future Work In future work, a more detailed analysis of invertebrate specimens would be useful so that functional rather than strictly taxonomic divisions could be used for correlations. Inclusion of a relative measure of co-occurring disturbances, such as intensity of deer browse and degree of surrounding urban land use, might be helpful to tease apart overall disturbance into discrete contributing factors. Finally, though very resource intensive, it would be useful to genetically barcode all the specimens, or at least the juveniles, so that they could be identified to species. One study presented a nondestructive technique using excreted coelomic fluid to amplify earthworm DNA for barcoding (Minamiya et al. 2011). This would permit a greater insight into how both juveniles and adults of different species interact with their environment. 4.8 Final Thoughts My research contributed to the existing body of knowledge regarding the influence of non-native earthworms on forest ecosystems, but was unique since it focused on urban/suburban forests rather than relatively undisturbed woods. Causation still remains a complex and vexing problem since ecosystems tend to be very complex, chaotic, highly non-linear systems that are strongly influenced by previous conditions. Ecosystems also have many simultaneous disturbances that often 65 co-facilitate one another and may cause runaway conditions through positive feedback mechanisms. Earthworms, certain invasive plants, and high deer populations often occur together and it is not clear how they facilitate one another. It has been hypothesized that earthworms and exotic plants support one another as co-invaders (Heneghan et al. 2007). Earthworm-mediated litter breakdown promotes conditions favorable to invasion of exotic plants such as common buckthorn (Rhamnus cathartica) by increasing soil N availability above levels required by native plants. A causative relationship between nonnative plants and adjacent soil properties was established in a study by Kourtev et al. (2003). The soil properties and microbial communities in the rhizosphere of exotic plants developed very differently from those of native plants grown under greenhouse conditions starting with identical soils. Exotic plant soils in that study had a characteristically higher pH and higher availability of nitrates. These elevated nitrates in turn, may favor increased earthworm densities, thus creating a positive feedback loop to sustain a co-invasion. Although earthworms may engage in seed predation and translocation (Forey et al. 2011) as well seedling herbivory (Eisenhauer et al. 2010) the high densities of the white-tailed deer (Odocoileus virginianus) are arguably a dominant factor in the consumption of woody and herbaceous plants and seedlings (Alverson et al. 1988). Selective deer browse and avoidance of unpalatable, often invasive plants can promote continued ingress of undesirable plants (Aronson & Handel 2011). The wide-ranging and wandering behavior of deer through both urban areas and forest may facilitate jump dispersal of earthworm communities as cocoons are 66 transported by deer hoofs during their movements. Deer pellets cannot be underestimated as source of earthworm enrichment (Rearick et al. 2011). In fact, Lumbricus terrestris activity accelerates deer fecal pellet decomposition, where subsequently released nutrients may then support yet greater earthworm densities (Karberg & Lilleskov 2009). Meanwhile, high-pH castings resulting from deer foraging, further raise soil pH which causes nutrients to become more bioavailable, but also creates a greater risk of being leached away. Earthworm litter consumption also removes the duff layer that acts as a nursery to seedlings and protects the forest floor food web against extreme dry or cold events. All of the above factors are likely to decrease plant diversity and alter soil chemistry, yet earthworms are not the sole agents of change but only co-facilitators. Considering the many ecological disturbances that encroach upon urban/suburban forests, it is rather remarkable that any influences of earthworm activity are detectable. 67 BIBLIOGRAPHY Addison, J. A., 2009. Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biological Invasions, 11:59-79. Alred, G. J., C. T. Brusaw, W. E. Oliu. 2006. Handbook of Technical Writing. New York: St. Martin‘s Press. 639 p. Alverson, W. S., D. M. Waller, S. L. Solheim, 1988. Forests too deer: edge effects in northern Wisconsin. Conservation Biology, 2:348-358. Andreas, B. K., J. J. Mack, J. S. McCormac. 2004. Floristic Quality Assessment Index (FQAI) for vascular plants and mosses for the State of Ohio. Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Group, Columbus, OH. 219 p. Araujo, Y., F. J. Luiz, E. Barros, 2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biology and Fertility of Soils, 39:146-152. Arguedas, N., 2010. Earthworms in the Cleveland Metroparks (2008-2009): Research update. Internal Report. Fairview Park, OH: Cleveland Metroparks. Aronson, M. F. J., S. N. Handel, 2011. Deer and Invasive Plant Species Suppress Forest Herbaceous Communities and Canopy Tree Regeneration. Natural Areas Journal 31(4):400-407. Asshoff, R., S. Scheu, N. Eisenhauer, 2010. Different earthworm ecological groups interactively impact seedling establishment. European Journal of Soil Biology, 46:330-334. Baker, G. H., G. Brown, K. Butt, J. P. Curry, J. Scullion, 2006. Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Published online: 1 September 2006 C211 Springer Science+Business Media B.V. Baker, G. H. Baker, T.A. Thumlert, L.S. Meisel, P. J. Carter, G.P. Kilpin, 1997. ―Earthworms Downunder‖: A survey of the earthworm fauna of urban and agricultural soils in Australia. Soil Biology & Biochemistry, 29(3/4):589-597. Barajas-Guzmán, G., J. Alvarez-Sánchez, 2003. The relationships between litter fauna and rates of litter decomposition in a tropical rain forest. Applied Soil Ecology, 24:91-100. 68 Begon, M., C. R. Townsend, J. L. Harper, 2006. Ecology: From Individuals to Ecosystems, 4th edition. Malden: Blackwell Publishing. 738 p. Belote, R. T., R. H. Jones, 2009. Tree leaf litter composition and nonnative earthworms influence plant invasion in experimental forest floor mesocosms. Biological Invasions, 11:1045-1052. Bernard, M. J., M. A. Neatrour, T. S. McKay, 2009. Influence of Soil Buffering Capacity on Earthworm Growth, Survival, and Community Composition in the Western Adirondacks and Central New York. Northeastern Naturalist, 16(2):269-284. Bhadauria, T., P. S. Ramakrishnan, 1996. Role of earthworms in nitrogen cycling during the cropping phase of shifting agriculture (Jhum) in north-east India. Biology and Fertility of Soils, 22:350-354. Bhat, S., K. Hatfield, J. M. Jacobs, R. Lowrance, R. Williams, 2007. Surface runoff contribution of nitrogen during storm events in a forested watershed. Biogeochemistry, 85:253-262. Blakemore, R. J., 2003. Japanese earthworms (Annelida: Oligochaeta): a review and checklist of species. Organisms Diversity & Evolution 3, Electronic Supplement, 11:1-43. Blumenthal, D. M., 2006. Interactions between resource availability and enemy release in plant invasion. Ecology Letters, 9:887-895. Bohlen, P. J., P. M. Groffman, T. J. Fahey, M. C. Fisk, E. Sua´rez, D. M. Pelletier, R. T. Fahey, 2004. Ecosystem Consequences of Exotic Earthworm Invasion of North Temperate Forests. Ecosystems, 7:1-12. Bolan, N. S., S. Baskaran, 1996. Characteristics of earthworm casts affecting herbicide sorption and movement. Biology and Fertility of Soils, 22:367-372. Borders, B. D., J. C. Pushnik, D. M. Wood, 2006. Comparison of Leaf Litter Decomposition Rates in Restored and Mature Riparian Forests on the Sacramento River, California. Restoration Ecology, 14(2):308-315. Briones, M. J. I., M. E. Barreal, A. C. Harrison, P. P. Gallego, 2011. Earthworms and nitrogen applications to improve soil health in an intensively cultivated kiwifruit orchard. Applied Soil Ecology, 49:158-166. Brown, G. C., 1995. How do earthworms affect microfloral and faunal community diversity? Plant and Soil, 170:209-231. Burns, J. H., S. L. Halpern, A. A. Winn, 2007. A test for a cost of opportunism in invasive species in the Commelinaceae. Biological Invasions, 9:213-225. 69 Burtelow, A. E., P. J. Bohlen, P. M. Groffman, 1998. Influence of exotic Earthworm Invasion on Soil Organic Matter, Microbial Biomass and Denitrification Potential in Forest Soils of the North Eastern United States. Applied Soil Ecology, 9:197202. Burton, M. L., L. J. Samuelson, 2008. Influence of urbanization on riparian forest diversity and structure in the Georgia Piedmont. Plant Ecology, 195:99–115. Callaham Jr., M. A., G. González, C. M. Hale, L. Heneghan, S. L. Lachnicht, X. Zou, 2006. Policy and management responses to earthworm invasions in North America. Biological Invasions, 8:1317-1329. Callaham Jr., M. A., P. F. Hendrix, R. J. Phillips, J. Cortez, G. Billes, M. B. Bouché, 2003. Occurrence of an exotic earthworm (Amynthas agrestis) in undisturbed soils of the southern Appalachian Mountains, USA. Pedobiologia, 47:466-470. Cameron, E. K., E. M. Bayne, 2012. Invasion by a non-native ecosystem engineer alters distribution of a native predator. Diversity and Distributions, 18:1190-1198. Cameron, E. K., E. M. Bayne, M. J. Claperton, 2007. Human-facilitated invasion of exotic earthworms into northern boreal forests. Ecoscience, 14:482-490. Cameron, E. K., K. M. Knysh, H. C. Proctor, E. M. Bayne, 2013. Influence of two exotic earthworm species with different foraging strategies on abundance and composition of boreal microarthropods. Soil Biology & Biochemistry, 57:334340. Corio, K, A. Wolf, M. Draney, G. Fewless, 2009. Exotic earthworms of great lakes forests: A search for indicator plant species in maple forests. Forest Ecology and Management. 258:1059-1066. Cortez, J., G. Billes, M. B. Bouché, 2000. Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils, 30:318-327. Costello, D. M., G. A. Lamberti, 2008. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems. Oecologia, 158:499-510. Côtè, S. D., T. P. Rooney, J. Tremblay, C. Dussault, D. M. Waller, 2004. Ecological impacts of deer overabundance. Annual Review of Ecological Systems, 35:113147. Crowder, D. W., W. E. Snyder, 2010. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 12:2857-2876. 70 Dechaine, J., H. Ruan, Y. Sanchez-de Leon, X. Zoua, 2005. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico. Pedobiologia, 49:601-607. Dymond, P., S. Scheu, D. Parkinson, 1997. Density and distribution of Dendrobaena octaedra (Lumbricidae) in aspen and pine forests in the Canadian Rocky Mountains (Alberta). Soil Biology & Biochemistry, 29(3/4):265-273. Edwards, C. A., P. J. Bohlen, 1996. Biology and Ecology of Earthworms. London: Chapman & Hall, pp. 142–145. Eisenhauer, N., 2010. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts in soil microarthropods. Pedobiologia, 53:343-352. Eisenhauer, N., O. Butenschoen, S. Radsick, S. Scheu, 2010. Earthworms as seedling predators: Importance of seeds and seedlings for earthworm nutrition. Soil Biology & Biochemistry, 42:1245-1252. Eisenhauer, N., S. Marhan, S. Scheu, 2008. Assessment of anecic behavior in selected earthworm species: Effects on wheat seed burial, seedling establishment, wheat growth and litter incorporation. Applied Soil Ecology, 38:79-82. Eisenhauer, N., S. Partsch, D. Parkinson, S. Scheu, 2007. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biology & Biochemistry, 39:1099-1110. Eisenhauer, N., M. Schuy, O. Butenschoen, S. Scheu, 2009. Direct and indirect effects of endogeic earthworms on plant seeds. Pedobiologia, 52:151-162. Eriksen-Hamel, N. S., J. K. Whalen, 2007. Impact of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agriculture, Ecosystems and Environment, 120:442-448. Ernst, G., D. Felten, M. Voland, C. Emmerling, 2009. Impact of ecologically different earthworm species on soil water characteristics. European Journal of Soil Biology, 45:207-213. Eschtruth, A. K., J. J. Battles, 2008. Acceleration of Exotic Plant Invasion in a Forested Ecosystem by a Generalist Herbivore. Conservation Biology, 23(2):388-399. Felten, D., C. Emmerling, 2009. Earthworm burrowing behavior in 2D terraria with single- and multispecies assemblages. Biology and Fertility of Soils, 45:789-797. 71 Ferreira, T., W. Rasband, 2012. ImageJ User Guide – IJ 1.46, imagej.nih.gov/ij/docs/guide. Foggo, A., C. M. P. Ozanne, M. R. Speight, C. Hambler, 2001. Edge effects and tropical forest canopy invertebrates. Plant Ecology. 153:347-359. Forey, E., S. Barot, T. Decaëns, E. Langlois, K. Laossi, P. Margerie, S. Scheu, N. Eisenhauer, 2011. Importance of earthworm-seed interactions for the composition and structure of plant communities: A review. Acta Oecologica, 37:594-603. Frelich, L. E., C. Hale, S. Scheu, A. Holdsworth, L. Heneghan, P. J. Bohlen, P. B. Reich, 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 8:1235-1245. Frelich, L. E., P. B. Reich, 2010. Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America? Frontiers in Ecology and the Environment, 8(7):371-378. González, G., T. R. Seastedt, Z. Donato, 2003. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine (Pinus contorta) forests in Colorado, USA. Pedobiologia, 47:863-869. Gordon, R. B., 1969. The natural vegetation of Ohio in pioneer days. Columbus: Ohio State University. 113 p. Gotelli, N. J., A. M. Ellison, 2004. A Primer of Ecological Statistics. Sunderland: Sinauer Associates, Inc. 479 p. Greiner, H. G., D. M. Costello, S. D. Tiegs, 2010. Allometric estimation of earthworm ash-free dry mass from diameters and lengths of select megascolecid and lumbricid species. Pedobiologia, Vol. 53 No. 4 pp. 247-252. Griffith, B., M. Türke, W. W. Weisser, N. Eisenhauer, 2013. Herbivore behavior in the anecic earthworm species Lumbricus terrestris L.? European Journal of Soil Biology, 55:62-65. Haimi, J., M. Einbork, 1992. Effects of endogeic earthworms on soil processes and plant growth in coniferous forest soil. Biology and Fertility of Soils, 13:6-10. Haimi, J., V. Huhta, 1990. Effects of earthworms on decomposition processes in raw humus forest soil: A microcosm study. Biology and Fertility of Soils, 10:178-183. Hale, C. M. 2007. Earthworms of the Great Lakes. Duluth: Kollath+Stensaas Publishing. 36 p. 72 Hale, C. M., L. E. Frelich, P. B. Reich, J. Pastor, 2005. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA. Ecosystems, 8:911-927. Hale, C. M., P. B. Reich, L. E. Frelich, 2004. Allometric Equations for Estimation of Ash-free Dry Mass from Length Measurements for Selected European Earthworm Species (Lumbricidae) in the Western Great Lakes Region. The American Midland Naturalist, 151:179-185. Hale, C. M., 2008. Evidence for human-mediated dispersal of exotic earthworms: support for exploring strategies to limit further spread. Molecular Ecology, 17:1165-1169. Hausman, C. E., T. L. Robison, 2010. Plant Community Assessment Program (PCAP) Preliminary Report. Cleveland Metroparks Technical Report 2010/NR-05. Division of Natural Resources, Cleveland Metroparks, Fairview Park, Ohio. Hendrix, P. F., 2006. Biological invasions belowground—earthworms as invasive species. Biological Invasions, 8:1201–1204. Hendrix, P. F., G. H. Baker, M. A. Callaham Jr., G. A. Damoff, C. Fragoso, G. González, S. W. James, S. L. Lachnicht, T. Winsome, X. Zou, 2006. Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Published online: 1 September 2006. C211 Springer Science+Business Media B.V. Heneghan, L., J. Steffen, K. Fagen, 2007. Interactions of an introduced shrub and introduced earthworms in an Illinois urban woodland: Impact on leaf litter decomposition. Pedobiologia, 50:543-551. Holdsworth, A. R., 2008. Litter decomposition in earthworm-invaded northern hardwood forests: Role of invasion degree and litter chemistry. Ecoscience, 15(4):536-544. Holdsworth, A. R., L. E, Frelich, P. B. Reich, 2007. Effects of Earthworm Invasion on Plant Species Richness in Northern Hardwood Forests. Conservation Biology, 21(4):997-1008. Holdsworth, A. R., L. E. Frelich, P. B. Reich, 2012. Leaf Litter Disappearance in Earthworm-Invaded Northern Hardwood Forests: Role of Tree Species and the Chemistry and Diversity of Litter. Ecosystems, 15:913-926. Hopfensperger, K. N., G. M. Leighton, 2011. Influence of Invasive Earthworms on Above and Belowground Vegetation in a Northern Hardwood Forest. The American Midland Naturalist, 166:53-62. Hornbeck, D. A., D. M. Sullivan, J. S. Owen, J. M. Hart, 2011. Soil Test Interpretation Guide (EC1478). Oregon State University Extension Service. ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/22023/ec1478.pdf. 73 Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, Z. Zhao-Liang, 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35:75-139. Ilieva-Makulec, K., G. Makulec, 2007. Does the activity of the earthworm Aporrectodea calignosa modify the plant diversity effect on soil nematodes? European Journal of Soil Biology, 43:S157-S164. James, S.W., P. F. Hendrix, 2004. Invasion of exotic earthworms into North America and other regions. In: Edwards, C.A. (Ed.), Earthworm Ecology. , 2nd ed., Boca Raton: CRC Press, pp. 75–88. James, S. W., 2004. An illustrated key to the earthworms of the Samoan Archipelago (Oligochaeta: Glossoscolecidae, Megascolecidae, and Moniligastridae). Micronesica, 37(1):1-13. Karberg, N. J., E. A. Lilleskov, 2009. White-tailed deer (Odocoileus virginianus) fecal pellet decomposition is accelerated by the invasive earthworm Lumbricus terrestris. Biological Invasions, 11:761-767. Keane, R. M., M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17(4):164-170. Kelling, K. A., E. E. Schulte, 2004. A2523 Understanding Plant Nutrients: Soil and Applied Calcium. University of Wisconsin-Extension, www.soils.wisc.edu/extension/pubs/A2523.pdf. Kelling, K. A., E. E. Schulte, 2004. A2524 Understanding Plant Nutrients: Soil and Applied Magnesium. University of Wisconsin-Extension, www.soils.wisc.edu/extension/pubs/A2524.pdf. Klok, C., 2007. Effects of earthworm density on growth, development, and reproduction in Lumbricus rubellus (Hoffm.) and possible consequences for the intrinsic rate of population increase. Soil Biology & Biochemistry, 39:2401-2407. Kourtev, P. S., J. G. Ehrenfeld, M. Häggblom, 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology & Biochemistry, 35: 895-905. Krivtsov, V., A. Garside, A. Brendler, K. Liddell, B. S. Griffiths, H. J. Staines, 2007. A study of population numbers and ecological interactions of soil and forest floor microfauna. Animal Ecology, 57(4):467-484. 74 Kwong-Yin, C., J. A. Mead, 2003. Soil acidity limits colonisation by Aporrectodea trapezoides, an exotic earthworm. Pedobiologia, 47:225-229. Lawrence, A. P., M. Bowers, 2002. A test of the ‗hot‘ mustard extraction method of sampling earthworms. Soil Biology & Biochemistry, 34:549-552. Le Bayon, R., R. Milleret, 2009. Effects of Earthworms on Phosphorus Dynamics- A Review. Dynamic Soil, Dynamic Plant, 3(Special Issue 2):21-27. Lecerf, A., M. Dobson, C. K. Dang, E. Chauvet, 2005. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia, 146:432-442. Li, X., M. C. Fisk, T. J. Fahey, P. J. Bohlen, 2002. Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biology & Biochemistry, 34:1929-1937. Maerz, J. C., V. A. Nuzzo, B. Blossey, 2009. Declines in Woodland Salamander Abundance Associated with Non-Native Earthworm and Plant Invasions. Conservation Biology, 23(4):975-981. Manor, R., O. Cohen, D. Saltz, 2008. Community homogenization and the invasiveness of commensal species in Mediterranean afforested landscapes. Biological Invasions, 10:507-515. Matlack, G. R., 1993. Sociological Edge Effects: Spatial Distribution of Human Impacts in Suburban Forest Fragments. Environmental Management, 17(6):829-835. Maraun, M., J. Salamon, K. Schneider, M. Schaefer, S. Scheu, 2003. Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biology & Biochemistry, 35:1387-1394. McLean, M. A., S. Migge-Kleian, D. Parkinson, 2006. Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biological Invasions, 8:1257-1273. McLean, M.A., D. Parkinson, 2000. Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biology & Biochemistry, 32:351-360. Merrill, A.G., T.L. Benning, 2006. Ecosystem type differences in nitrogen process rates and controls in the riparian zone of a montane landscape. Forest Ecology and Management, 222:145-161. 75 Migge-Kleian, S., M. A. McLean, J. C. Maerz, L. Heneghan, 2006. The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biological Invasions, 8:1275-1285. Milcu, A., J. Schumacher, S. Scheu, 2006. Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity. Functional Ecology, 20:261268. Minamiya, Y., K. Ohga, H. Hayakawa, K. Ito, T. Fukuda, 2011. Coelomic fluid: a noninvasive source of DNA in earthworms. Molecular Ecology Resources, 11:645-649. Monroy, F., M. Aira, J. Domínguez, 2011. Epigeic earthworms increase soil arthropod populations during first steps of decomposition of organic matter. Pedobiologia, 54:93-99. Mudrák, O., K. Uteseny, J. Frouz, 2012. Earthworms drive succession of both plant and Collembola communities in post-mining sites. Applied Soil Ecology, 62:170-177. Naaf, T., M. Wulf, 2010. Habitat specialists and generalist drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biological Conservation, 143:848-855. Nuzzo, V A, J C. Maerz, B. Blossey, 2009. Earthworm Invasion As the Driving Force Behind Plant Invasion and Community Change in Northeastern North American Forests. Conservation Biology, 23(4):966-974. Penrose, A. M., S. B. Katz. 2004. Writing in the Sciences: Exploring Conventions of Scientific Discourse. 2nd ed. United States: Longman. 448 p. Pižl, V., G. Josens, 1995. Earthworm communities along a gradient of urbanization. Environmental Pollution, 90(1):7-14. Poitrowska, K., J. Connolly, J. Finn, A. Black, T. Bolger, 2013. Evenness and plant species identity affect earthworm diversity and community structure in grassland soils. Soil Biology & Biochemistry, 57:713-719. Porco, D., T. Decaens, L. Deharveng, S. W. James, D. Skarzynski, C. Erseus, K. R. Butt, B. Richard, P. D. N. Hebert, 2012. Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America. Biological Invasions, DOI:10.1007/s10530-0120338-2. Presley, M. L., T. C. McElroy, W. J. Diehl, 1996. Soil Moisture and Temperature Interact to Affect Growth, Survivorship, Fecundity, and fitness in the Earthworm Eisenia fetida. Comparative Biochemistry and Physiology, 114A(4):319-326. 76 Quackenbush, P. M., R. A. Butler, N. C. Emery, M. A. Jenkins, E. J. Kladiviko, K. D. Gibson, 2012. Lumbricus terrestris Prefers to Consume Garlic Mustard (Alliaria petiolata) Seeds. Invasive Plant Management, 5:148-154. Rasband, W.S., 1997-2012. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/. Rearick, D., L. Kintz, K. L. Burke, T. S. Ransom, 2011. Effects of white-tailed deer on the native earthworm, Eisenoides carolinensis, in the southern Appalachian Mountains, USA. Pedobiologia, 54S:S173-S180. Richardson, D. R., B. A. Snyder, P. F. Hendrix, 2009. Soil Moisture and Temperature: Tolerances and Optima for a Non-native Earthworm Species, Amynthas agrestis (Oligochaeta: Opisthopora: Megascolecidae). Southeastern Naturalist, 8(2):325334. Roberts, M. L., R. E. Bilby, 2009. Urbanization alters litterfall rates and nutrient inputs to small Puget Lowland streams. Journal of the North American Benthological Society, 28(4):941-954. Robinson, C. H., P. Ineson, T. G. Piearce, J. Parrington, 1996. Effects of earthworms on cation and phosphate mobilisation in limed peat soils under Picea sitchensis. Forest Ecology and Management, 86:253-258. Sackett, T. E., S. M. Smith, N. Basiliko, 2013. Indirect and direct effects of exotic earthworms on soil nutrient and carbon pools in North American temperate forests. Soil Biology & Biochemistry, 57:459-467. Schädler, M., R. Brandl, 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology & Biochemistry, 37:329-337. Scharenbroch, B., 2009. A microcosm study on Lumbricus terrestris and physical, chemical, and biological properties of designed urban soil. ISA Conference & Trade Show, Providence, RI. (PDF) Scheu, S., 1987. The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia, 72:197-201. Scheu, S., 2003. Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia, 47:846-856. Schon, N. L., A. D. MacKay, R. A. Gray, M. A. Minor, 2011. Earthworms in New Zealand sheep- and dairy-grazed pastures with focus on anecic Aporrectodea longa. Pedobiologia, 54S:S131-S137. 77 Schrader, S., C. Seibel, 2001. Impact of cultivation management in an agroecosystem on hot spot effects of earthworm middens. European Journal of Soil Biology, 37:309313. Seidl, D. E., P. Klepsis, 2011. Human Dimensions of Earthworm Invasion in the Adirondack State Park. Human Ecology, 39:641-655. Shuster, W. D., L. P. McDonald, D. A. McCartney, R. W. Parmelee, N. S. Studer, B. R. Stinner, 2002. Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem. Biology and Fertility of Soils, 35:320-327. Snyder, B. A., M. A. Callaham Jr., P. F. Hendrix, 2011. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biological Invasions, 13:349-358. Snyder, B. A., M. A. Callaham Jr., C. N. Lowe, P. F. Hendrix, 2013. Earthworm invasion in North America: Food resource competition affects native millipede survival and invasive reproduction. Soil Biology & Biochemistry, 57:212-216. Staaf, H., 1987. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia, 72:58-64. Steinberg, D. A., R. V. Pouyat, R. W. Parmelee, P. M. Groffman, 1997. Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient. Soil Biology & Biochemistry, 29(3/4):427-430. Stirling, G., B. Wilsey, 2001. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. The American Naturalist, 158(3):286-299. Straube, D., E. A. Johnson, D. Parkinson, S. Scheu, N. Eisenhauer, 2009. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos, 118:885-896. Suárez, E. R., T. J. Fahey, P. M. Groffman, J. B. Yavitt, P. J. Bohlen, 2006. Spatial and temporal dynamics of exotic earthworm communities along invasion fronts in a temperate hardwood forest in South-Central New York (USA). Biological Invasions, 8:553-564. Subler, S., C. M. Baranski, C. A. Edwards, 1997. Earthworm additions increased shortterm nitrogen availability and leaching in two grain-crop Agroecosystems. Soil Biology & Biochemistry, 29(3/4):413-421. 78 Suthar, S., 2011. Earthworm density, casting activities and its impact on canopy soil nutrient profile under different aboveground vegetations. Environmentalist, 31:227-236. Syers, J. K., J. A. Springett, 1984. Earthworms and soil fertility. Plant and Soil, 76:93104. Szlavecz, K., M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, C. Csuzdi, 2011. Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biological Invasions 13:1165-1182. Szlavecz, K., S. A. Placella, R. V. Pouyat, P. M. Groffman, C. Csuzdi, I. Yesilonis, 2006. Invasive earthworm species and nitrogen cycling in remnant forest patches. Applied Soil Ecology, 32:54-62. Tabacchi, E., L. Lambs, H. Guilloy, A. Planty-Tabacchi, E. Muller, H. Décamps, 2000. Impacts of riparian vegetation on hydrological processes. Hydrological processes, 14:2959-2976. Talavera, J. A., 2011. New earthworm records for Macronesia with observations on the species, ecological characteristics and colonization history. Pedobiologia, 54:301308. Tiunov, A. V., C. M. Hale, A. R. Holdsworth, T. S. Vsevolodova-Perel, 2006. Invasion patterns of Lumbricidae into the previously earthworm-free areas of northeastern Europe and the western Great Lakes region of North America. Earthworm Ecology. Boca Raton: CRC Press. Tiunov, A. V., S. Scheu, 2004. Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization. Oecologia, 138:83-90. Wan, J. H. C., M. H. Wong, 2004. Effects of earthworm activity and P solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science, 167:209-213. Whalen, J. K., R. W. Parmelee, D. A. McCartney, J. L. Vanarsdale, 1999. Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools. Soil Biology & Biochemistry, 31:487-492. Willems, J. J. G. M., J. C. Y. Marinissen, J. Blair, 1996. Effects of earthworms on nitrogen mineralization. Biology and Fertility of Soils, 23:57-63. Williams, A. B., 1949. The native forests of Cuyahoga County, Ohio. Cleveland: Cleveland Museum of Natural History. 90 p. 79 Zicsi, A., K. Szlavecz, C. Csuzdi, 2011. Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia, 54S:S145-S152. 80 APPENDIX A Worm ID Image ID (IMG_nnnn.JPG) Earthworm Allometry: Raw Data 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 1056 1055 1054 1053 1052 1051 1050 1049 1048 1047 1046 1045 1044 1043 1042 1041 1040 1039 1038 1037 1036 1035 1034 1033 1032 1031 1030 1029 1028 1027 1026 1025 1024 1023 1022 1021 1020 1019 1018 1017 1016 1015 1014 1013 Distance (mm) Length Mean SD Perim Wet 51.4 0.11 114.3 274 44.2 0.25 99.8 267 35.8 0.19 78.2 150 38.5 0.07 87.8 154 36.6 0.03 82.5 86 45.4 0.23 101.7 266 51.5 0.17 116.7 236 44.9 0.25 101.7 235 50.8 0.19 112.5 225 48.7 0.09 109.9 262 47.7 0.16 106.9 218 43.5 0.07 99.1 262 44.3 0.11 99.8 240 36.4 0.07 83.9 299 55.1 0.24 122.0 438 53.2 0.24 116.9 491 45.4 0.10 99.6 239 59.6 0.05 130.0 482 63.5 0.36 139.3 510 57.6 0.12 129.9 336 58.3 0.21 131.7 518 52.4 0.25 117.3 458 40.7 0.14 91.6 224 55.0 0.09 123.7 489 60.4 0.24 135.1 539 54.4 0.08 128.4 853 59.9 0.19 136.5 482 51.0 0.07 116.3 512 54.0 0.14 121.0 363 59.0 0.24 133.9 397 57.0 0.09 131.0 313 38.1 0.07 94.2 351 28.7 0.16 66.1 96 33.6 0.16 76.0 98 31.9 0.10 73.4 121 25.7 0.07 58.2 60 34.5 0.05 77.0 123 25.6 0.05 57.4 76 27.2 0.04 61.1 50 30.8 0.09 73.2 108 31.1 0.05 72.2 86 27.3 0.10 61.7 65 24.7 0.02 55.4 58 28.7 0.04 62.7 55 Weight (mg) Dry 41.3 72.2 34.0 27.0 14.8 51.2 52.7 52.6 46.0 54.7 33.7 69.7 52.4 73.2 105.2 105.8 50.1 118.9 114.4 58.6 93.0 98.8 44.1 81.8 99.5 183.0 78.6 122.5 95.0 61.1 71.8 86.5 17.0 20.4 26.6 12.0 37.8 16.6 10.5 29.7 19.2 13.1 11.4 8.1 81 Ash AFDM 8.2 33.1 36.7 35.5 15.7 18.3 3.0 24.0 2.9 11.9 17.3 33.9 22.2 30.5 25.5 27.1 16.0 30.0 23.9 30.8 7.9 25.8 37.2 32.5 21.1 31.3 36.2 37.0 39.2 66.0 32.2 73.6 19.6 30.5 49.9 69.0 34.3 80.1 14.4 44.2 23.1 69.9 40.3 58.5 16.4 27.7 16.7 65.1 20.2 79.3 85.4 97.6 13.1 65.5 63.4 59.1 51.0 44.0 14.5 46.6 37.0 34.8 44.0 42.5 3.5 13.5 4.7 15.7 6.0 20.6 2.6 9.4 22.7 15.1 5.4 11.2 3.4 7.1 10.0 19.7 8.6 10.6 2.3 10.8 1.6 9.8 0.7 7.4 Worm ID Image ID (IMG_nnnn.JPG) Earthworm Allometry: Raw Data 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 1012 1011 1010 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000 0999 0998 0997 0996 0995 0994 0993 0992 0991 0990 0989 0988 0987 0986 0985 0984 0983 0982 0981 0980 0979 0978 0977 0976 0975 0974 0973 0972 0971 0970 0969 0968 0967 0966 Distance (mm) Length Mean SD Perim Wet 30.4 0.03 69.1 74 35.2 0.13 79.4 92 32.2 0.10 70.4 108 28.0 0.13 64.7 63 26.4 0.07 60.6 59 26.8 0.02 60.6 47 23.2 0.06 49.8 48 26.7 0.12 59.5 55 25.7 0.07 57.9 62 32.8 0.10 73.6 60 22.7 0.07 52.4 53 25.2 0.05 56.7 68 37.5 0.08 85.1 156 35.3 0.09 80.2 133 23.9 0.09 55.0 56 39.1 0.05 91.9 179 26.1 0.12 61.0 74 49.4 0.10 114.0 224 25.0 0.02 57.3 54 21.1 0.08 49.8 45 23.1 0.07 51.8 53 24.9 0.05 55.8 55 18.3 0.08 40.8 26 23.4 0.03 53.3 48 23.7 0.07 52.0 49 20.6 0.08 45.3 42 17.9 0.03 40.6 28 23.9 0.09 54.1 53 21.9 0.10 49.1 39 19.0 0.03 43.7 36 16.8 0.03 39.6 27 13.3 0.04 31.3 8 13.4 0.04 30.5 9 20.4 0.08 44.7 19 13.8 0.02 30.2 11 15.0 0.02 33.4 16 13.6 0.05 30.3 9 16.2 0.02 35.8 19 89.7 0.05 203.2 1095 72.3 0.12 168.3 1285 66.3 0.06 147.5 809 84.4 0.21 191.5 1253 85.7 0.30 206.8 1089 71.7 0.02 164.3 745 94.8 0.45 221.8 1628 54.2 0.15 126.8 635 64.1 0.30 155.7 1468 Weight (mg) Dry 16.8 19.5 24.6 11.8 12.1 7.9 8.4 11.9 12.1 10.2 13.3 13.5 35.2 36.7 14.0 48.7 13.4 53.9 12.0 11.4 10.8 11.2 4.5 9.9 11.5 10.7 7.6 11.3 8.7 9.0 5.7 1.7 2.0 3.5 2.6 4.7 2.1 3.8 234.4 426.0 240.8 443.9 312.8 157.3 533.0 135.7 407.8 82 Ash AFDM 8.8 8.0 7.5 12.0 8.9 15.7 2.5 9.3 3.9 8.2 2.3 5.6 0.3 8.1 3.5 8.4 2.3 9.8 2.1 8.1 3.1 10.2 3.4 10.1 13.7 21.5 21.2 15.5 1.6 12.4 26.6 22.1 1.8 11.6 26.4 27.5 4.5 7.5 4.3 7.1 2.0 8.8 3.1 8.1 0.4 4.1 1.7 8.2 3.7 7.8 4.1 6.6 2.5 5.1 3.3 8.0 2.5 6.2 3.0 6.0 1.2 4.5 0.7 1.0 0.9 1.1 1.2 2.3 0.7 1.9 1.8 2.9 0.6 1.5 0.2 3.6 106.9 127.5 285.6 140.4 156.5 84.3 306.8 137.1 195.4 117.4 72.9 84.4 354.3 178.7 52.7 83.0 218.5 189.3 Worm ID Image ID (IMG_nnnn.JPG) Earthworm Allometry: Raw Data 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 0965 0964 0963 0962 0961 0960 0959 0958 0957 0956 0955 0954 0953 0952 0951 0950 0949 0948 0947 0946 0945 0944 0943 0942 0941 0940 0939 0938 0937 0936 0935 0934 0933 0932 0931 0930 0927 0926 0925 0924 0923 0922 0920 0919 0918 0917 0916 Distance (mm) Weight (mg) Length Dry Ash AFDM Mean SD Perim Wet 63.8 0.32 150.5 835 245.5 136.2 109.3 59.0 0.10 140.2 652 209.7 129.9 79.8 69.3 0.24 154.4 784 207.1 115.2 91.9 85.0 0.23 194.2 1689 483.3 245.5 237.8 63.1 0.05 148.7 572 135.6 48.8 86.8 85.4 0.18 202.0 1313 368.4 225.9 142.5 60.4 0.06 133.4 590 135.6 50.1 85.5 48.5 0.07 109.8 320 65.3 24.9 40.4 57.1 0.10 128.5 561 154.9 80.9 74.0 59.3 0.05 134.2 747 198.5 104.4 94.1 78.1 0.05 180.6 907 197.9 101.4 96.5 62.0 0.02 144.0 620 198.5 122.7 75.8 65.6 0.03 156.8 565 131.6 65.3 66.3 65.7 0.27 153.4 596 104.2 26.9 77.3 62.1 0.05 147.2 544 102.0 27.7 74.3 64.4 0.10 155.3 781 248.0 161.9 86.1 54.6 0.06 130.0 491 113.9 48.3 65.6 66.0 0.12 149.1 837 187.5 77.2 110.3 83.6 0.13 197.0 1279 196.5 48.1 148.4 72.5 0.04 176.3 630 143.0 65.7 77.3 61.3 0.11 149.2 665 184.8 106.4 78.4 64.7 0.21 152.0 698 180.8 90.8 90.0 66.0 0.08 160.2 710 180.0 90.8 89.2 62.3 0.30 147.0 578 109.7 36.1 73.6 62.8 0.34 151.6 711 185.8 94.4 91.4 98.7 0.47 239.4 1296 264.9 125.0 139.9 69.0 0.25 162.0 502 134.1 77.2 56.9 60.6 0.26 141.9 591 154.1 69.6 84.5 57.1 0.19 132.0 511 102.9 37.0 65.9 62.4 0.12 142.3 576 101.1 29.3 71.8 90.3 0.41 216.3 2061 718.5 434.9 283.6 57.5 0.12 136.0 557 103.6 38.8 64.8 55.5 0.28 130.2 611 166.1 86.0 80.1 66.8 0.29 151.9 1454 458.6 285.3 173.3 95.9 0.12 226.4 1521 552.2 403.2 149.0 60.2 0.23 137.8 677 233.4 156.0 77.4 122.0 0.20 294.6 3093 1005.1 622.8 382.3 96.7 0.38 227.1 2425 789.0 495.3 293.7 108.6 0.05 256.7 2088 761.0 557.4 203.6 109.1 0.27 250.6 2590 993.1 699.7 293.4 124.3 0.16 310.0 3130 970.3 620.9 349.4 99.0 0.31 234.9 1858 595.6 395.1 200.5 145.7 0.05 353.0 3797 1127.4 657.7 469.7 107.1 0.42 248.5 2502 1018.9 760.5 258.4 94.0 0.13 221.8 1654 438.7 247.9 190.8 91.4 0.32 211.7 1588 575.7 421.2 154.5 81.8 0.33 194.6 1354 387.7 226.0 161.7 83 Worm ID Image ID (IMG_nnnn.JPG) Earthworm Allometry: Raw Data 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 0915 0914 0913 0912 0911 0910 0909 0908 0907 0906 0905 0904 0903 0902 0901 0900 0899 0898 0897 0896 0895 0894 Min Avg Median Max Distance (mm) Length Mean SD Perim Wet 103.4 0.08 267.8 2505 99.0 0.27 251.5 2567 102.0 0.10 252.1 2614 77.5 0.35 185.4 1342 81.8 0.27 194.2 1306 105.1 0.17 250.3 1865 133.5 0.28 328.0 3057 104.3 0.12 252.4 2902 73.6 0.30 178.2 1046 82.6 0.17 201.8 1364 111.4 0.39 257.5 2270 137.4 0.22 353.7 3486 74.7 0.24 192.7 1092 92.9 0.45 216.4 1341 76.1 0.23 185.3 1327 119.5 0.60 281.1 2944 117.0 0.10 285.6 2652 90.0 0.34 218.1 1367 86.9 0.24 200.1 1281 111.4 0.69 267.9 3488 143.8 0.02 343.6 3528 123.8 0.39 325.4 3001 13.3 58.8 57.1 145.7 0.02 0.15 0.11 0.69 30.2 137.7 130.1 353.7 Weight (mg) Dry 569.9 584.1 749.4 369.0 289.2 547.5 953.3 836.9 272.8 331.2 816.2 970.7 326.6 330.7 406.7 965.5 949.7 426.7 415.3 912.8 968.0 842.0 Ash AFDM 301.5 268.4 298.9 285.2 445.0 304.4 204.3 164.7 143.9 145.3 346.6 200.9 631.5 321.8 516.3 320.6 154.8 118.0 170.7 160.5 523.1 293.1 572.3 398.4 207.5 119.1 179.5 151.2 258.1 148.6 639.7 325.8 644.3 305.4 279.2 147.5 271.1 144.2 523.0 389.8 588.3 379.7 473.0 369.0 8 1.7 0.2 799 225.8 131.5 506 103.3 37.1 3797 1127.4 760.5 84 1.0 94.3 66.0 469.7 APPENDIX B x x x x x x x x x x 24 x 2.3820 -12.4500 0.959 Family -11.0100 -11.6417 -11.6417 -11.6417 -11.6417 -12.8740 -10.1900 -10.8800 -10.8800 -11.8423 -11.8423 -11.8423 -13.0190 -13.0190 -13.0190 -12.4500 -12.6400 Lumbricidae x x 2.0300 2.1734 2.1734 2.1734 2.1734 2.6365 1.7500 2.1200 2.1200 2.3225 2.3225 2.3225 2.6117 2.6117 2.6117 2.3820 2.4700 R2 0.740 0.940 0.940 0.940 0.940 0.840 0.670 0.890 0.890 0.960 0.960 0.960 0.970 0.970 0.970 0.959 0.850 Megascolecdiae x x x Intercept (b) x x Slope (m) 01 03 04 05 06 09 10 11 13 15 16 17 18 19 20 22 23 Exact fit Closest fit Equation ID Earthworm Allometry: Source Equations Genus Genus Aporrectodea Aporrectodea Aporrectodea Aporrectodea Dendrobaena Dendrodrilus Eisenia Eisenia Lumbricus Lumbricus Lumbricus Octolasion Octolasion Octolasion Amynthas Amynthas Species spp spp calignosa longa rosea octaedra rubidus spp fetida spp rubellus terrestris spp cyaneum tyrtaeum spp hilgendorfi Amynthas hilgendorfi/ Schermaier agrestis ln(AFDM) = m x ln(Length) + b 85 Source Greiner Hale, Reich, Frelich #3 #3 #3 Hale, Reich, Frelich Greiner #13 Greiner Hale, Reich, Frelich #15 #15 #20 #20 Hale, Reich, Frelich #24 Greiner APPENDIX C 19.0 7.8% 6.60 5.28 4.36 20.0% 34.0% 23.5 -0.4% 8.20 7.15 7.23 12.8% 11.9% 23.0 3.0% 7.80 7.37 6.87 5.5% 12.0% 25.5 0.8% 9.80 8.94 8.78 8.7% 10.4% 25.0 5.3% 8.20 9.53 8.37 -16.3% -2.1% 26.5 7.7% 13.50 11.63 9.62 13.8% 28.7% 30.0 2.6% 19.70 13.76 12.93 30.1% 34.4% 33.0 4.3% 15.10 18.04 16.22 -19.4% -7.4% 34.0 3.4% 12.00 18.92 17.42 -57.7% -45.2% 34.5 5.2% 37.00 20.49 18.04 44.6% 51.3% 42.0 5.2% 31.30 32.72 28.81 -4.5% 7.9% 53.5 2.0% 65.60 53.83 51.28 17.9% 21.8% 53.0 3.8% 66.00 55.06 50.15 16.6% 24.0% 56.0 2.8% 44.20 61.14 57.18 -38.3% -29.4% 57.5 1.4% 69.90 62.93 60.89 10.0% 12.9% 59.0 2.3% 85.50 68.46 64.74 19.9% 24.3% 64.5 2.3% 110.30 84.56 80.06 23.3% 27.4% 66.5 3.6% 56.90 94.01 86.10 -65.2% -51.3% 79.5 2.8% 145.30 141.00 131.74 3.0% 9.3% 79.5 3.8% 160.50 144.30 131.74 10.1% 17.9% 90.0 -0.3% 127.50 175.62 177.03 -37.7% -38.8% 87.5 3.1% 283.60 178.44 165.54 37.1% 41.6% 89.5 3.7% 151.20 190.92 174.69 -26.3% -15.5% 94.5 1.5% 149.00 205.93 198.84 -38.2% -33.5% 94.5 2.3% 293.70 210.05 198.84 28.5% 32.3% 97.5 1.5% 200.50 222.15 214.21 -10.8% -6.8% 102.5 0.9% 268.40 246.39 241.31 8.2% 10.1% 102.0 2.2% 320.60 251.53 238.52 21.5% 25.6% 102.0 2.9% 200.90 256.15 238.52 -27.5% -18.7% 105.5 3.3% 293.40 279.98 258.48 4.6% 11.9% 61.7 3.0% 108.74 104.54 98.62 -0.2% 6.7% ** ln(AFDM) = 2.382*ln(Length) - 12.45 Group Length Ranges (mm) small 13.3 to 43.5 medium 44.2 to 86.9 large 89.7 to 145.7 Group Size 56 74 30 86 20.0% 12.8% 5.5% 8.7% 16.3% 13.8% 30.1% 19.4% 57.7% 44.6% 4.5% 17.9% 16.6% 38.3% 10.0% 19.9% 23.3% 65.2% 3.0% 10.1% 37.7% 37.1% 26.3% 38.2% 28.5% 10.8% 8.2% 21.5% 27.5% 4.6% 22.6% Ruler Method ImageJ Method Absolute Error Ruler Method ImageJ Method Error Hand Predicted ImageJ Predicted Actual 20.6 23.4 23.7 25.7 26.4 28.7 30.8 34.5 35.2 36.4 44.3 54.6 55.1 57.6 58.3 60.4 66.0 69.0 81.8 82.6 89.7 90.3 92.9 95.9 96.7 99.0 103.4 104.3 105.1 109.1 63.4 Deviation ImageJ Method (mm) 001 0987 002 0989 003 0988 004 1004 005 1008 006 1024 007 1017 008 1020 009 1011 010 1043 011 1044 012 0949 013 1042 014 1037 015 1036 016 0959 017 0948 018 0939 019 0911 020 0906 021 0974 022 0935 023 0902 024 0931 025 0926 026 0922 027 0915 028 0908 029 0910 030 0924 Average Ruler Method (mm) Image (IMG_nnnn.JPG) S S S S S S S S S S M M M M M M M M M M L L L L L L L L L L Sorted ID Group Earthworm Allometry: Ruler Method Subsample Data Length AFDM** 34.0% 11.9% 12.0% 10.4% 2.1% 28.7% 34.4% 7.4% 45.2% 51.3% 7.9% 21.8% 24.0% 29.4% 12.9% 24.3% 27.4% 51.3% 9.3% 17.9% 38.8% 41.6% 15.5% 33.5% 32.3% 6.8% 10.1% 25.6% 18.7% 11.9% 23.3% Site ID 1002 1003 1004 1005 1006 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1021 1022 1024 1025 1026 1028 1029 1030 1031 1033 1034 Cnt 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 41.206452 41.347586 41.381564 41.256463 41.408758 41.369101 41.221348 41.403332 41.373140 41.565368 41.300936 41.345979 41.381597 41.435316 41.570337 41.212143 41.292114 41.220495 41.468175 41.413740 41.310507 41.403074 41.555195 41.283721 41.450114 41.373743 41.580313 41.210612 Latitude -81.724179 -81.836767 -81.556337 -81.687648 -81.959078 -81.692580 -81.708681 -81.898016 -81.505242 -81.422232 -81.690296 -81.833202 -81.559910 -81.413602 -81.432606 -81.702571 -81.801251 -81.732038 -81.831905 -81.753365 -81.601642 -81.889362 -81.428632 -81.566183 -81.833389 -81.569409 -81.419725 -81.693375 Longitude 18.5749 25.9307 20.1782 31.3808 24.4263 17.4078 23.0517 22.7330 10.7825 28.0000 22.0625 15.7534 10.3280 16.1889 21.9107 26.9444 19.8248 17.9399 16.9031 21.3172 30.8305 16.0000 23.1925 6.4550 13.3128 32.6059 30.6679 30.8075 FQAI 0.0007 0.0009 0.0016 0.0031 0.0022 0.0115 0.0021 0.0008 0.0000 0.0014 0.0000 0.0012 0.0000 0.0010 0.0014 0.0006 0.0001 0.0029 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.3086 0.0195 0.0694 0.0062 0.0146 0.0834 0.0712 0.3399 0.0016 0.0162 0.0013 0.0150 0.0243 0.0182 0.0000 0.2220 0.0000 0.0015 0.0035 0.0000 0.0319 0.0000 0.0000 0.0040 0.0742 0.0160 bryophyte hydrophyte (%) (%) Metroparks Field Study: Plant Community Data 0.1875 0.6376 0.0904 0.2253 0.3520 0.2062 0.2093 0.0664 0.4181 0.0869 0.3238 0.0000 0.0050 0.0205 0.3794 0.2051 0.6392 0.0171 0.2094 0.3436 0.1587 0.1114 0.1501 0.0000 0.1209 0.2876 0.6698 0.1378 0.2231 0.0430 0.4112 0.0577 0.4904 0.4002 0.2254 0.2575 0.4393 0.0511 0.1057 0.3612 0.9794 0.9140 0.1139 0.1003 0.5575 0.2187 0.1511 0.2078 0.1104 0.4103 0.5003 0.3324 0.0136 0.0476 0.0001 0.0815 0.0983 0.0432 0.0909 0.0830 0.0920 0.1172 0.0638 0.3438 0.1200 0.0886 0.2174 0.0769 0.4070 0.0784 0.1758 0.3289 0.2727 0.1769 0.1136 0.0462 0.0927 0.1300 0.1535 0.1200 0.3590 0.1194 0.0328 0.4255 0.0571 0.0291 0.2022 0.0729 0.0829 0.0308 0.0614 0.0674 0.0000 0.0933 0.0314 0.0343 0.0000 0.0000 0.0297 0.0000 0.0403 0.1484 0.0426 0.0639 0.0859 0.0304 0.0798 0.0000 0.0000 0.0372 0.0589 0.0452 0.1484 0.1642 0.1394 0.1761 0.1356 0.2088 0.1664 0.1859 0.2055 0.1596 0.1590 0.0715 0.1721 0.0522 0.1934 0.1909 0.1633 0.1960 0.1534 0.1687 0.1349 0.1660 0.1614 0.3148 0.1654 0.1163 0.1974 0.1009 sensitive tolerant small subcanopy canopy IV (%) (%) tree (%) IV (%) (%) 2.953E-03 3.717E-05 2.171E-01 1.630E-03 2.165E-05 7.664E-05 1.492E-01 4.131E-02 1.596E-01 1.086E-04 6.836E-03 7.232E-02 1.437E-03 4.300E-01 6.502E-02 2.932E-02 5.490E-03 1.369E-01 1.102E-03 7.528E-03 4.560E-03 3.994E-01 1.915E-02 9.612E-01 2.267E-03 2.375E-03 2.674E-05 2.126E-02 2.00E-02 1.00E-04 1.50E-02 7.50E-02 0.00E+00 3.03E-01 5.00E-03 1.00E-04 0.00E+00 0.00E+00 5.05E-03 1.50E-02 0.00E+00 0.00E+00 0.00E+00 1.50E-02 1.30E-01 1.50E-02 1.00E-04 1.38E-02 0.00E+00 0.00E+00 9.50E-02 0.00E+00 2.75E-01 2.83E-02 1.00E-04 1.00E-04 adventives bare (%) ground (%) APPENDIX D 87 Site ID 1035 1038 1039 1040 1041 1044 1045 1047 1048 1050 1051 1053 1054 1055 1058 1060 1063 1064 1067 1068 1070 1071 1072 1074 1083 1136 1376 1388 Cnt 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 41.330414 41.452999 41.303063 41.572521 41.306299 41.561525 41.298469 41.373166 41.413311 41.419779 41.305680 41.215855 41.419301 41.410823 41.424994 41.423479 41.378448 41.414376 41.344676 41.386987 41.410397 41.312445 41.391773 41.398419 41.299497 41.384695 41.380962 41.380083 Latitude -81.828890 -81.821247 -81.781649 -81.437336 -81.604534 -81.412848 -81.585528 -81.551583 -81.413345 -81.944948 -81.804343 -81.704497 -81.858643 -81.473119 -81.855146 -81.425297 -81.543503 -81.427328 -81.847214 -81.540837 -81.968463 -81.794015 -81.690991 -81.879049 -81.805737 -81.692377 -81.696831 -81.702194 Longitude 23.7143 20.1305 22.7719 16.0859 27.9203 12.7920 26.7026 31.8041 21.6025 21.7435 17.1957 30.2532 19.6958 12.3393 19.6708 27.6428 4.4000 22.7091 17.0982 32.1516 25.2110 18.0000 13.5978 11.7838 16.2776 17.2993 20.4124 15.5637 FQAI 0.0009 0.0000 0.0005 0.0130 0.0083 0.0000 0.0023 0.0013 0.0017 0.0000 0.0000 0.0008 0.0013 0.0000 0.0000 0.0017 0.0000 0.0020 0.0000 0.0062 0.0073 0.0023 0.0020 0.0000 0.0034 0.0041 0.0000 0.0000 0.0099 0.0041 0.0485 0.0827 0.0372 0.0023 0.0035 0.0026 0.1500 0.0058 0.0052 0.0754 0.0268 0.0000 0.0433 0.2177 0.0000 0.0277 0.3121 0.0110 0.1046 0.0146 0.0428 0.1898 0.0017 0.0000 0.0000 0.0029 bryophyte hydrophyte (%) (%) Metroparks Field Study: Plant Community Data 0.3498 0.7113 0.0666 0.0049 0.3401 0.2274 0.4806 0.5507 0.0882 0.2736 0.6701 0.0907 0.0170 0.0522 0.0499 0.0722 0.0000 0.3144 0.1035 0.6178 0.2047 0.1952 0.0001 0.0380 0.1759 0.3762 0.6921 0.3002 0.3196 0.1137 0.2271 0.6149 0.0877 0.1154 0.1853 0.0480 0.6960 0.0334 0.0000 0.0309 0.0144 0.7990 0.0649 0.1136 0.1600 0.1615 0.5216 0.0757 0.3045 0.0974 0.8023 0.2279 0.3587 0.4397 0.2471 0.3775 0.1942 0.1765 0.0553 0.2941 0.0351 0.1929 0.2000 0.1060 0.1216 0.1115 0.0960 0.2308 0.2197 0.3694 0.2202 0.0655 0.0000 0.0643 0.0385 0.3043 0.0762 0.1492 0.2977 0.1125 0.1213 0.2372 0.0920 0.2339 0.0795 0.0616 0.0804 0.0000 0.0670 0.0302 0.0709 0.0894 0.0920 0.0374 0.0315 0.0577 0.0303 0.0000 0.0984 0.1271 0.0000 0.0534 0.1331 0.0423 0.0837 0.0315 0.0000 0.0000 0.0000 0.0299 0.0574 0.0743 0.1566 0.1848 0.1319 0.1979 0.1361 0.1697 0.1719 0.1801 0.1896 0.1431 0.1773 0.1632 0.1933 0.1974 0.2194 0.1540 0.0000 0.1730 0.1495 0.1358 0.1303 0.1428 0.4392 0.1537 0.1530 0.1808 0.1448 0.1487 sensitive tolerant small subcanopy canopy IV (%) (%) tree (%) IV (%) (%) 3.659E-03 0.000E+00 1.482E-01 8.178E-03 1.802E-02 5.926E-02 5.316E-03 1.326E-03 3.233E-02 0.000E+00 0.000E+00 1.325E-02 1.165E-02 5.125E-01 2.439E-03 5.731E-04 1.325E-01 1.318E-05 1.686E-03 6.294E-03 0.000E+00 4.662E-02 2.308E-02 2.531E-02 5.921E-03 2.045E-05 3.504E-05 1.528E-02 2.55E-03 1.10E-01 0.00E+00 1.08E-01 3.10E-02 6.70E-03 5.00E-03 5.00E-03 0.00E+00 1.42E-01 0.00E+00 1.00E-04 1.00E-04 1.00E-04 1.88E-01 5.00E-03 0.00E+00 2.00E-02 5.75E-02 0.00E+00 1.00E-04 0.00E+00 0.00E+00 6.25E-01 4.00E-01 5.00E-03 0.00E+00 3.78E-03 adventives bare (%) ground (%) D APPENDIX D 88 3420 3484 3596 3668 3732 AT01 AT02 057 058 059 060 061 062 063 41.378120 41.390583 41.384453 41.379483 41.371981 41.417490 41.416380 Latitude -81.696407 -81.689232 -81.697726 -81.694029 -81.568829 -81.869020 -81.870900 Longitude 12.9316 20.2943 20.3961 21.3791 19.3276 18.4327 19.7500 FQAI 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0129 0.0001 0.0000 0.0102 0.0000 0.0000 0.0000 bryophyte hydrophyte (%) (%) **AT01 & AT02 are also identified as VIBI007 & VIBI008, respectively. Site ID Cnt Metroparks Field Study: Plant Community Data 0.1125 0.3141 0.4483 0.2805 0.7205 0.7750 0.7222 0.1526 0.5859 0.3600 0.2832 0.2539 0.0191 0.0020 0.1190 0.2564 0.2194 0.1083 0.1481 0.3654 0.0950 0.0000 0.0692 0.0300 0.1284 0.0547 0.0000 0.0000 0.1976 0.1325 0.1303 0.1496 0.1447 0.1898 0.1865 sensitive tolerant small subcanopy canopy IV (%) (%) tree (%) IV (%) (%) 2.702E-02 5.105E-05 1.123E-03 2.640E-03 0.000E+00 5.073E-05 0.000E+00 4.50E-02 0.00E+00 9.50E-02 1.00E-02 1.05E-01 0.00E+00 3.83E-03 adventives bare (%) ground (%) APPENDIX D 89 Cnt 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 Site Total ID C (%) 1002 2.35 1003 3.02 1004 3.47 1005 3.76 1006 5.75 1008 3.82 1009 2.38 1010 3.66 1011 3.61 1012 5.84 1013 3.32 1014 2.77 1015 2.22 1016 3.22 1017 4.63 1018 5.78 1019 5.27 1021 2.67 1022 3.96 1024 4.06 1025 3.29 1026 2.71 1028 3.69 1029 2.44 1030 5.58 1031 5.34 1033 3.60 1034 2.78 1035 3.28 1038 10.01 1039 3.99 1040 3.85 1041 4.65 Total N C/N (%) Ratio 0.15 15.7 0.18 17.2 0.18 19.4 0.22 17.2 0.29 20.1 0.22 17.4 0.16 15.3 0.22 16.7 0.21 17.2 0.34 17.2 0.17 19.3 0.18 15.1 0.13 17.6 0.15 21.9 0.19 24.5 0.30 19.5 0.30 17.4 0.17 15.4 0.21 18.7 0.21 19.8 0.18 18.3 0.13 21.5 0.19 19.3 0.14 17.8 0.35 15.9 0.31 17.0 0.24 14.9 0.16 16.9 0.15 21.4 0.45 22.2 0.28 14.2 0.24 16.1 0.27 17.4 % 3.8 4.9 4.4 5.3 8.2 5.0 3.3 4.4 5.3 7.0 5.3 3.6 3.2 4.6 6.8 7.4 8.2 4.6 5.9 6.5 5.1 5.2 6.0 3.3 8.6 7.2 5.7 3.3 4.7 9.7 5.6 5.1 6.1 ppm 6 4 9 5 8 2 7 4 6 4 5 6 3 3 3 8 3 5 5 9 2 4 3 2 8 4 6 3 1 3 5 3 3 H VH H VH VH VH M H VH VH VH H M VH VH VH VH VH VH VH VH VH VH M VH VH VH M VH VH VH VH VH VL VL L VL L VL VL VL VL VL VL VL VL VL VL L VL VL VL L VL VL VL VL L VL VL VL VL VL VL VL VL rate P1 rate OM Metroparks Field Study: Soil Chemistry Data 9 5 13 9 9 3 31 14 18 5 7 15 5 13 6 23 7 13 8 19 4 6 4 29 17 16 7 18 2 5 20 5 11 ppm L VL L L L VL M L L VL VL L VL L VL M VL L L L VL VL VL M L L VL L VL VL M VL L rate P2 Phosphorus 6 8 ppm L L rate Bic 96 69 77 75 82 81 93 81 104 103 86 100 65 104 55 91 161 69 106 109 77 61 93 86 164 118 101 113 62 95 113 86 87 ppm K M L L L M M L L M M M M L M L L H L M M L L M L M L M M L L M L L rate 149 74 130 208 63 100 248 94 117 94 126 92 82 188 171 168 238 235 215 188 125 92 132 180 285 281 80 235 100 47 307 129 208 ppm VH M M H L H VH L H M H M M VH VH M VH VH VH H H M H VH VH VH M VH M VL VH H VH rate Mg 950 392 1250 2003 284 411 1724 682 864 454 784 723 443 1085 734 2491 1206 1645 1369 1804 735 470 936 1519 2755 2809 486 1890 1013 319 1981 666 1878 ppm Ca M L M H VL L H L M VL L L L M L VH M H M H L L M H H H L H M VL H L H rate pH Bindx 5.6 6.7 4.6 6.6 5.7 6.7 6.2 6.8 4.4 6.6 4.7 6.6 7.1 4.5 6.4 5.3 6.7 4.4 6.5 5.1 6.6 4.7 6.5 4.5 6.5 5.9 6.8 5.3 6.7 7.0 5.3 6.6 6.1 6.7 5.6 6.7 6.3 6.8 5.0 6.6 4.7 6.6 5.3 6.7 7.3 6.6 6.8 6.5 6.8 4.6 6.6 7.3 5.4 6.7 3.8 6.2 6.2 6.7 4.8 6.6 6.1 6.7 CEC (meq/ 100) 8.1 6.0 9.5 13.5 5.7 6.3 10.9 10.5 8.1 8.7 8.4 9.3 7.3 8.8 7.6 14.1 12.2 12.1 11.6 12.2 8.3 6.6 8.7 9.3 17.7 18.1 7.3 11.7 8.5 11.0 14.5 8.7 13.1 K 3.0 2.9 2.1 1.4 3.7 3.3 2.2 2.0 3.3 3.0 2.6 2.8 2.3 3.0 1.9 1.7 3.4 1.5 2.3 2.3 2.4 2.4 2.7 2.4 2.4 1.7 3.5 2.5 1.9 2.2 2.0 2.5 1.7 Mg 15.3 10.3 11.4 12.8 9.2 13.2 19.0 7.5 12.0 9.0 12.5 8.2 9.4 17.8 18.8 9.9 16.3 16.2 15.4 12.8 12.6 11.6 12.6 16.1 13.4 12.9 9.1 16.7 9.8 3.6 17.6 12.4 13.2 Ca 58.6 32.7 65.8 74.2 24.9 32.6 78.8 32.5 53.3 26.1 46.7 38.9 30.3 61.6 48.3 88.4 49.4 68.0 59.0 73.9 44.3 35.6 53.8 81.5 77.8 77.6 33.3 80.8 59.6 14.5 68.3 38.3 71.7 90 28.7 79.7 12.1 46.8 13.4 6.4 7.8 54.1 30.9 14.3 23.3 11.0 40.7 50.4 30.9 58.0 31.4 61.9 38.2 50.1 58.0 17.6 31.0 H 23.1 54.1 20.7 11.6 62.2 50.9 Base Saturation (%) APPENDIX E 91 rate VL VL VL VL VL VL VL VL VL L VL L VL VL VL L VL VL VL VL VL VL L VL VL VL VL VL VL VL ppm 4 6 5 4 4 2 2 5 4 8 4 12 5 2 4 8 3 5 7 2 4 3 9 5 4 3 2 4 5 6 P1 5 8 6 7 6 3 11 10 5 29 5 15 6 4 5 10 16 9 9 4 5 11 19 14 6 6 7 6 13 12 ppm VL L VL VL VL VL L L VL M VL L VL VL VL L L L L VL VL L L L VL VL VL VL L L rate P2 Phosphorus ppm rate Bic 57 71 65 76 59 99 50 141 57 81 96 72 49 83 65 62 113 73 63 64 69 95 157 135 58 79 120 97 58 106 ppm K L L L L L M VL M L L M L VL M L VL M M L M L M VH M L L M M L M rate ** Soil was also tested for sodium; no measurable quantities were detected. Cnt 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 Site Total ID C (%) 1044 2.73 1045 2.86 1047 3.89 1048 4.90 1050 3.36 1051 3.78 1053 2.05 1054 5.86 1055 4.94 1058 4.13 1060 6.32 1063 4.19 1064 4.54 1067 3.30 1068 3.29 1070 6.53 1071 4.57 1072 4.74 1074 3.51 1083 2.95 1136 5.67 1376 5.94 1388 4.87 3420 5.01 3484 8.80 3596 7.69 3668 3.72 3732 6.29 AT01 10.93 AT02 4.24 Total OM N C/N (%) Ratio % rate 0.14 19.9 3.6 H 0.18 16.1 3.9 H 0.21 18.3 5.6 VH 0.26 19.1 5.8 VH 0.14 23.5 5.4 VH 0.23 16.3 6.1 VH 0.10 20.3 2.4 L 0.39 15.1 7.5 VH 0.20 24.9 7.4 VH 0.23 17.7 6.0 VH 0.35 18.3 8.0 VH 0.23 18.5 5.1 VH 0.27 17.0 6.4 VH 0.20 16.2 4.6 VH 0.20 16.6 4.8 VH 0.37 17.7 5.9 VH 0.31 14.8 5.4 VH 0.25 19.0 6.3 VH 0.19 18.1 3.5 M 0.17 17.7 4.1 H 0.22 26.4 8.6 VH 0.20 29.7 7.7 VH 0.26 19.0 8.7 VH 0.28 18.0 5.2 VH 0.31 28.8 10.4 VH 0.29 27.0 9.6 VH 0.20 18.5 5.4 VH 0.27 23.3 8.4 VH 0.46 23.8 15.8 VH 0.25 17.2 5.7 VH Metroparks Field Study: Soil Chemistry Data 106 119 167 84 44 104 67 222 78 218 97 152 49 82 171 101 197 58 63 42 53 66 83 262 42 52 105 57 49 80 ppm M H H L VL M L VH M VH L VH VL M VH L H L L L L L M VH L L M L L L rate Mg 799 1060 1389 568 281 455 1957 2026 569 1884 710 941 373 417 1378 522 1921 306 428 255 215 282 363 2989 210 254 678 301 198 412 ppm Ca L M H L VL VL VH H L VH L M VL L M VL H VL VL VL VL VL VL VH VL VL L VL VL VL rate pH Bindx 4.9 6.6 5.8 6.8 6.2 6.8 4.5 6.5 4.1 6.5 4.5 6.5 7.2 6.4 6.8 4.9 6.6 6.8 4.6 6.5 5.6 6.7 3.7 6.1 4.7 6.6 5.8 6.7 4.0 6.0 5.8 6.7 4.3 6.5 4.4 6.5 4.5 6.7 4.0 6.5 4.2 6.5 4.6 6.6 7.4 4.1 6.5 4.1 6.5 4.8 6.6 4.2 6.5 4.0 6.5 4.2 6.3 CEC (meq/ 100) 8.9 8.0 9.7 8.9 7.4 8.1 10.5 13.5 6.5 11.4 10.0 8.1 13.3 6.0 10.5 15.3 14.2 6.5 7.4 4.3 7.2 7.3 6.3 17.5 5.9 7.4 8.7 7.4 6.5 10.0 K 1.6 2.3 1.7 2.2 2.0 3.1 1.2 2.7 2.2 1.8 2.5 2.3 0.9 3.5 1.6 1.0 2.0 2.9 2.2 3.8 2.5 3.3 6.4 2.0 2.5 2.7 3.5 3.4 2.3 2.7 Mg 9.9 12.4 14.3 7.9 5.0 10.7 5.3 13.7 10.0 15.9 8.1 15.6 3.1 11.4 13.6 5.5 11.6 7.4 7.1 8.1 6.1 7.5 11.0 12.5 5.9 5.9 10.1 6.4 6.3 6.7 Ca 44.9 66.2 71.6 31.9 19.0 28.1 93.5 75.0 43.8 82.3 35.5 58.1 14.0 34.8 65.6 17.1 67.6 23.5 28.9 29.7 14.9 19.3 28.8 85.5 17.8 17.2 39.0 20.3 15.2 20.6 73.8 74.2 47.4 69.9 76.2 70.0 53.9 24.0 82.0 50.3 19.2 76.4 18.8 66.2 61.8 58.4 76.5 69.9 53.8 8.6 44.0 H 43.6 19.1 12.4 58.0 74.0 58.1 Base Saturation (%) APPENDIX E 92 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1034 1068 1068 1068 1068 1068 1068 1068 1068 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 4 4 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 02 03 04 05 01 02 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B Site Mod Num Pre 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0022 0023 0024 0025 0026 0027 0028 0029 x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Species Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Octolasion tyrtaeum Lumbricus spp Lumbricus spp Octolasion spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Genus Identification 14.397 16.193 16.380 13.563 20.264 18.561 21.133 19.675 17.686 22.525 23.308 42.769 46.685 62.252 11.589 19.275 9.272 10.771 10.031 10.797 4.922 5.552 4.869 8.295 11.327 11.881 9.580 14.279 16.226 16.420 13.576 20.345 18.726 21.210 19.683 17.688 22.569 23.322 42.695 46.684 62.191 11.581 19.401 9.300 10.904 10.079 10.686 4.843 5.604 4.970 8.381 11.255 12.019 9.470 14.461 16.297 16.404 13.593 20.384 18.618 21.214 19.709 17.674 22.327 23.357 42.842 46.914 62.375 11.667 19.370 9.296 10.816 10.117 10.737 4.886 5.530 4.924 8.319 11.343 12.016 9.609 samp 1 samp 2 samp 3 Length (mm) 14.379 16.239 16.401 13.577 20.331 18.635 21.186 19.689 17.683 22.474 23.329 42.769 46.761 62.273 11.612 19.349 9.289 10.830 10.076 10.740 4.884 5.562 4.921 8.332 11.308 11.972 9.553 mean 300 300 300 300 300 300 200 200 300 200 300 100 200 150 400 400 400 400 400 400 600 400 600 600 600 600 600 Img. Mag. (%)** 22.4 20.3 20.4 18.7 43.8 35.8 42.4 44.9 29.3 60.6 59.8 292.8 300.1 478.3 11.5 35.6 3.2 6.6 5.7 2.7 0.2 0.5 0.1 0.5 1.8 2.8 3.4 Wet Wt. (mg) **Image Magnification (Img Mag) is the magnification of the image at the time of centerline measurement, where 100% is full size. The captured image however, is 6 times actual size, therefore a magnification of 200% would be equal to 12 times (2.00 x 6) actual size. Date Cnt Worm ID Metroparks Field Study: Earthworm Raw Data 5243 5244 5245 5246 5247 5248 5249 5250 5251 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5316 5317 5318 5321 Image ID APPENDIX F Date 13-Oct-2010 13-Oct-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 22-Sep-2010 Cnt 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 1068 1068 1039 1039 1039 1039 1039 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 4 4 3 3 3 3 9 2 2 2 2 2 2 2 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 03 04 01 02 03 04 01 01 02 03 04 05 06 07 08 01 15 14 13 12 11 10 09 08 07 06 05 04 03 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0030 0031 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 93 x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Amynthas spp Amynthas spp Lumbricus spp Aporrectodea spp Aporrectodea spp Octolasion spp Aporrectodea spp Dendrobaena octaedra Lumbricus spp Lumbricus spp Octolasion cyaneum Aporrectodea spp Octolasion spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Octolasion spp Lumbricus spp Octolasion spp Octolasion spp Aporrectodea spp Octolasion spp Aporrectodea spp Genus Identification 6.472 4.684 9.762 19.772 26.863 41.570 35.916 10.597 10.594 20.361 15.650 31.664 20.219 37.631 44.065 31.352 32.413 25.683 39.926 27.857 24.541 23.004 24.984 14.643 16.284 11.821 10.591 11.446 11.847 12.561 6.506 4.790 9.773 19.756 27.023 41.453 35.974 10.676 10.668 20.517 15.606 31.895 20.157 37.792 44.336 31.476 32.694 25.847 39.612 27.883 24.365 23.208 24.879 14.650 16.310 11.796 10.369 11.343 11.866 12.538 6.467 4.766 9.722 19.779 27.167 41.526 35.811 10.604 10.733 20.516 15.579 31.969 20.224 37.602 44.173 31.393 32.676 25.777 39.837 27.910 24.586 22.995 24.893 14.629 16.342 11.812 10.503 11.420 11.839 12.643 samp 1 samp 2 samp 3 Length (mm) 6.482 4.747 9.752 19.769 27.018 41.516 35.900 10.626 10.665 20.465 15.612 31.843 20.200 37.675 44.191 31.407 32.594 25.769 39.792 27.883 24.497 23.069 24.919 14.641 16.312 11.810 10.488 11.403 11.851 12.581 mean 600 400 400 400 200 100 150 400 400 300 300 200 300 150 150 150 300 200 200 200 300 300 300 400 400 600 400 400 400 300 Img. Mag. (%)** 2.1 1.1 2.5 44.4 84.6 337.0 180.0 4.8 4.9 26.3 18.9 111.5 46.4 21.6 302.9 162.3 108.8 147.3 203.4 95.6 78.4 45.8 53.7 24.6 22.9 8.5 10.4 8.2 9.1 8.4 Wet Wt. (mg) 5322 5323 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 Image ID IX F APPENDIX F Date 22-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 Cnt 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 1040 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 1041 9 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 01 01 02 03 04 05 06 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0061 0062 0063 0064 0065 0066 0067 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 94 x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Dendrodrilus rubidus Dendrodrilus rubidus Dendrodrilus rubidus Eisenia fetida Dendrodrilus rubidus Dendrodrilus rubidus Octolasion spp Lumbricus spp Lumbricus spp Dendrodrilus rubidus Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus rubellus Lumbricus spp Lumbricus spp Genus Identification 10.711 9.523 11.956 9.208 15.404 15.707 17.249 6.919 5.859 4.551 5.997 6.557 7.728 8.932 8.260 9.040 9.569 10.068 11.959 11.986 13.655 22.459 12.619 15.461 13.274 14.740 14.983 17.841 20.993 34.521 10.627 9.523 11.902 9.276 15.396 15.663 17.337 6.888 5.747 4.576 6.051 6.530 7.697 9.126 8.205 8.982 9.675 10.061 12.110 11.825 13.560 22.359 12.600 15.344 13.295 14.691 15.158 17.944 20.776 34.379 10.646 9.580 11.899 9.216 15.364 15.663 17.272 6.904 5.822 4.562 6.036 6.515 7.648 9.098 8.206 9.019 9.549 10.079 11.917 11.927 13.563 22.426 12.642 15.339 13.332 14.562 15.010 17.895 20.944 34.739 samp 1 samp 2 samp 3 Length (mm) 10.661 9.542 11.919 9.233 15.388 15.678 17.286 6.904 5.809 4.563 6.028 6.534 7.691 9.052 8.224 9.014 9.598 10.069 11.995 11.913 13.593 22.415 12.620 15.381 13.300 14.664 15.050 17.893 20.904 34.546 mean 400 400 400 400 300 300 300 600 600 600 800 600 600 600 600 600 600 600 400 400 400 400 400 300 400 400 400 300 300 300 Img. Mag. (%)** 5.8 8.3 9.5 5.9 43.2 47.6 41.9 0.8 1.4 0.1 1.5 1.6 3.1 5.3 5.2 6.7 5.7 5.7 13.7 14.2 17.7 21.5 27.2 23.1 17.3 20.9 18.1 43.9 32.2 150.1 Wet Wt. (mg) 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 Image ID APPENDIX F Date 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 23-Sep-2010 13-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 Cnt 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 1041 1041 1041 1041 1041 1041 1041 1044 1044 1044 1044 1044 1044 1047 1048 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 3 3 3 3 3 3 8 3 8 8 8 9 9 8 3 2 2 2 2 2 2 2 2 8 8 8 8 8 9 9 25 26 27 28 29 30 01 01 01 02 03 01 02 01 01 01 02 03 04 05 06 07 08 01 02 03 04 05 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0104 0105 0107 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0121 0122 0123 0124 0125 0126 95 x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus rubellus Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Amynthas spp Aporrectodea spp Aporrectodea spp Octolasion cyaneum Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Octolasion spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus rubellus Genus Identification 25.342 25.543 22.623 24.557 30.999 41.853 16.007 7.620 19.465 33.931 43.724 11.276 9.318 33.696 7.362 8.261 10.498 11.194 6.933 9.852 9.560 11.184 22.693 14.822 23.360 20.480 18.082 24.513 16.945 33.435 25.490 25.549 22.529 24.605 31.091 41.803 15.931 7.661 19.434 33.610 43.514 11.344 9.271 33.562 7.483 8.253 10.460 11.243 6.890 10.018 9.552 11.219 22.911 14.914 23.343 20.415 18.108 24.460 16.933 33.612 25.389 25.419 22.614 24.714 31.102 41.732 15.991 7.536 19.520 33.974 43.555 11.290 9.304 33.643 7.335 8.222 10.549 11.152 6.966 9.947 9.557 11.194 22.883 14.872 23.437 20.383 18.119 24.202 16.931 33.326 samp 1 samp 2 samp 3 Length (mm) 25.407 25.504 22.589 24.625 31.064 41.796 15.976 7.606 19.473 33.838 43.598 11.303 9.298 33.634 7.393 8.245 10.502 11.196 6.930 9.939 9.556 11.199 22.829 14.869 23.380 20.426 18.103 24.392 16.936 33.458 mean 300 300 300 300 300 300 400 600 400 300 200 600 600 200 800 800 600 600 800 600 400 300 200 200 150 300 200 200 300 150 Img. Mag. (%)** 68.1 74.3 76.7 69.2 122.7 276.0 11.9 0.8 34.8 142.1 271.9 1.3 0.7 117.7 1.4 4.0 5.1 6.3 2.6 5.1 5.4 8.3 35.9 17.8 48.1 40.9 18.0 60.5 17.6 289.9 Wet Wt. (mg) 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5354 5355 5356 5369 5370 5371 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 Image ID APPENDIX F Date 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 Cnt 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 1051 1051 1051 1051 1054 1054 1054 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 3 9 9 9 2 3 3 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 01 01 02 03 01 01 02 01 02 03 04 05 06 07 01 02 03 04 05 06 01 02 03 04 05 06 07 08 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 96 x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus rubellus Lumbricus spp Dendrobaena octaedra Lumbricus spp Amynthas spp Amynthas spp Amynthas spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus rubellus Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Genus Identification 50.385 13.601 21.643 32.715 34.195 40.548 41.404 26.614 24.971 35.242 39.288 36.644 36.762 48.237 16.137 24.707 37.580 41.845 59.065 61.454 19.968 25.050 24.227 32.893 29.442 35.958 39.201 32.490 12.408 17.462 50.436 13.555 21.531 32.577 34.128 40.703 41.575 26.807 25.055 35.172 39.523 37.222 36.560 48.686 16.212 24.753 37.647 41.732 58.880 61.791 20.061 25.242 24.261 33.116 29.346 35.947 39.224 32.622 12.431 17.337 51.179 13.747 21.533 32.308 34.317 40.444 41.402 26.732 24.931 35.217 39.601 36.626 36.428 48.716 16.196 24.821 37.267 42.190 59.286 61.650 20.152 25.242 24.354 33.250 29.282 35.940 38.997 32.503 12.426 17.304 samp 1 samp 2 samp 3 Length (mm) 50.667 13.634 21.569 32.533 34.213 40.565 41.460 26.718 24.986 35.210 39.471 36.831 36.583 48.546 16.182 24.760 37.498 41.922 59.077 61.632 20.060 25.178 24.281 33.086 29.357 35.948 39.141 32.538 12.422 17.368 mean 150 400 300 200 150 100 100 300 200 200 200 200 200 150 300 200 200 200 200 100 200 200 200 150 150 150 150 150 400 300 Img. Mag. (%)** 491.0 13.9 67.7 149.7 199.1 361.0 406.5 59.5 90.6 79.5 198.0 196.0 194.1 359.0 12.9 111.1 183.6 321.5 431.9 532.0 50.9 66.3 71.7 161.7 188.1 200.9 242.6 164.3 8.6 20.3 Wet Wt. (mg) 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 Image ID APPENDIX F Date 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 Cnt 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1055 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1067 1067 1067 1067 1067 1067 1067 1067 1067 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 03 04 05 06 07 08 09 10 11 12 13 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Octolasion spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Genus Identification 21.750 23.474 21.946 31.965 29.004 36.707 37.582 43.120 37.540 33.301 52.217 14.199 29.213 21.675 35.354 27.255 23.204 24.698 34.700 36.799 37.112 16.636 14.615 15.112 13.779 15.291 12.284 10.374 14.450 11.845 21.873 23.461 21.873 32.143 28.911 36.681 37.759 43.381 37.687 33.215 52.496 14.233 29.345 21.695 35.427 27.307 23.283 25.002 34.506 36.617 36.755 16.527 14.596 15.081 13.771 15.366 12.329 10.259 14.303 11.829 22.011 23.439 21.764 31.818 29.007 37.055 37.770 43.270 37.621 33.017 52.647 14.235 29.247 21.677 35.264 27.407 23.216 24.938 34.598 36.829 37.284 16.438 14.652 15.014 13.735 15.325 12.311 10.418 14.377 11.794 samp 1 samp 2 samp 3 Length (mm) 21.878 23.458 21.861 31.975 28.974 36.814 37.704 43.257 37.616 33.178 52.453 14.222 29.268 21.682 35.348 27.323 23.234 24.879 34.601 36.748 37.050 16.534 14.621 15.069 13.762 15.327 12.308 10.350 14.377 11.823 mean 300 150 200 150 200 200 200 200 200 150 150 300 200 200 200 200 200 200 200 200 200 300 400 400 300 400 400 400 400 400 Img. Mag. (%)** 30.7 47.1 53.4 128.2 124.8 169.0 174.5 226.8 202.3 194.3 286.8 28.0 136.7 108.0 159.7 108.1 92.9 121.1 189.5 201.4 267.6 13.4 15.8 12.3 10.8 19.3 24.2 6.8 15.0 8.2 Wet Wt. (mg) 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 Image ID APPENDIX F 97 Date 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 Cnt 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 1067 1067 1067 1067 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 8 8 8 8 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 9 10 12 13 14 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 11 12 13 14 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0187 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Genus Identification 10.848 20.962 22.820 23.010 14.872 25.156 34.268 38.224 37.975 29.345 28.870 32.415 33.737 39.768 19.064 24.659 27.715 34.849 40.936 40.485 39.339 46.275 49.170 50.718 48.033 52.502 52.433 38.300 10.160 10.507 10.779 20.913 22.909 23.070 14.905 25.172 34.601 38.075 37.870 29.373 28.987 32.592 33.687 39.709 18.979 24.575 27.762 34.817 40.939 40.240 39.587 46.515 49.438 50.887 48.091 52.753 52.714 38.227 10.195 10.591 10.737 20.926 22.925 23.017 14.929 25.231 34.336 38.128 37.737 29.311 28.847 32.596 33.681 39.701 19.146 24.670 27.796 34.783 40.902 40.285 39.358 46.815 49.270 50.940 48.417 52.880 52.405 38.106 10.180 10.531 samp 1 samp 2 samp 3 Length (mm) 10.788 20.934 22.885 23.032 14.902 25.186 34.402 38.142 37.861 29.343 28.901 32.534 33.702 39.726 19.063 24.635 27.758 34.816 40.926 40.337 39.428 46.535 49.293 50.848 48.180 52.712 52.517 38.211 10.178 10.543 mean 600 300 300 300 400 200 300 300 300 200 150 200 200 200 300 300 200 300 200 200 200 200 200 200 200 200 200 150 400 400 Img. Mag. (%)** 4.9 44.8 55.0 48.8 12.8 45.0 75.0 114.0 100.0 101.7 175.3 106.1 144.0 176.3 33.6 39.1 43.3 107.3 155.0 137.5 141.5 217.5 194.4 212.2 242.7 246.5 285.0 282.3 5.5 7.2 Wet Wt. (mg) 5443 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 Image ID APPENDIX F 98 Date 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 Cnt 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 1083 1083 1083 1083 1083 1083 1083 1388 1388 1388 1388 1388 3668 3668 3668 3668 3668 3420 3420 3420 3420 3420 3596 3596 3596 3668 3668 3668 3668 3668 9 9 9 9 9 9 9 5 5 5 5 5 9 9 9 9 9 4 4 4 4 4 2 9 9 2 2 2 2 2 03 04 05 06 07 08 09 01 02 03 04 05 02 01 03 04 05 02 03 04 05 06 01 01 02 01 02 03 04 05 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0231 0230 0232 0233 0234 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Genus Identification 9.789 11.414 16.043 24.477 16.811 20.469 20.775 8.842 13.709 10.123 10.726 13.172 13.485 20.330 18.367 33.807 36.919 9.444 6.669 9.579 7.980 3.371 17.241 16.872 29.883 15.432 25.209 23.452 26.384 29.353 9.755 11.394 16.228 24.369 16.735 20.562 20.597 8.844 13.577 10.074 10.735 13.224 13.465 20.380 18.366 33.728 36.931 9.457 6.652 9.570 7.961 3.414 17.034 16.924 29.793 15.468 25.102 23.357 26.470 29.498 9.804 11.375 16.134 24.246 16.776 20.554 20.741 8.845 13.681 10.087 10.697 13.248 13.443 20.450 18.315 33.762 36.700 9.583 6.623 9.595 8.091 3.375 17.084 16.869 29.699 15.402 25.219 23.354 26.381 29.414 samp 1 samp 2 samp 3 Length (mm) 9.783 11.394 16.135 24.364 16.774 20.528 20.704 8.844 13.656 10.095 10.719 13.215 13.464 20.387 18.349 33.766 36.850 9.495 6.648 9.581 8.011 3.387 17.120 16.888 29.792 15.434 25.177 23.388 26.412 29.422 mean 400 400 300 300 300 300 300 600 200 400 400 400 300 300 300 200 200 400 400 400 400 400 300 300 200 400 200 200 200 200 Img. Mag. (%)** 5.7 10.9 25.1 52.6 23.3 30.9 42.9 1.6 1.6 6.1 7.4 11.1 38.0 35.9 34.7 106.6 144.2 1.6 0.7 1.0 0.7 0.4 21.8 15.7 63.8 17.7 67.4 93.0 130.3 114.0 Wet Wt. (mg) 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 Image ID APPENDIX F 99 Date 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 Cnt 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 AT02 AT02 AT02 AT02 AT02 AT01 AT01 AT01 AT01 AT01 AT01 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 8 8 8 8 8 06 07 08 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 01 02 03 04 05 01 01 02 03 04 05 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 100 x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Octolasion tyrtaeum Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Lumbricus spp Lumbricus spp Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Lumbricus spp Genus Identification 39.106 33.390 34.238 10.860 10.994 11.093 11.741 19.736 22.169 21.858 26.432 26.664 27.806 34.104 34.019 35.544 39.359 34.544 36.822 17.094 14.096 22.403 34.373 37.755 33.038 13.514 18.037 21.424 23.448 38.599 39.127 33.335 34.121 10.896 10.988 10.990 11.693 19.681 22.237 21.811 26.495 26.480 27.673 33.851 34.100 35.535 39.595 34.422 36.646 17.058 14.085 22.421 34.694 37.695 33.139 13.549 17.973 21.383 23.382 38.502 39.003 33.485 34.362 10.891 10.983 11.055 11.879 19.773 22.189 21.846 26.459 26.558 27.684 33.712 34.066 35.528 39.404 34.420 36.711 17.170 14.104 22.328 34.452 37.604 32.849 13.614 18.058 21.369 23.523 38.588 samp 1 samp 2 samp 3 Length (mm) 39.079 33.403 34.240 10.882 10.988 11.046 11.771 19.730 22.198 21.838 26.462 26.567 27.721 33.889 34.062 35.536 39.453 34.462 36.726 17.107 14.095 22.384 34.506 37.685 33.009 13.559 18.023 21.392 23.451 38.563 mean 200 200 200 400 400 400 400 300 300 300 300 300 300 200 200 200 200 200 150 400 400 400 200 200 200 400 400 400 300 200 Img. Mag. (%)** 179.3 113.5 168.7 7.2 7.5 5.8 10.2 65.0 56.1 47.2 86.6 129.6 108.0 158.3 125.0 177.8 201.0 238.8 293.0 22.9 13.5 47.7 168.7 227.5 124.3 11.5 22.2 31.3 60.7 212.6 Wet Wt. (mg) 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 Image ID APPENDIX F Date 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 Cnt 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 3668 1002 1002 1002 1002 1002 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 3 3 3 8 8 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 01 02 03 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 1001 1002 1003 1004 1005 101 x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Octolasion tyrtaeum Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus rubellus Lumbricus spp Lumbricus spp Genus Identification 35.927 11.124 18.357 22.627 21.558 27.884 32.753 37.974 36.685 35.852 37.715 38.934 39.835 32.913 30.624 38.315 39.106 35.655 36.906 41.431 44.173 41.155 45.478 40.993 38.693 33.188 22.140 36.661 20.465 32.956 35.902 11.101 18.411 22.641 21.616 27.936 32.842 37.920 36.629 35.668 37.709 38.880 39.785 33.051 30.522 38.457 39.186 35.488 36.999 41.591 44.606 41.194 45.459 40.942 38.600 33.113 22.107 36.667 20.414 32.936 35.907 11.102 18.456 22.604 21.569 27.971 32.802 38.264 36.716 35.944 37.839 39.036 39.908 33.073 30.455 38.373 39.130 35.748 37.257 41.603 44.384 41.193 45.502 41.024 38.684 33.116 22.094 36.686 20.464 32.919 samp 1 samp 2 samp 3 Length (mm) 35.912 11.109 18.408 22.624 21.581 27.930 32.799 38.053 36.677 35.821 37.754 38.950 39.843 33.012 30.534 38.382 39.141 35.630 37.054 41.542 44.388 41.181 45.480 40.986 38.659 33.139 22.114 36.671 20.448 32.937 mean 300 400 400 300 400 300 200 200 200 150 200 150 200 200 200 200 200 200 200 200 200 200 200 200 200 200 300 200 200 200 Img. Mag. (%)** 135.6 4.5 24.2 30.4 36.3 79.8 135.1 143.8 144.4 266.9 186.3 190.9 182.6 110.5 112.5 140.0 179.9 134.6 148.0 173.5 189.8 163.6 192.4 146.0 141.0 96.0 59.6 208.0 55.9 113.2 Wet Wt. (mg) 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5665 5666 5667 5668 5669 Image ID APPENDIX F Date 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 23-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 Cnt 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 1002 1003 1003 1003 1003 1003 1003 1003 1003 1003 1003 1003 1003 1004 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1008 1008 1008 1008 1008 1008 8 3 3 3 8 8 9 9 9 9 9 9 9 3 8 8 2 2 2 2 2 9 9 9 2 2 2 2 3 3 03 01 02 03 01 02 01 02 03 04 05 06 07 01 01 02 01 02 03 04 05 01 02 03 01 03 04 05 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1037 1038 1039 1040 1041 102 x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus spp Octolasion tyrtaeum Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion spp Lumbricus spp Lumbricus spp Amynthas spp Aporrectodea spp Lumbricus spp Lumbricus spp Octolasion spp Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Octolasion spp Lumbricus spp Lumbricus spp Dendrodrilus rubidus Genus Identification 31.484 25.007 29.682 37.684 24.929 34.473 33.624 31.942 38.141 39.871 42.979 40.444 58.156 40.404 14.157 14.518 15.741 21.180 19.672 28.330 36.264 8.193 20.900 31.259 10.174 12.257 22.756 29.175 8.612 27.731 31.480 25.035 29.645 37.798 24.919 34.426 33.515 32.093 38.050 39.976 43.057 40.537 58.256 40.398 14.193 14.513 15.744 21.173 19.693 28.329 36.294 8.132 20.803 31.182 10.151 12.301 22.717 29.294 8.638 27.626 31.493 25.099 29.633 37.854 24.914 34.558 33.662 31.968 38.074 39.944 43.022 40.624 58.439 40.466 14.118 14.547 15.697 21.192 19.711 28.328 36.282 8.194 20.892 31.235 10.114 12.291 22.746 29.304 8.647 27.714 samp 1 samp 2 samp 3 Length (mm) 31.486 25.047 29.653 37.779 24.921 34.486 33.600 32.001 38.088 39.930 43.019 40.535 58.284 40.423 14.156 14.526 15.727 21.182 19.692 28.329 36.280 8.173 20.865 31.225 10.146 12.283 22.740 29.258 8.632 27.690 mean 200 300 200 200 300 200 150 300 200 200 150 200 150 200 600 400 400 300 300 300 200 600 300 200 600 600 300 200 800 200 Img. Mag. (%)** 178.2 53.2 111.3 194.9 68.5 244.5 210.1 100.2 177.4 195.5 249.6 241.9 594.0 257.3 10.0 13.9 16.0 65.4 40.4 111.0 214.1 4.1 69.1 118.9 3.8 11.6 58.0 142.4 4.0 144.6 Wet Wt. (mg) 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5696 5697 5698 5699 5700 Image ID APPENDIX F Date 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 Cnt 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 1008 1008 1008 1008 1008 1008 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 9 9 9 9 9 9 2 3 3 3 3 3 3 3 8 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 01 02 03 04 05 06 01 01 02 03 04 05 06 07 01 02 01 02 03 01 02 03 04 05 06 07 08 09 10 11 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1042 1043 1044 1045 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Dendrodrilus rubidus Lumbricus spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion spp Lumbricus spp Lumbricus spp Lumbricus spp Genus Identification 30.366 32.446 29.635 24.469 39.317 42.472 10.736 13.132 29.027 40.260 45.406 39.388 53.013 52.983 41.143 40.632 40.032 39.702 46.593 11.653 14.747 10.790 13.462 14.239 15.111 15.926 23.200 22.355 31.504 30.704 30.471 32.504 29.721 24.489 39.452 42.587 10.752 13.092 28.984 40.336 45.303 39.258 52.990 52.857 41.153 40.733 39.955 39.681 46.545 11.634 14.773 10.814 13.394 14.210 15.114 15.923 23.299 22.350 31.482 30.681 30.424 32.396 29.606 24.461 39.305 42.381 10.787 13.095 29.017 40.265 45.367 39.243 52.969 52.867 41.139 40.607 39.979 39.882 46.522 11.696 14.768 10.847 13.488 14.245 15.057 15.962 23.243 22.330 31.569 30.729 samp 1 samp 2 samp 3 Length (mm) 30.420 32.449 29.654 24.473 39.358 42.480 10.758 13.106 29.009 40.287 45.359 39.296 52.991 52.902 41.145 40.657 39.989 39.755 46.553 11.661 14.763 10.817 13.448 14.231 15.094 15.937 23.247 22.345 31.518 30.705 mean 300 300 200 200 150 150 600 400 200 150 100 150 100 100 150 150 150 100 100 600 600 400 400 400 400 400 300 300 200 150 Img. Mag. (%)** 148.0 127.9 119.6 92.6 200.1 283.2 9.5 7.9 83.8 163.9 249.4 197.3 358.9 358.1 159.4 233.0 208.1 212.3 266.0 7.6 12.6 7.8 15.6 13.5 12.4 16.1 64.5 49.7 118.0 182.6 Wet Wt. (mg) 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5727 5728 5729 5730 5731 Image ID APPENDIX F 103 Date 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 Cnt 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1012 1012 1012 1012 1012 1013 1013 1013 1 1 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 6 6 6 6 6 3 8 8 8 8 1 2 4 12 13 01 02 03 04 05 06 07 01 02 03 04 05 06 07 08 01 02 03 04 05 01 01 02 03 04 01 01 01 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 104 x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Octolasion tyrtaeum Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Lumbricus spp Lumbricus spp Dendrobaena octaedra Genus Identification 35.098 36.744 11.343 10.507 11.373 15.363 25.842 29.229 36.043 10.161 10.130 12.036 12.047 12.766 16.115 18.610 17.341 10.227 12.719 11.751 13.268 15.887 18.645 13.900 13.567 15.769 17.290 27.764 38.835 5.835 35.084 36.761 11.273 10.476 11.360 15.263 25.908 29.261 36.208 10.080 10.121 11.954 12.051 12.701 16.079 18.572 17.272 10.244 12.791 11.647 13.218 15.975 18.520 13.919 13.510 15.704 17.264 27.626 38.716 5.844 35.062 36.688 11.302 10.473 11.360 15.373 25.876 29.222 35.981 10.125 10.118 11.972 12.077 12.758 16.089 18.675 17.343 10.225 12.782 11.701 13.238 15.939 18.533 13.879 13.560 15.726 17.260 27.686 38.757 5.887 samp 1 samp 2 samp 3 Length (mm) 35.081 36.731 11.306 10.485 11.364 15.333 25.875 29.237 36.077 10.122 10.123 11.987 12.058 12.742 16.094 18.619 17.319 10.232 12.764 11.700 13.241 15.934 18.566 13.899 13.546 15.733 17.271 27.692 38.769 5.855 mean 200 200 400 400 400 400 200 200 200 400 400 400 400 400 400 300 300 600 400 600 400 400 300 400 400 400 400 200 200 800 Img. Mag. (%)** 174.0 222.3 10.5 7.4 9.1 19.8 66.8 85.2 246.2 6.1 5.7 8.8 10.1 10.4 19.8 30.0 30.1 7.1 8.5 8.7 12.6 12.7 42.3 16.3 22.0 20.2 27.2 89.6 172.1 2.0 Wet Wt. (mg) 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 Image ID APPENDIX F Date 21-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 Cnt 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 1013 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1015 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 4 3 3 3 3 3 3 3 3 8 9 9 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 2 2 2 02 01 02 03 04 05 06 07 08 01 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 09 10 11 13 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1104 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1135 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Dendrobaena octaedra Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion spp Lumbricus spp Aporrectodea spp Octolasion spp Octolasion spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Genus Identification 17.540 13.090 25.668 23.420 32.550 34.889 28.247 42.222 42.263 35.632 14.118 16.240 20.476 24.068 24.954 29.229 32.741 44.787 13.761 17.422 15.574 15.718 17.094 18.930 20.352 23.482 25.323 23.723 24.215 35.351 17.525 13.040 25.782 23.440 32.410 34.940 28.341 42.222 42.453 35.525 14.072 16.280 20.499 24.173 24.930 29.260 32.833 44.816 13.759 17.422 15.581 15.644 17.107 18.994 20.406 23.372 25.321 23.764 24.248 35.342 17.589 13.053 25.766 23.474 32.426 34.765 28.235 42.175 42.429 35.562 14.120 16.264 20.461 24.272 24.996 29.309 32.795 44.769 13.842 17.391 15.624 15.723 17.107 18.951 20.381 23.450 25.336 23.775 24.235 35.387 samp 1 samp 2 samp 3 Length (mm) 17.551 13.061 25.739 23.445 32.462 34.865 28.274 42.206 42.382 35.573 14.103 16.261 20.479 24.171 24.960 29.266 32.790 44.791 13.787 17.412 15.593 15.695 17.103 18.958 20.380 23.435 25.327 23.754 24.233 35.360 mean 300 400 300 300 200 200 200 200 150 200 400 400 300 300 300 300 150 200 400 400 400 400 300 300 300 300 200 200 300 150 Img. Mag. (%)** 24.5 10.5 60.0 75.9 115.4 181.4 159.0 229.0 284.1 224.4 40.5 42.2 70.5 88.4 92.5 100.5 194.1 239.0 17.6 38.8 31.6 16.1 32.3 44.3 49.7 49.8 82.0 85.7 48.7 85.4 Wet Wt. (mg) 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5794 Image ID APPENDIX F 105 Date 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 Cnt 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 2 2 2 2 3 3 3 3 3 3 3 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 14 15 16 17 01 02 03 04 05 06 07 01 02 03 04 05 06 01 02 03 04 05 06 07 08 09 10 01 12 13 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Octolasion tyrtaeum Lumbricus spp Lumbricus spp Dendrobaena octaedra Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Genus Identification 32.100 35.986 34.519 42.657 11.546 17.513 14.187 13.071 28.190 37.054 42.154 30.966 27.896 22.906 33.353 41.148 52.772 11.771 18.530 13.419 18.811 25.701 27.119 21.710 26.947 31.132 30.177 28.091 30.376 31.889 32.014 36.123 34.493 42.791 11.577 17.482 14.136 13.058 28.323 37.213 42.245 30.945 28.061 22.968 33.450 41.178 52.826 11.781 18.500 13.442 18.764 25.482 27.128 21.745 27.019 30.955 30.325 28.160 30.432 31.809 32.041 36.014 34.439 42.665 11.608 17.465 14.207 13.028 28.157 37.004 42.258 31.028 27.929 22.952 33.405 41.208 52.816 11.791 18.504 13.336 18.832 25.585 27.148 21.842 27.000 31.091 30.222 28.071 30.364 31.801 samp 1 samp 2 samp 3 Length (mm) 32.052 36.041 34.484 42.704 11.577 17.487 14.177 13.052 28.223 37.090 42.219 30.980 27.962 22.942 33.403 41.178 52.805 11.781 18.511 13.399 18.802 25.589 27.132 21.766 26.989 31.059 30.241 28.107 30.391 31.833 mean 200 150 200 200 400 400 600 400 300 200 150 300 300 300 200 200 200 400 400 400 400 300 300 300 300 300 200 200 200 200 Img. Mag. (%)** 186.6 299.7 159.8 306.2 7.7 30.8 10.3 18.8 128.8 145.0 292.0 120.4 80.4 55.1 177.2 298.5 515.1 11.1 57.2 29.3 36.1 74.2 66.9 63.7 92.8 130.8 153.6 109.7 142.8 162.7 Wet Wt. (mg) 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 Image ID APPENDIX F 106 Date 30-Sep-2010 30-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 24-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 Cnt 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 1016 1016 1017 1017 1017 1017 1017 1017 1018 1018 1018 1019 1019 1019 1019 1021 1021 1021 1021 1022 1022 1022 1022 1022 1022 1022 1022 1022 1022 1022 8 8 3 3 3 3 3 8 2 2 9 2 2 2 3 5 6 6 6 3 3 3 3 3 3 3 3 4 4 4 14 15 01 02 03 04 05 01 01 02 01 01 02 03 01 01 02 03 04 01 02 03 04 05 06 07 08 01 02 03 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1178 1179 1180 1181 1182 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 107 x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Amynthas spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion spp Amynthas spp Amynthas spp Amynthas spp Aporrectodea spp Lumbricus spp Lumbricus rubellus Lumbricus spp Octolasion spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Genus Identification 35.323 43.133 15.611 22.824 29.184 35.978 29.851 55.865 9.318 48.749 19.586 28.974 33.419 46.458 34.101 41.839 46.698 59.022 10.004 31.322 19.595 17.172 20.821 38.112 48.695 42.678 42.642 17.459 15.329 33.500 35.398 43.284 15.566 22.835 29.307 36.033 29.895 55.898 9.298 48.878 19.674 28.969 33.237 46.387 33.963 41.862 46.706 58.934 10.053 31.307 19.591 17.174 20.805 38.142 48.642 42.940 42.788 17.463 15.317 33.450 35.469 43.219 15.628 22.817 29.281 36.108 29.920 55.826 9.321 48.810 19.569 28.937 33.358 46.293 34.167 41.773 46.655 59.094 9.994 31.327 19.593 17.219 20.807 38.129 48.734 42.833 42.722 17.402 15.330 33.480 samp 1 samp 2 samp 3 Length (mm) 35.397 43.212 15.602 22.825 29.257 36.040 29.889 55.863 9.312 48.812 19.610 28.960 33.338 46.379 34.077 41.825 46.686 59.017 10.017 31.319 19.593 17.188 20.811 38.128 48.690 42.817 42.717 17.441 15.325 33.477 mean 200 150 400 300 300 200 200 200 600 150 400 300 300 200 300 150 200 150 400 300 300 400 400 200 200 200 200 400 400 200 Img. Mag. (%)** 150.8 171.2 18.0 73.2 119.8 172.1 171.2 208.5 5.7 396.7 41.8 127.8 128.6 308.1 120.2 385.1 319.7 497.8 6.4 87.7 41.7 28.4 37.0 159.2 183.4 219.9 324.5 13.0 15.7 76.1 Wet Wt. (mg) 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 Image ID APPENDIX F Date 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 12-Oct-2010 12-Oct-2010 Cnt 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 1024 1024 1024 1024 1024 1025 1025 1025 1025 1024 1024 1024 1024 1024 1024 1024 1024 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1 1 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 01 02 03 01 02 01 02 03 04 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 09 10 11 02 03 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1227 1228 108 x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus rubellus Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus rubellus Lumbricus rubellus Octolasion spp Lumbricus spp Genus Identification 14.051 7.869 6.222 7.177 7.088 22.134 44.783 42.464 55.563 4.549 5.863 5.388 8.605 8.473 11.271 10.150 20.534 15.727 11.707 13.931 23.330 19.266 26.148 16.510 31.445 48.518 46.645 54.227 7.525 11.597 14.095 7.874 6.192 7.228 7.145 22.147 45.074 42.492 55.678 4.496 5.888 5.311 8.607 8.440 11.252 10.146 20.472 15.728 11.755 13.918 23.354 19.267 26.276 16.555 31.306 48.520 46.519 54.070 7.468 11.560 14.036 7.854 6.218 7.170 7.246 22.178 45.105 42.549 55.486 4.551 5.817 5.329 8.640 8.472 11.278 10.153 20.607 15.597 11.756 13.933 23.316 19.285 26.228 16.539 31.373 48.628 46.522 54.220 7.471 11.600 samp 1 samp 2 samp 3 Length (mm) 14.061 7.866 6.211 7.192 7.160 22.153 44.987 42.502 55.576 4.532 5.856 5.343 8.617 8.462 11.267 10.150 20.538 15.684 11.739 13.927 23.333 19.273 26.217 16.535 31.375 48.555 46.562 54.172 7.488 11.586 mean 400 800 600 600 600 300 200 150 200 800 600 800 600 600 400 400 200 300 600 400 200 300 200 300 200 200 150 150 600 400 Img. Mag. (%)** 11.0 0.8 0.8 1.1 1.1 63.1 183.8 344.4 315.8 0.8 0.3 0.9 1.0 1.8 4.0 3.3 42.9 12.0 10.0 14.3 32.0 41.3 55.6 27.6 123.8 292.4 310.4 500.0 13.0 10.7 Wet Wt. (mg) 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 Image ID APPENDIX F Date 12-Oct-2010 23-Sep-2010 23-Sep-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 21-Sep-2010 21-Sep-2010 Cnt 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1026 1026 9 9 9 3 3 3 3 3 3 3 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 3 01 01 02 04 05 06 07 08 09 10 03 04 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 01 01 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 109 x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion spp Octolasion tyrtaeum Lumbricus spp Lumbricus spp Octolasion tyrtaeum Lumbricus spp Octolasion spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Octolasion spp Dendrobaena octaedra Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Genus Identification 10.665 12.636 10.567 17.165 20.233 26.291 35.217 46.546 38.351 41.920 10.392 25.719 13.956 14.623 27.437 26.582 44.503 29.592 26.360 37.050 27.639 7.743 9.097 12.775 15.277 20.129 19.365 25.139 30.723 29.870 10.592 12.654 10.530 17.081 20.222 26.276 35.109 46.630 38.318 42.097 10.385 25.679 14.001 14.672 27.435 26.578 44.566 29.655 26.371 37.039 27.611 7.709 9.067 12.812 15.286 20.141 19.364 25.018 30.689 29.819 10.610 12.692 10.608 17.187 20.190 26.255 35.106 46.475 38.299 41.878 10.448 25.627 13.954 14.646 27.492 26.482 44.589 29.616 26.403 37.054 27.686 7.666 9.052 12.752 15.274 20.174 19.410 25.052 30.830 29.833 samp 1 samp 2 samp 3 Length (mm) 10.622 12.661 10.568 17.144 20.215 26.274 35.144 46.550 38.323 41.965 10.408 25.675 13.970 14.647 27.455 26.547 44.553 29.621 26.378 37.048 27.645 7.706 9.072 12.780 15.279 20.148 19.380 25.070 30.747 29.841 mean 400 400 400 300 200 200 150 150 200 200 400 200 600 300 200 200 200 200 200 150 200 600 400 600 300 200 200 300 300 200 Img. Mag. (%)** 10.0 7.5 35.0 54.0 90.4 334.3 300.0 293.0 281.3 380.2 6.2 80.9 9.3 19.5 108.4 102.6 206.4 107.6 92.0 188.9 175.2 1.3 7.5 10.0 14.4 68.6 57.3 112.7 77.5 123.0 Wet Wt. (mg) 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 Image ID APPENDIX F Date 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 21-Sep-2010 21-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 Cnt 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 1028 1028 1028 1028 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1029 1030 1030 1031 1031 1031 1033 1035 1035 1035 1035 3 3 3 8 2 2 2 2 2 2 3 3 3 3 3 3 8 8 9 9 2 2 9 8 8 2 2 2 2 2 01 02 03 01 01 02 03 04 05 06 01 02 03 04 05 06 02 03 04 05 02 01 01 01 02 01 01 02 03 04 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1276 1277 1282 1283 1284 1285 1287 1288 1289 1290 1291 1292 1293 1294 110 x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Octolasion spp Aporrectodea spp Octolasion tyrtaeum Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Octolasion spp Lumbricus spp Octolasion tyrtaeum Octolasion tyrtaeum Aporrectodea spp Dendrodrilus rubidus Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus rubellus Genus Identification 11.849 26.173 37.164 29.716 11.109 12.977 20.518 23.219 32.206 31.904 7.311 10.797 12.723 10.968 27.712 31.572 19.885 20.238 15.559 16.713 29.964 32.745 4.155 16.636 21.684 12.587 27.564 23.271 33.852 41.904 11.896 26.008 37.307 29.551 10.968 12.978 20.574 23.239 32.200 31.945 7.306 10.779 12.970 10.949 27.570 31.572 19.897 20.175 15.605 16.769 30.084 32.817 4.126 16.714 21.558 12.531 27.712 23.112 33.891 41.843 11.880 26.217 37.166 29.736 11.013 12.998 20.642 23.145 32.145 31.922 7.337 10.820 12.983 10.905 27.547 31.540 19.877 20.222 15.574 16.684 30.057 32.782 4.134 16.664 21.651 12.611 27.620 23.283 33.790 41.947 samp 1 samp 2 samp 3 Length (mm) 11.875 26.133 37.212 29.668 11.030 12.984 20.578 23.201 32.184 31.924 7.318 10.799 12.892 10.941 27.610 31.561 19.886 20.212 15.579 16.722 30.035 32.781 4.138 16.671 21.631 12.576 27.632 23.222 33.844 41.898 mean 400 300 200 200 300 600 200 300 200 150 600 400 400 400 200 150 300 300 300 300 200 200 800 300 200 400 300 300 200 200 Img. Mag. (%)** 13.8 64.5 302.9 119.1 2.0 7.1 49.4 74.6 113.7 189.4 0.7 7.3 11.7 17.3 111.1 136.0 42.9 35.8 29.3 33.6 177.0 185.0 0.2 20.7 93.0 3.2 75.4 63.1 118.0 174.3 Wet Wt. (mg) 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 Image ID APPENDIX F Date 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 21-Sep-2010 20-Sep-2010 23-Sep-2010 07-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 Cnt 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 1035 1035 1035 1035 1035 1035 1035 1035 1034 1039 1045 1054 1055 1055 1055 1055 1055 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 2 3 3 8 8 9 9 9 1 3 9 9 3 3 3 3 4 2 2 2 2 2 2 2 2 2 2 3 3 3 05 01 02 01 02 01 02 03 21 05 02 01 09 10 11 12 14 01 02 03 04 05 06 07 08 09 10 01 02 03 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 111 x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Octolasion tyrtaeum Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Octolasion tyrtaeum Lumbricus spp Amynthas spp Amynthas spp Amynthas spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Octolasion tyrtaeum Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Octolasion spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus rubellus Genus Identification 39.195 35.866 46.640 50.987 7.116 18.655 33.007 33.087 73.478 53.874 45.471 45.613 55.723 51.195 49.436 54.806 32.100 6.198 11.602 11.594 10.534 13.229 21.126 27.815 30.726 29.094 31.323 15.238 48.223 44.690 38.994 35.788 46.968 51.035 7.044 18.668 32.887 33.074 73.006 53.988 45.369 45.577 55.847 51.315 49.432 54.674 32.023 6.184 11.629 11.615 10.517 13.261 21.018 27.861 30.703 29.039 31.168 15.226 48.132 44.156 39.216 35.773 46.726 50.788 7.104 18.720 32.997 33.110 73.567 53.992 45.466 45.498 55.654 51.351 49.444 55.064 32.100 6.233 11.580 11.603 10.556 13.251 21.121 27.715 30.786 29.096 31.175 15.253 48.222 44.617 samp 1 samp 2 samp 3 Length (mm) 39.135 35.809 46.778 50.937 7.088 18.681 32.964 33.090 73.350 53.951 45.435 45.563 55.741 51.287 49.437 54.848 32.074 6.205 11.604 11.604 10.536 13.247 21.088 27.797 30.738 29.076 31.222 15.239 48.192 44.488 mean 150 300 200 150 600 300 200 200 150 100 100 100 150 150 150 100 200 400 600 600 400 400 200 300 200 200 200 300 150 200 Img. Mag. (%)** 223.0 137.3 261.6 359.0 3.4 43.8 101.4 134.3 712.9 418.0 409.0 372.0 462.3 481.6 492.6 549.3 226.3 5.9 9.0 9.2 8.5 8.4 84.7 127.4 186.5 130.6 242.6 24.5 262.5 416.2 Wet Wt. (mg) 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 7776 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 Image ID APPENDIX F Date 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 05-Oct-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 Cnt 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1058 1060 1060 1060 1060 1060 1060 1060 1060 1064 1064 1063 1063 3 3 3 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 1 2 2 2 2 3 3 4 2 2 4 4 04 05 06 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 01 02 03 04 05 01 02 02 02 03 02 03 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1345 1346 1347 1348 1349 1350 1352 1354 1355 1357 1358 112 x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus rubellus Octolasion tyrtaeum Aporrectodea calignosa Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea calignosa Octolasion tyrtaeum Octolasion tyrtaeum Aporrectodea spp Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Octolasion tyrtaeum Aporrectodea calignosa Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Aporrectodea spp Amynthas spp Amynthas spp Dendrodrilus rubidus Dendrodrilus rubidus Lumbricus spp Lumbricus spp Genus Identification 37.544 44.191 54.490 13.473 14.293 18.664 25.510 32.889 33.650 50.350 39.780 43.276 37.454 38.209 53.266 49.753 41.123 49.968 55.609 46.745 52.437 52.415 54.979 10.862 41.819 52.340 18.812 23.206 11.568 12.851 37.611 44.286 54.293 13.457 14.287 18.571 25.556 32.944 33.736 50.625 39.990 43.038 37.380 38.350 53.288 49.864 40.995 50.005 55.714 46.900 52.672 52.287 54.682 10.907 41.956 52.123 18.821 23.266 11.504 12.881 37.626 44.103 54.482 13.421 14.325 18.692 25.432 32.870 33.713 50.477 39.816 43.319 37.312 38.338 53.360 49.877 41.106 49.966 55.537 46.486 52.458 52.448 54.804 10.881 41.806 52.274 18.824 23.523 11.541 12.907 samp 1 samp 2 samp 3 Length (mm) 37.594 44.193 54.422 13.450 14.302 18.642 25.499 32.901 33.700 50.484 39.862 43.211 37.382 38.299 53.305 49.831 41.075 49.980 55.620 46.710 52.522 52.383 54.822 10.883 41.860 52.246 18.819 23.332 11.538 12.880 mean 200 150 200 400 300 300 200 200 200 200 150 200 200 200 100 200 100 150 150 150 150 150 150 600 200 150 300 200 400 400 Img. Mag. (%)** 252.0 393.6 404.8 30.2 11.9 37.2 106.9 141.4 213.6 283.0 356.2 461.7 136.6 159.3 378.8 394.0 418.0 359.1 464.5 309.0 389.5 363.6 440.3 3.3 270.9 372.8 71.5 77.2 8.5 13.7 Wet Wt. (mg) 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 6000 6002 6003 6004 6005 Image ID APPENDIX F Date 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 Cnt 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 01 02 03 04 05 06 07 08 09 10 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 113 x x x x x x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Genus Identification 12.456 11.920 17.513 18.759 15.509 17.859 18.377 20.382 17.694 23.052 22.332 26.549 28.232 35.006 42.282 37.379 51.351 53.310 60.221 53.647 10.333 10.439 11.109 12.151 11.276 10.147 17.799 20.286 22.467 22.115 12.453 11.882 17.431 18.780 15.476 17.782 18.365 20.481 17.622 23.102 22.318 26.514 28.078 34.971 42.292 37.361 51.010 53.302 60.151 53.771 10.373 10.406 11.182 12.216 11.264 10.118 17.789 20.244 22.424 22.006 12.496 11.888 17.456 18.728 15.515 17.722 18.351 20.405 17.656 23.020 22.289 26.512 28.195 35.005 42.297 37.285 51.206 53.206 60.203 53.597 10.326 10.489 11.092 12.173 11.298 10.156 17.834 20.291 22.499 22.142 samp 1 samp 2 samp 3 Length (mm) 12.468 11.897 17.467 18.756 15.500 17.788 18.364 20.423 17.657 23.058 22.313 26.525 28.168 34.994 42.290 37.342 51.189 53.273 60.192 53.672 10.344 10.445 11.128 12.180 11.279 10.140 17.807 20.274 22.463 22.088 mean 400 400 300 300 300 300 300 300 200 200 200 200 150 150 100 100 100 100 100 100 400 400 400 300 400 400 300 200 300 200 Img. Mag. (%)** 15.0 9.5 38.9 19.2 18.2 33.0 17.3 45.3 28.2 55.8 66.2 110.6 117.2 232.7 338.0 196.4 398.0 415.2 463.0 522.0 6.7 6.8 9.8 11.9 7.6 7.7 18.2 24.7 37.2 46.0 Wet Wt. (mg) 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 Image ID APPENDIX F Date 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 Cnt 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 1063 1063 1063 1063 1063 1063 1063 1063 1064 1064 1064 1064 1063 1063 1063 1063 1063 1063 1067 1067 1067 1067 1067 1067 1064 1064 1064 1064 1064 1064 3 2 2 2 2 2 2 2 3 3 3 3 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 9 11 01 02 03 04 05 06 07 01 02 03 04 01 02 03 04 05 06 15 16 17 18 19 20 01 02 03 04 05 01 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 114 x x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea calignosa Lumbricus spp Lumbricus rubellus Dendrodrilus rubidus Dendrodrilus rubidus Dendrodrilus rubidus Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus rubellus Amynthas spp Lumbricus spp Genus Identification 35.654 12.238 20.015 19.498 23.602 28.546 48.373 53.356 13.811 20.310 23.054 22.625 9.114 12.088 16.258 14.596 13.720 16.075 24.236 30.064 31.677 31.106 23.050 25.568 7.265 11.442 21.769 22.568 48.064 16.436 35.525 12.220 20.017 19.401 23.542 28.488 48.275 53.640 13.820 20.333 22.983 22.587 9.120 12.112 16.301 14.612 13.786 16.087 24.247 30.180 31.808 30.990 23.050 25.497 7.289 11.432 21.811 22.508 47.884 16.467 35.579 12.184 19.956 19.499 23.499 28.541 48.448 53.170 13.776 20.421 23.054 22.602 9.122 12.077 16.243 14.577 13.741 15.990 24.204 30.092 31.710 30.986 22.966 25.571 7.272 11.456 21.725 22.566 47.872 16.410 samp 1 samp 2 samp 3 Length (mm) 35.586 12.214 19.996 19.466 23.548 28.525 48.365 53.389 13.802 20.355 23.030 22.605 9.119 12.092 16.267 14.595 13.749 16.051 24.229 30.112 31.732 31.027 23.022 25.545 7.275 11.443 21.768 22.547 47.940 16.438 mean 150 400 300 300 200 150 150 150 300 200 200 200 600 400 400 400 400 400 200 200 200 200 200 300 600 400 300 200 150 300 Img. Mag. (%)** 255.2 10.6 69.2 67.5 96.7 190.0 388.1 463.0 54.5 82.7 68.1 65.4 10.6 9.2 16.7 12.1 12.4 19.0 46.3 106.9 96.0 101.3 127.8 87.7 7.5 11.2 45.9 80.2 328.0 29.3 Wet Wt. (mg) 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 Image ID APPENDIX F Date 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 Cnt 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 1064 1064 1064 1064 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 9 9 9 9 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 9 02 03 04 05 01 02 03 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 01 02 03 04 05 06 07 08 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 115 x x x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Lumbricus rubellus Lumbricus rubellus Lumbricus rubellus Lumbricus rubellus Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Lumbricus spp Aporrectodea spp Genus Identification 19.370 19.446 20.767 19.677 24.225 24.194 37.694 6.877 11.565 15.629 18.618 17.889 16.374 26.444 33.690 47.356 46.977 58.933 52.530 55.586 67.613 67.879 11.074 16.802 16.119 19.916 24.040 21.755 28.866 28.080 19.464 19.438 20.740 19.705 24.331 24.303 37.596 6.875 11.594 15.645 18.645 18.004 16.417 26.522 33.497 47.359 47.045 59.060 52.455 56.029 67.648 68.147 11.067 16.816 16.209 19.751 24.026 21.881 28.900 28.171 19.365 19.387 20.715 19.649 24.264 24.318 37.549 6.894 11.567 15.612 18.522 17.907 16.446 26.420 33.733 47.351 46.872 59.018 52.485 56.038 67.599 67.662 11.116 16.764 16.160 19.875 24.197 21.899 28.885 28.208 samp 1 samp 2 samp 3 Length (mm) 19.400 19.424 20.741 19.677 24.273 24.272 37.613 6.882 11.575 15.629 18.595 17.933 16.412 26.462 33.640 47.355 46.965 59.004 52.490 55.884 67.620 67.896 11.086 16.794 16.163 19.847 24.088 21.845 28.884 28.153 mean 200 200 200 200 200 200 150 400 400 400 300 300 300 200 200 150 150 150 100 150 100 100 400 300 300 300 200 300 300 200 Img. Mag. (%)** 61.5 65.0 63.7 60.1 60.4 53.5 149.6 7.2 8.4 15.0 23.7 17.3 13.6 83.5 161.0 261.8 370.0 514.0 343.1 467.0 601.6 633.0 6.9 16.9 16.9 37.7 43.2 36.6 87.7 95.8 Wet Wt. (mg) 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 Image ID APPENDIX F Date 15-Oct-2010 15-Oct-2010 15-Oct-2010 14-Oct-2010 14-Oct-2010 21-Sep-2010 21-Sep-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 Cnt 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 1067 1067 1067 1070 1071 1072 1072 1072 1072 1072 1072 1072 1072 1072 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 9 9 9 8 9 3 3 3 3 3 8 8 8 9 8 8 2 2 2 2 9 9 9 9 9 9 9 9 9 9 09 10 11 01 01 01 02 01 02 03 01 02 03 01 01 02 11 12 13 14 10 11 12 13 14 15 16 17 18 19 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1449 1450 1451 1453 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 116 x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Aporrectodea spp Aporrectodea calignosa Dendrobaena octaedra Amynthas spp Lumbricus spp Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Lumbricus spp Dendrobaena octaedra Dendrobaena octaedra Dendrobaena octaedra Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus rubellus Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Genus Identification 31.046 40.316 58.942 11.306 47.758 27.349 10.363 14.453 20.612 21.236 11.787 9.356 13.561 19.033 6.634 9.729 38.430 45.207 50.258 53.023 21.850 31.776 39.653 29.790 32.062 32.516 36.123 41.168 36.197 51.178 31.123 40.201 59.043 11.325 48.022 27.489 10.451 14.640 20.656 21.317 11.800 9.298 13.529 18.980 6.674 9.738 38.521 45.562 50.299 53.073 21.848 32.018 39.952 29.886 32.110 32.378 36.295 41.062 36.157 51.339 31.124 39.982 58.808 11.304 47.756 27.376 10.456 14.510 20.488 21.187 11.763 9.242 13.549 19.010 6.640 9.668 38.470 45.557 50.547 53.112 21.869 31.862 39.776 29.677 32.129 32.728 36.221 41.210 36.241 51.312 samp 1 samp 2 samp 3 Length (mm) 31.098 40.166 58.931 11.312 47.845 27.405 10.423 14.534 20.585 21.247 11.783 9.299 13.546 19.008 6.649 9.712 38.474 45.442 50.368 53.069 21.856 31.885 39.794 29.784 32.100 32.541 36.213 41.147 36.198 51.276 mean 200 200 150 400 150 200 600 400 300 300 600 600 400 200 800 600 200 150 150 150 300 200 200 150 200 200 200 200 200 200 Img. Mag. (%)** 86.1 139.0 367.0 11.1 404.5 93.0 12.7 19.2 38.7 72.9 8.8 6.7 14.9 49.6 4.1 6.6 212.6 351.4 332.6 400.5 34.2 106.0 164.4 98.4 140.3 116.7 154.3 153.9 179.5 223.0 Wet Wt. (mg) 6096 6097 6098 6100 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 Image ID APPENDIX F Date 14-Oct-2010 14-Oct-2010 14-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 13-Oct-2010 30-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 21-Sep-2010 23-Sep-2010 30-Sep-2010 24-Sep-2010 24-Sep-2010 23-Sep-2010 24-Sep-2010 24-Sep-2010 Cnt 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 1083 1083 1083 3668 3668 3668 3668 1063 1016 1002 1003 1010 1010 1010 1010 1010 1010 1010 1010 1011 1011 1011 1013 1015 1016 1018 1018 1017 1021 1021 9 9 9 2 2 2 2 4 2 9 3 2 2 2 2 3 8 8 9 2 5 6 1 3 3 8 2 3 1 1 20 21 22 09 10 11 12 31 18 01 04 02 03 04 05 08 03 04 04 08 09 06 02 09 08 01 03 06 01 02 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1483 1484 1485 1486 1487 1488 1489 1514 1515 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 117 x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Lumbricus spp Aporrectodea spp Lumbricus spp Lumbricus rubellus Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Lumbricus spp Lumbricus rubellus Lumbricus spp Lumbricus spp Lumbricus rubellus Lumbricus spp Amynthas spp Amynthas spp Lumbricus rubellus Amynthas spp Amynthas spp Genus Identification 30.759 41.521 51.355 41.507 45.716 40.121 41.821 9.405 10.005 48.583 54.032 55.220 58.520 55.789 59.773 59.491 54.124 56.803 57.244 58.420 45.687 66.346 44.835 52.639 75.998 60.870 65.500 49.803 51.792 51.384 30.634 41.618 51.491 41.777 45.832 40.039 41.830 9.376 10.017 48.810 54.055 55.204 58.650 55.945 59.922 59.686 53.947 56.854 57.281 58.069 45.733 66.139 44.846 52.865 75.639 60.707 65.371 50.246 51.927 51.392 30.742 41.657 51.413 41.824 45.692 40.284 41.778 9.365 9.995 48.456 54.165 55.101 58.712 55.765 59.765 59.772 53.933 56.883 57.336 58.186 45.804 66.311 44.889 52.745 75.896 60.651 65.951 50.264 51.877 51.232 samp 1 samp 2 samp 3 Length (mm) 30.712 41.599 51.420 41.703 45.747 40.148 41.810 9.382 10.006 48.616 54.084 55.175 58.627 55.833 59.820 59.650 54.001 56.847 57.287 58.225 45.741 66.265 44.857 52.750 75.844 60.743 65.607 50.104 51.865 51.336 mean 200 150 150 150 150 150 150 300 400 200 150 100 100 100 100 100 100 100 100 150 150 100 150 150 75 150 150 200 200 200 Img. Mag. (%)** 118.7 321.8 403.3 281.8 277.4 297.7 260.3 5.5 5.5 334.5 404.5 436.0 465.0 437.0 514.0 508.0 405.0 456.0 444.0 612.0 334.0 915.0 278.0 485.0 1443.0 540.0 624.0 413.5 397.0 630.0 Wet Wt. (mg) 6129 6130 6131 6132 6133 6134 6135 7778 7777 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6181 6182 6185 6186 6187 6188 6189 6190 6191 6192 6193 Image ID APPENDIX F Date 24-Sep-2010 24-Sep-2010 12-Oct-2010 12-Oct-2010 12-Oct-2010 07-Oct-2010 21-Sep-2010 21-Sep-2010 23-Sep-2010 23-Sep-2010 23-Sep-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 Cnt 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 1021 1021 1025 1025 1025 1054 1035 1035 1029 1045 1045 1055 1055 1055 1055 1055 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1 5 9 8 8 3 8 9 2 9 9 2 3 3 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 03 02 02 08 09 03 03 04 07 03 04 07 13 14 15 16 25 26 24 07 08 09 10 11 12 13 14 15 16 17 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 118 x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Amynthas spp Amynthas spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Amynthas spp Lumbricus rubellus Lumbricus spp Lumbricus spp Amynthas spp Amynthas spp Aporrectodea spp Aporrectodea spp Lumbricus spp Lumbricus spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Aporrectodea spp Lumbricus spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Lumbricus spp Genus Identification 56.435 58.022 61.492 50.759 47.641 64.611 61.148 56.530 64.028 67.317 63.282 67.130 71.308 75.610 75.018 98.844 60.952 68.021 59.559 14.447 17.117 15.527 16.548 19.430 21.953 27.546 43.769 46.035 57.117 76.656 56.171 58.026 61.616 50.763 47.573 64.737 60.948 56.389 64.363 67.064 63.496 67.016 71.415 75.688 75.112 98.539 61.139 67.990 59.329 14.427 17.127 15.492 16.619 19.400 21.995 27.525 43.746 45.796 57.074 76.566 56.686 57.908 61.762 50.918 47.575 64.546 61.258 56.758 63.997 66.958 63.424 67.078 71.572 75.710 74.986 98.447 61.074 67.934 59.317 14.372 17.095 15.512 16.544 19.434 21.989 27.517 43.822 45.612 56.794 76.684 samp 1 samp 2 samp 3 Length (mm) 56.431 57.985 61.623 50.813 47.596 64.631 61.118 56.559 64.129 67.113 63.401 67.075 71.432 75.669 75.039 98.610 61.055 67.982 59.402 14.415 17.113 15.510 16.570 19.421 21.979 27.529 43.779 45.814 56.995 76.635 mean 100 100 150 100 200 150 200 150 150 150 150 150 150 100 100 100 100 150 150 400 400 300 300 300 200 200 100 150 150 100 Img. Mag. (%)** 521.5 541.5 509.5 512.5 591.5 445.5 287.2 370.2 372.8 543.0 564.5 549.5 702.5 1023.5 900.0 1211.0 695.5 627.0 457.5 18.2 23.5 19.2 22.4 27.6 87.9 71.6 362.6 376.1 663.4 1227.0 Wet Wt. (mg) 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 Image ID APPENDIX F Date 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 Cnt 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1070 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 1083 8 8 8 8 8 8 8 8 8 8 3 3 9 9 9 9 9 9 3 8 8 8 8 8 8 8 8 8 8 8 21 22 23 24 25 26 27 28 29 30 04 05 13 14 15 16 17 18 01 03 04 05 06 07 08 09 10 11 12 13 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 119 x x x x x x x x x x x x x x x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea calignosa Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Aporrectodea calignosa Aporrectodea spp Aporrectodea calignosa Aporrectodea calignosa Aporrectodea spp Octolasion tyrtaeum Lumbricus spp Lumbricus spp Octolasion spp Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Lumbricus spp Aporrectodea spp Genus Identification 80.546 67.130 68.601 57.357 44.905 35.467 36.289 36.942 42.257 34.433 60.954 72.266 56.092 65.696 59.886 67.673 65.630 57.584 78.427 10.482 9.792 9.678 9.108 11.903 12.271 15.089 16.353 18.510 25.024 42.054 80.690 67.269 68.559 57.317 45.048 35.637 36.344 37.151 42.153 34.482 60.963 72.638 55.755 65.410 59.759 67.671 65.325 57.617 78.163 10.395 9.735 9.700 9.089 11.879 12.260 15.071 16.308 18.617 24.975 42.011 80.571 67.203 68.387 57.335 44.989 35.656 36.350 36.928 42.174 34.495 61.029 72.824 56.150 65.410 59.971 67.581 65.237 57.643 78.241 10.501 9.757 9.730 9.121 11.837 12.252 15.104 16.388 18.560 25.047 41.969 samp 1 samp 2 samp 3 Length (mm) 80.602 67.201 68.516 57.336 44.981 35.587 36.328 37.007 42.195 34.470 60.982 72.576 55.999 65.505 59.872 67.642 65.397 57.615 78.277 10.459 9.761 9.703 9.106 11.873 12.261 15.088 16.350 18.562 25.015 42.011 mean 100 150 150 100 150 200 200 200 150 200 100 150 100 150 150 150 100 150 100 600 600 600 600 400 400 400 300 300 300 200 Img. Mag. (%)** 747.3 603.7 593.7 675.9 390.4 149.6 132.2 168.9 217.8 146.3 558.4 674.7 473.1 475.4 377.5 697.8 264.3 555.3 947.5 7.2 8.1 6.9 6.4 11.5 11.9 18.2 24.0 28.5 80.1 251.0 Wet Wt. (mg) 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 Image ID APPENDIX F Date 14-Oct-2010 14-Oct-2010 14-Oct-2010 14-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 30-Sep-2010 30-Sep-2010 24-Sep-2010 24-Sep-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 20-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 Cnt 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 1083 1083 1083 1083 1388 1388 1388 1388 1002 1002 1006 1016 1016 1021 1021 1068 1068 1068 1068 1068 1039 1039 1039 1039 1039 1039 1044 1044 1044 1044 8 8 8 8 2 2 2 3 3 8 9 9 9 2 6 2 2 2 4 4 2 2 8 9 9 9 2 2 2 2 14 15 17 18 02 03 04 02 04 04 01 07 08 01 05 01 02 03 06 07 01 02 01 02 03 04 01 02 03 04 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 2081 2082 2084 2085 2087 2088 2089 2091 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 x x x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus rubellus Lumbricus spp Octolasion spp Aporrectodea rosea Lumbricus spp Lumbricus terrestris Lumbricus terrestris Lumbricus rubellus Lumbricus terrestris Lumbricus terrestris Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Genus Identification 22.690 18.794 52.094 41.711 12.865 26.468 31.680 50.461 73.501 73.364 85.920 96.455 102.101 61.025 56.708 80.161 93.418 61.641 69.478 77.943 91.961 74.171 96.291 69.625 72.731 81.181 95.454 88.531 81.480 99.255 23.043 18.847 51.701 41.839 12.911 26.370 31.793 50.611 73.661 73.377 86.079 96.123 102.142 60.743 56.726 80.138 93.125 61.555 69.438 77.730 91.784 74.229 96.365 70.033 72.761 81.116 95.213 88.474 81.772 99.388 22.958 18.768 52.127 41.868 12.842 26.651 31.800 50.476 73.599 72.977 86.144 96.136 102.122 60.966 56.823 79.998 93.397 61.530 69.270 77.879 91.653 74.383 96.599 69.624 72.663 81.232 95.605 88.119 81.595 99.224 samp 1 samp 2 samp 3 Length (mm) 22.897 18.803 51.974 41.806 12.873 26.496 31.758 50.516 73.587 73.239 86.048 96.238 102.122 60.911 56.752 80.099 93.313 61.575 69.395 77.851 91.799 74.261 96.418 69.761 72.718 81.176 95.424 88.375 81.616 99.289 mean 200 300 200 150 400 200 200 200 100 100 100 100 100 150 150 75 100 100 150 100 100 100 100 75 75 100 100 100 100 75 Img. Mag. (%)** 54.4 38.8 258.4 376.3 10.9 121.0 133.1 318.5 653.0 1312.0 1185.0 1513.0 2266.0 543.0 532.0 1994.0 2496.0 1246.0 991.7 1802.0 1683.5 1095.0 1890.0 1127.0 1130.0 1214.6 2260.0 1905.0 1616.0 2463.0 Wet Wt. (mg) 6254 6255 6257 6258 6259 6260 6261 6262 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 Image ID APPENDIX F 120 Date 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 30-Sep-2010 23-Sep-2010 07-Oct-2010 07-Oct-2010 07-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 15-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 13-Oct-2010 15-Oct-2010 14-Oct-2010 Cnt 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 1044 1044 1044 1044 1044 1044 1044 1044 1044 1044 1044 1045 1050 1050 1051 1055 1055 1055 1055 1055 1063 1063 1063 1063 1063 1063 1063 1064 1067 1083 2 2 8 8 8 8 9 9 9 9 9 2 9 9 3 1 1 1 2 4 4 4 4 4 3 3 3 9 9 2 05 06 04 05 06 07 03 04 05 06 07 01 03 04 02 08 09 10 08 17 27 28 29 30 12 13 14 06 19 15 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 121 x x x x Num Juv. Specimen Vial ID Site Mod Num Pre Worm ID Metroparks Field Study: Earthworm Raw Data Species Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Amynthas spp Lumbricus spp Lumbricus spp Lumbricus terrestris Lumbricus spp Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Amynthas spp Lumbricus terrestris Aporrectodea spp Genus Identification 94.914 84.939 100.486 85.573 102.779 80.785 74.132 115.525 66.377 80.288 98.853 88.775 53.041 75.991 129.827 74.126 84.536 98.036 114.928 111.828 100.437 91.479 86.328 83.521 98.056 103.373 125.305 73.773 78.695 70.032 95.338 84.831 100.668 85.380 102.098 80.940 74.301 115.329 66.347 80.457 98.829 88.745 53.241 76.074 129.448 74.212 84.679 98.417 114.696 111.962 100.501 91.569 85.834 83.218 97.643 103.324 125.901 73.537 78.350 69.649 95.144 84.770 100.703 85.089 102.060 80.884 74.321 115.268 66.346 80.464 98.643 88.927 53.132 76.391 130.194 74.131 84.607 98.687 114.428 111.966 100.822 91.575 85.856 83.127 97.756 103.310 125.658 73.903 78.270 69.967 samp 1 samp 2 samp 3 Length (mm) 95.132 84.847 100.619 85.347 102.312 80.870 74.251 115.374 66.357 80.403 98.775 88.816 53.138 76.152 129.823 74.156 84.607 98.380 114.684 111.919 100.587 91.541 86.006 83.289 97.818 103.336 125.621 73.738 78.438 69.883 mean 100 75 75 75 100 100 100 75 100 75 100 100 200 150 100 150 100 100 100 100 100 100 100 100 100 100 75 100 100 150 Img. Mag. (%)** 2186.0 2075.0 2716.0 1714.0 2319.0 1410.0 1160.0 3344.0 1207.0 1969.0 2373.0 2215.0 474.7 876.2 2858.0 959.2 1693.0 2099.0 3153.0 2710.0 1684.0 1736.0 1780.0 1479.0 2430.0 3126.0 3395.0 1053.0 1575.0 579.3 Wet Wt. (mg) 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6398 6400 6401 6402 Image ID APPENDIX F 898 899 900 901 902 903 904 905 906 Cnt 3 3 3 3 9 2 2 8 2 15 16 17 18 23 01 06 06 04 B B B B B B B B B 3053 3054 3055 3056 3057 3058 3059 3060 4001 x x x x Num Juv. Specimen Vial ID Site Mod Num Pre 14-Oct-2010 1083 14-Oct-2010 1083 14-Oct-2010 1083 14-Oct-2010 1083 14-Oct-2010 1083 07-Oct-2010 1388 24-Sep-2010 AT02 24-Sep-2010 AT01 24-Sep-2010 1018 Date Worm ID Metroparks Field Study: Earthworm Raw Data Species Aporrectodea spp Aporrectodea spp Aporrectodea spp Lumbricus terrestris Aporrectodea longa Lumbricus spp Lumbricus terrestris Lumbricus rubellus Amynthas spp Genus Identification 61.509 65.698 73.076 131.642 63.064 74.400 97.642 56.602 101.054 61.528 65.639 73.124 131.565 63.173 74.427 97.496 56.778 101.350 3.387 75 0.1 247.1 min avg 32.171 200 Wet Wt. (mg) 444.1 635.4 750.6 2260.0 444.8 992.8 468.0 1803.0 2559.0 3395.0 61.503 65.680 73.046 131.637 63.096 74.367 97.659 56.686 101.180 131.637 mean Img. Mag. (%)** 150 150 150 75 150 100 100 100 100 800 61.471 65.703 72.939 131.704 63.052 74.274 97.840 56.679 101.135 max samp 1 samp 2 samp 3 Length (mm) 6403 6404 6405 6406 6407 6408 6409 6410 6423 Image ID APPENDIX F 122 APPENDIX G1 Metroparks Field Study: Plot Profile, by Earthworm Species 1002 1003 1004 1005 1006 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1021 1022 1024 1025 1025 1026 1028 1029 1030 1031 1033 1034 1035 1038 1039 1040 1041 1044 1045 1047 1048 1050 1051 1053 1054 1055 1058 1060 1063 1064 1067 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 19 1 1 1 2 1 2 1 1 4 9 1 3 3 1 2 1 2 1 1 2 2 9 1 1 6 1 2 16 4 1 1 6 1 1 1 1 5 1 5 1 4 2 1 4 7 9 7 5 14 6 2 1 3 2 1 0 1 1 0 20 2 1 2 0 1 3 1 4 0 9 1 0 3 6 0 1 0 2 1 0 1 4 0 9 2 9 16 4 1 1 7 3 0 5 7 11 7 16 13 15 123 6 1 1 3 6 1 2 8 1 6 1 27 1 4 3 2 2 2 1 1 2 11 2 2 1 12 1 12 24 4 1 3 3 7 2 21 9 2 1 4 1 1 2 3 1 1 2 14 1 4 1 1 3 12 2 5 4 24 6 1 2 7 2 1 32 1 1 24 1 18 35 28 4 17 2 SUBTOTAL Lumbricus rubellus Lumbricus terrestris Octolasion spp. Octolasion cyaneum Octolasion tyrtaeum Amynthas spp. Lumbricus spp. Aporrectodea calignosa Aporrectodea longa Aporrectodea rosea Dendrobaena octaedra Dendrodrilus rubidus Eisenia fetida Aporrectodea spp. SUBTOTAL Juveniles By Species Dendrodrilus rubidus Eisenia fetida Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasion spp. Octolasion cyaneum Octolasion tyrtaeum Amynthas spp. Sampling Instance Aporrectodea spp. Aporrectodea calignosa Aporrectodea longa Aporrectodea rosea Dendrobaena octaedra Site ID Adults By Species 6 2 0 10 0 11 0 1 34 4 3 0 17 27 6 2 4 1 10 13 25 14 2 3 17 0 2 1 19 1 0 3 22 27 5 0 0 0 10 2 0 0 33 21 1 52 4 52 1068 1 1070 1 1071 1 1072 1 1072 2 1074 1 1083 1 1136 1 1376 1 1388 1 3420 1 3484 1 3596 1 3668 1 3732 1 AT01 1 AT02 1 Total 1 1 5 1 2 1 1 3 1 0 32 1 1 24 14 1 1 1 0 28 19 1 5 124 SUBTOTAL Lumbricus rubellus Lumbricus terrestris Octolasion spp. Octolasion cyaneum Octolasion tyrtaeum Amynthas spp. Lumbricus spp. Adults By Species Aporrectodea calignosa Aporrectodea longa Aporrectodea rosea Dendrobaena octaedra Dendrodrilus rubidus Eisenia fetida Aporrectodea spp. SUBTOTAL Dendrodrilus rubidus Eisenia fetida Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasion spp. Octolasion cyaneum Octolasion tyrtaeum Amynthas spp. Sampling Instance Aporrectodea spp. Aporrectodea calignosa Aporrectodea longa Aporrectodea rosea Dendrobaena octaedra Site ID Metroparks Field Study: Plot Profile, by Earthworm Species Juveniles By Species 5 9 1 10 2 0 1 1 0 1 1 1 5 2 2 0 0 4 45 23 1 69 0 0 0 0 1 2 6 1 9 0 5 5 0 0 0 3 3 2 2 39 17 56 0 0 4 2 1 3 2 2 2 4 0 2 19 82 223 285 0 0 0 9 0 0 306 0 0 29 0 0 0 629 Metroparks Field Study: Earthworm Site Profiles, By Species 1 1 3 6 1 1 2 1 1 6 5 2 2 2 2 1 1 2 11 2 2 3 8 1 27 1 1 19 1 1 3 12 1 3 24 2 4 1 1 3 1 1 1 4 9 7 1 2 21 3 9 2 1 4 1 1 12 1 2 3 2 1 1 1 2 2 1 1 4 1 2 14 3 12 2 5 1 1 2 9 1 6 1 4 24 2 6 1 1 16 4 1 2 1 6 1 7 1 1 2 1 1 5 32 1 1 5 1 24 9 1 1 4 18 2 2 7 5 35 14 1 4 28 7 4 6 17 1 2 Species Richness (by species) 6 1 2 1 1 1 TOTAL Lumbricus rubellus Lumbricus terrestris Octolasion spp. Octolasion cyaneum Octolasion tyrtaeum Amynthas spp. Lumbricus spp. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Aporrectodea calignosa Aporrectodea longa Aporrectodea rosea Dendrobaena octaedra Dendrodrilus rubidus Eisenia fetida Sampling Instance 1002 1003 1004 1005 1006 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1021 1022 1024 1025 1025 1026 1028 1029 1030 1031 1033 1034 1035 1038 1039 1040 1041 1044 1045 1047 1048 1050 1051 1053 1054 1055 1058 1060 1063 1064 1067 Aporrectodea spp. Site ID All By Species 9 4 1 10 1 12 0 21 36 5 5 0 18 30 7 6 4 10 11 13 28 20 2 4 17 2 3 1 20 5 0 12 24 36 21 4 1 1 17 5 0 5 40 32 8 68 17 67 2 2 1 3 1 4 0 3 3 1 2 0 3 4 2 3 2 2 3 2 3 4 1 3 3 1 2 1 3 2 0 2 4 5 2 1 1 1 4 3 0 1 4 3 2 2 3 2 125 TOTAL Lumbricus rubellus Lumbricus terrestris Octolasion spp. Octolasion cyaneum Octolasion tyrtaeum Amynthas spp. Lumbricus spp. Aporrectodea calignosa Aporrectodea longa Aporrectodea rosea Dendrobaena octaedra Dendrodrilus rubidus Eisenia fetida Sampling Instance Aporrectodea spp. Site ID All By Species 1068 1 9 1 5 15 1070 1 1 1 2 1071 1 1 1 1072 1 1 1 2 1072 2 5 2 7 1074 1 0 1083 1 45 1 23 2 1 1 73 1136 1 0 1376 1 0 1388 1 2 1 6 1 10 3420 1 5 5 3484 1 0 3596 1 3 3 3668 1 39 17 2 58 3732 1 0 AT01 1 5 1 1 7 AT02 1 3 2 1 6 Total 285 32 1 1 33 14 1 306 28 19 29 2 19 82 852 126 Species Richness (by species) Metroparks Field Study: Earthworm Site Profiles, By Species 3 2 1 2 2 0 4 0 0 3 1 0 1 3 0 2 2 APPENDIX G2 1 1 1 1 19 1 1 1 2 1 2 1 1 4 9 1 3 3 1 2 1 2 1 2 1 2 9 1 1 6 1 2 16 4 1 1 6 1 1 2 5 1 5 5 2 9 7 1 4 7 3 2 1 0 1 1 0 20 2 1 2 0 1 3 1 4 0 9 1 0 3 6 0 1 0 2 1 0 1 4 0 9 2 9 16 4 1 1 7 3 0 5 7 11 7 16 6 1 1 3 6 1 2 8 1 6 1 27 1 4 3 2 2 1 2 1 1 2 11 2 2 1 12 12 3 24 4 1 3 1 7 2 21 9 2 1 4 1 2 3 1 1 2 14 1 4 1 1 3 12 2 5 4 6 24 1 2 7 1 2 32 1 1 24 1 18 2 28 127 6 11 0 10 0 11 0 1 34 4 3 0 17 45 6 2 4 1 10 13 25 14 2 3 17 0 2 1 19 10 0 3 22 27 5 0 0 0 10 2 0 0 42 30 1 52 9 11 2 1 3 2 1 1 6 5 2 1 19 28 2 3 2 2 1 2 1 13 3 26 1 5 1 4 3 1 9 8 1 2 24 2 9 5 2 1 2 4 1 2 1 2 11 2 5 1 1 12 2 6 1 1 8 1 1 14 1 4 2 12 2 3 12 1 2 6 1 5 4 7 26 1 9 16 4 1 1 2 6 1 8 1 4 5 33 15 1 33 15 1 2 6 7 35 TOTAL Octolasion Amynthas Lumbricus Dendrobaena Dendrodrilus Eisenia Aporrectodea All by Genus SUBTOTAL Octolasion Amynthas Lumbricus Dendrobaena Dendrodrilus Eisenia Aporrectodea 1 SUBTOTAL 3 1 Juveniles by Genus Amynthas Dendrobaena Octolasion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Dendrodrilus Eisenia Lumbricus 1002 1003 1004 1005 1006 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1021 1022 1024 1025 1025 1026 1028 1029 1030 1031 1033 1034 1035 1038 1039 1040 1041 1044 1045 1047 1048 1050 1051 1053 1054 1055 1058 1060 1063 Sampling Instance Aporrectodea Site ID Adults by Genus 9 13 1 10 1 12 0 21 36 5 5 0 18 48 7 6 4 10 11 13 28 20 2 4 17 2 3 1 20 14 0 12 24 36 21 4 1 1 17 5 0 5 49 41 8 68 Species Richness (by Genus) Metroparks Field Study: Plot Profile, by Earthworm Genus 1 2 1 3 1 4 3 3 1 2 3 4 2 3 2 2 3 2 3 4 1 3 3 1 2 1 3 2 2 4 5 2 1 1 1 4 2 1 3 3 2 2 4 17 1 128 5 1 1 5 5 3 33 1 18 1 2 TOTAL Octolasion Amynthas 4 52 49 10 9 0 0 1 1 2 2 0 45 23 1 69 46 0 0 2 6 1 9 3 5 5 5 0 3 3 3 39 17 56 39 0 2 1 3 2 2 4 312 9 0 0 333 29 0 683 346 35 9 Dendrobaena Dendrodrilus Eisenia Aporrectodea SUBTOTAL Octolasion Amynthas Lumbricus Dendrobaena Dendrodrilus Eisenia All by Genus Lumbricus 1064 1 5 6 2 13 1067 1 14 1 15 1068 1 5 5 1070 1 1 1 2 1071 1 1 1 1072 1 1 1 1072 2 5 5 1074 1 0 1083 1 1 3 4 1136 1 0 1376 1 0 1388 1 1 1 3420 1 0 3484 1 0 3596 1 0 3668 1 2 2 3732 1 0 AT01 1 3 1 4 AT02 1 1 1 2 Total 34 24 14 1 47 21 82 223 Aporrectodea Juveniles by Genus SUBTOTAL Amynthas Octolasion Dendrodrilus Eisenia Lumbricus Dendrobaena Sampling Instance Aporrectodea Site ID Adults by Genus 17 67 5 15 1 2 1 1 1 2 2 7 0 26 1 73 0 0 6 1 10 5 0 3 17 2 58 0 2 7 3 6 14 1 380 50 82 906 Species Richness (by Genus) Metroparks Field Study: Plot Profile, by Earthworm Genus 3 2 3 2 1 2 2 3 3 1 1 3 2 2 APPENDIX H 2 2 1 2 2 2 2 2 n/a 2 1 1 2 n/a 2 2 2 2 2 1 2 2 2 2 2 4 n/a n/a 1 2 2 2 n/a 2 n/a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 9 1 n/a 1 n/a 1 20-Sep-2010 20-Sep-2010 22-Sep-2010 20-Sep-2010 20-Sep-2010 21-Sep-2010 20-Sep-2010 20-Sep-2010 22-Sep-2010 22-Sep-2010 21-Sep-2010 21-Sep-2010 23-Sep-2010 2-Oct-2010 22-Sep-2010 24-Sep-2010 21-Sep-2010 24-Sep-2010 20-Sep-2010 21-Sep-2010 23-Sep-2010 12-Oct-2010 21-Sep-2010 22-Sep-2010 23-Sep-2010 21-Sep-2010 22-Sep-2010 22-Sep-2010 24-Sep-2010 21-Sep-2010 24-Sep-2010 20-Sep-2010 22-Sep-2010 23-Sep-2010 30-Sep-2010 23-Sep-2010 22-Sep-2010 13-Oct-2010 5-Oct-2010 5-Oct-2010 24-Sep-2010 5-Oct-2010 15-Oct-2010 5-Oct-2010 30-Sep-2010 13-Oct-2010 Weight (g) Wet Dry Total Sample 54.57 45.48 34.89 34.89 57.80 57.80 42.93 42.93 269.04 186.31 55.60 55.60 84.39 84.39 131.28 100.69 n/a n/a 165.87 99.40 30.53 30.53 84.35 84.35 93.98 93.98 88.98 88.98 73.65 73.65 51.68 51.68 30.63 30.63 38.86 38.86 72.89 42.14 247.00 69.12 54.92 54.92 92.17 70.00 164.08 71.76 72.45 72.45 58.49 58.49 14.09 14.09 170.42 88.94 88.10 88.10 51.31 51.31 50.13 50.13 146.57 75.58 59.55 59.55 77.93 77.93 147.65 78.04 22.18 22.18 n/a n/a 91.26 91.26 149.80 70.83 393.54 393.54 128.88 128.88 48.94 48.94 41.01 41.01 112.89 112.89 211.78 211.78 228.38 228.38 n/a n/a Total Sample 45.57 37.98 22.96 22.96 25.56 25.56 34.25 34.25 114.41 79.23 31.57 31.57 55.76 55.76 80.80 61.97 n/a n/a 74.76 44.80 27.24 27.24 52.68 52.68 36.97 36.97 33.70 33.70 62.98 62.98 36.56 36.56 27.96 27.96 25.36 25.36 56.92 32.91 170.49 47.71 25.99 25.99 61.02 46.34 127.98 55.97 35.36 35.36 23.93 23.93 11.12 11.12 88.97 46.43 42.90 42.90 36.15 36.15 36.04 36.04 105.19 54.24 36.46 36.46 49.38 49.38 81.34 42.99 9.59 9.59 n/a n/a 43.02 43.02 86.46 40.88 118.42 118.42 37.78 37.78 39.06 39.06 11.84 11.84 46.52 46.52 57.07 57.07 86.52 86.52 n/a n/a 129 Moisture Collection Date 1002 1003 1004 1005 1006 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1021 1022 1024 1025 1025 1026 1028 1029 1030 1031 1033 1034 1035 1038 1039 1040 1041 1044 1045 1047 1048 1050 1051 1053 1054 1055 1058 1060 1063 Samp. Inst. Site ID 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 Module Cnt Metroparks Field Study: Litter Data 16.49% 34.19% 55.78% 20.22% 57.47% 43.22% 33.93% 38.45% n/a 54.93% 10.78% 37.55% 60.66% 62.13% 14.49% 29.26% 8.72% 34.74% 21.90% 30.98% 52.68% 33.80% 22.00% 51.19% 59.09% 21.08% 47.80% 51.31% 29.55% 28.11% 28.23% 38.77% 36.64% 44.91% 56.76% n/a 52.86% 42.28% 69.91% 70.69% 20.19% 71.13% 58.79% 73.05% 62.12% n/a 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 1064 n/a 1 1067 n/a 1 1068 2 1 1070 2 1 1071 2 1 1072 2 1 1072 2 2 1074 1 1 1083 2 1 1136 2 1 1376 9 1 1388 2 1 3420 1 1 3484 2 1 3596 2 1 3668 2 1 3732 1 1 AT01 8 1 AT02 n/a 1 13-Oct-2010 15-Oct-2010 13-Oct-2010 14-Oct-2010 14-Oct-2010 21-Sep-2010 7-Oct-2010 14-Oct-2010 14-Oct-2010 12-Oct-2010 7-Oct-2010 7-Oct-2010 7-Oct-2010 7-Oct-2010 7-Oct-2010 7-Oct-2010 7-Oct-2010 24-Sep-2010 24-Sep-2010 Weight (g) Wet Dry Total Sample n/a n/a 274.81 197.02 69.64 69.64 155.11 155.11 78.97 78.97 46.06 46.06 173.21 173.21 10.99 10.99 111.23 111.23 131.19 131.19 196.68 196.68 202.77 202.77 190.61 190.61 241.53 96.15 190.12 190.12 41.46 41.46 69.30 69.30 99.02 57.40 n/a n/a Total Sample n/a n/a 54.25 38.89 55.02 55.02 52.13 52.13 24.33 24.33 40.57 40.57 74.74 74.74 5.21 5.21 50.00 50.00 96.46 96.46 90.48 90.48 102.25 102.25 82.36 82.36 101.71 40.49 72.56 72.56 22.15 22.15 29.79 29.79 93.09 53.96 n/a n/a 130 Moisture Collection Date Samp. Inst. Module Site ID Cnt Metroparks Field Study: Litter Data n/a 80.26% 20.99% 66.39% 69.19% 11.92% 56.85% 52.59% 55.05% 26.47% 54.00% 49.57% 56.79% 57.89% 61.83% 46.58% 57.01% 5.99% n/a APPENDIX I Earthworm Community - Plant Community Interactions The following are Pearson correlations that yielded relationships of interest. Abundances and biomasses are natural log transformed; FQAI, percent sensitive plants, tolerant plants, and bare ground are arcsine-square root transformed. a) Earthworm Abundance vs. Plant Community Metrics. Sensitive Plants Tolerant Bare (%) Plants (%) Ground (%) FQAI -2 (m ) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas N=54 r -0.29 -0.02 -0.18 0.14 -0.24 0.01 0.13 P 0.03 0.92 0.20 0.30 0.09 0.95 0.37 r -0.37 0.18 0.10 0.07 -0.06 -0.22 -0.09 P 0.01 0.20 0.47 0.59 0.65 0.11 0.53 r 0.25 -0.14 -0.09 -0.09 0.19 0.19 -0.16 P r P 0.07 0.21 0.13 0.32 -0.10 0.47 0.51 0.12 0.37 0.54 0.05 0.75 0.17 0.12 0.39 0.18 0.29 0.03 0.25 0.17 0.23 b) Earthworm Biomass by Genus vs. Plant Community Metrics. FQAI -2 (m ) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas N=54 r -0.30 -0.04 0.17 0.14 -0.28 0.03 0.14 Sensitive Plants P 0.02 0.80 0.23 0.30 0.04 0.82 0.30 r -0.40 0.21 0.09 0.07 0.02 -0.12 -0.06 P 0.003 0.13 0.51 0.59 0.86 0.38 0.67 Tolerant r 0.30 -0.17 -0.07 -0.09 0.21 0.23 -0.17 Bare P r P 0.03 0.22 0.11 0.23 -0.12 0.38 0.61 0.21 0.12 0.54 0.05 0.75 0.14 0.06 0.69 0.09 0.17 0.24 0.22 -0.18 0.21 c) Earthworm Biomass by Ecological Group vs. Plant Community Metrics. FQAI -2 (mg/m ) Epigeic Endogeic Anecic N=54 r P -0.31 0.02 -0.26 0.06 0.14 0.30 Sensitive Plants r P -0.26 0.06 0.04 0.77 -0.06 0.67 131 Tolerant Bare r P r P 0.18 0.18 0.18 0.21 0.18 0.19 0.11 0.44 -0.17 0.22 -0.18 0.21 APPENDIX J Earthworm Community - Invertebrate Community / Litter Interactions The following are Pearson correlations that yielded relationships of interest. Abundances and biomasses are natural log transformed. Evenness is arcsine-square root transformed. a1) Earthworm Abundance vs. Invertebrate Community Metrics. Abundance (m-2) -2 (m ) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas ALL Genera N=58 r -0.08 -0.07 0.17 0.11 -0.14 -0.16 0.11 -0.13 P 0.55 0.59 0.21 0.44 0.33 0.25 0.42 0.33 Evenness r -0.19 0.04 0.03 0.06 0.07 0.10 -0.05 -0.02 P 0.17 0.79 0.86 0.66 0.63 0.46 0.70 0.86 Dry Litter Mass (mg/m2) r -0.09 0.30 -0.03 -0.05 0.001 -0.05 -0.003 0.02 P 0.53 0.03 0.84 0.72 0.99 0.74 0.98 0.88 a2) Earthworm Abundance vs. Invertebrate Community Metrics. Araneae (m-2) (m-2) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas ALL Genera N=58 r -0.21 0.10 -0.01 -0.14 -0.09 -0.19 0.04 -0.13 P 0.14 0.47 0.94 0.33 0.53 0.18 0.80 0.34 Acari (m-2) r -0.03 -0.15 0.11 0.03 -0.15 -0.14 0.06 -0.15 P 0.81 0.29 0.44 0.83 0.27 0.31 0.68 0.27 Collembola (m-2) r 0.04 -0.05 0.19 0.16 -0.02 -0.12 0.16 0.05 132 P 0.77 0.73 0.16 0.25 0.91 0.39 0.26 0.70 Coleoptera (m-2) r 0.05 -0.003 -0.12 -0.21 -0.05 0.03 -0.08 -0.02 P 0.74 0.99 0.37 0.12 0.73 0.86 0.59 0.91 Hymenoptera (m-2) r P 0.00 0.99 -0.19 0.17 0.44 0.001 0.34 0.01 0.23 0.10 0.08 0.55 0.05 0.73 0.16 0.24 Earthworm Community - Invertebrate Community / Litter Interactions b1) Earthworm Biomass by Genus vs. Invertebrate Community Metrics. Abundance (m-2) -2 (m ) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas ALL Genera N=58 r 0.06 0.08 0.20 0.13 -0.01 -0.08 0.07 0.09 P 0.67 0.55 0.13 0.33 0.94 0.54 0.59 0.51 Evenness r 0.13 0.01 -0.11 0.03 0.20 0.16 0.10 0.27 P 0.340 0.92 0.41 0.85 0.14 0.23 0.450 0.04 Dry Litter Mass (mg/m2) r -0.04 0.18 0.11 0.11 0.06 -0.26 -0.25 -0.17 P 0.76 0.19 0.41 0.43 0.67 0.05 0.05 0.19 b2) Earthworm Biomass by Genus vs. Invertebrate Community Metrics. Araneae (m-2) (m-2) r P Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus -0.004 0.18 0.17 0.21 -0.06 0.98 0.18 0.22 0.11 0.63 Acari (m-2) r 0.08 0.09 0.21 0.01 0.03 Collembola (m-2) P 0.53 0.51 0.12 0.47 0.80 r -0.01 0.04 0.03 0.11 -0.07 P Coleoptera (m-2) r P Hymenoptera (m-2) r P 0.94 0.77 0.83 0.42 0.60 0.19 0.08 0.25 0.17 0.26 0.16 0.57 0.06 0.20 0.05 -0.02 -0.03 0.25 0.31 -0.03 0.87 0.82 0.06 0.02 0.84 Octolasion -0.04 0.78 -0.04 0.79 -0.05 0.69 0.21 0.12 -0.17 0.20 Amynthas ALL Genera N=58 0.01 0.94 -0.001 0.99 -0.05 0.70 0.06 0.68 0.26 0.05 0.09 0.50 -0.15 0.21 0.26 0.11 0.19 0.11 0.16 0.44 133 Earthworm Community - Invertebrate Community / Litter Interactions c1) Earthworm Biomass by Ecological Group vs. Invertebrate Community Metrics. Abundance (m-2) -2 (AFDM mg/m ) Epigeic Endogeic Anecic N=58 r P 0.10 0.44 -0.02 0.91 0.07 0.59 Evenness Dry Litter Mass (mg/m2) r P 0.13 0.34 0.19 0.15 0.10 0.45 r P 0.04 0.75 0.003 0.98 -0.25 0.05 c2) Earthworm Biomass by Ecological Group vs. Invertebrate Community Metrics. Araneae (m-2) (AFDM mg/m-2) Epigeic Endogeic Anecic N=58 r P 0.07 0.59 -0.06 0.64 0.01 0.94 Acari (m-2) Collembola (m-2) Coleoptera (m-2) r P 0.14 0.31 0.05 0.72 -0.05 0.70 r P -0.001 0.99 -0.01 0.48 0.26 0.05 r 0.23 0.31 -0.15 d) Invertebrate Abundance (m-2) vs. Dry Litter Mass (g/m2) (r=0.39, P=0.002) 134 P 0.09 0.02 0.26 Hymenoptera (m-2) r 0.04 -0.05 0.19 P 0.79 0.74 0.16 APPENDIX K Earthworm Community - Earthworm Community Interactions The following are Pearson correlations that yielded relationships of interest. Abundances and biomasses are natural log transformed. a) Earthworm Interactions for Abundance by Genus. Aporrectodea Dendrobaena -2 (m ) (m-2) r Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas Dendrodrilus -2 (m ) P r -0.25 0.06 -0.10 0.46 -0.12 0.01 0.97 -0.06 0.52 <0.001 0.003 0.36 0.01 -0.15 -0.15 0.29 -0.22 Eisenia -2 -2 (m ) P 0.38 0.66 0.98 0.29 0.11 r (m ) P 0.68* <0.001 0.19 0.18 -0.07 0.60 0.09 0.50 (m- Lumbricus 2 ) Octolasion (m-2) r P r P r P 0.21 0.04 -0.07 0.13 0.76 0.63 0.48 -0.47 <0.001 <0.001 -0.37 0.01 N=54 * This is an artifact of the statistical program: it is not possible to produce a correlation with a single data point (Eisenia, N=1). b) Earthworm Interactions for Biomass by Genus. Aporrect. 2 (AFDM mg/m ) Dendrob. (AFDM mg/m2) (AFDM mg/m2) r P r P Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas -0.22 -0.12 -0.01 0.46 0.30 -0.19 0.11 0.38 0.95 0.001 0.03 0.16 -0.14 -0.06 0.170 -0.13 -0.24 0.33 0.66 0.23 0.35 0.09 Eisenia (AFDM Dendrodrilus 2 (AFDM mg/m ) r mg/m2) P 0.49* <0.001 0.03 0.86 -0.16 0.25 0.11 0.43 Lumbricus 2 (AFDM mg/m ) Octolasion (AFDM mg/m2) r P r P r P 0.09 -0.13 -0.07 0.51 0.37 0.61 0.35 -0.56 0.01 <0.001 -0.41 0.002 N=54 * This is an artifact of the statistical program: it is not possible to produce a correlation with a single data point (Eisenia, N=1). c) Earthworm InteractionsEpigeic for Biomass by Ecological Group. Endogeic (AFDM mg/m2) Epigeic Endogeic Anecic N=54 (AFDM mg/m2) (AFDM mg/m2) r r P P 0.48 <0.001 -0.24 0.08 -0.64 <0.001 d) T-tests between Plots with and without Dendrobaena by Abundance. Other Genera N= P 0.16 0.05 0.82 0.90 <0.001 Dendrobaena Genus* Aporrectodea Dendrodrilus Lumbricus Octolasion Amynthas 12 42 *Eisenia (N=1) excluded from analysis due to insufficient representation. 135 APPENDIX L Earthworm Community - Soil Community Interactions The following are Pearson correlations that yielded relationships of interest. Biomasses and ppm quantities are natural log transformed. Percentages are arcsine-square root transformed. a1) Earthworm Biomass by Genus vs. Soil Parameters 1. Total Total Carbon (%) Nitrogen (%) -2 (m ) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas N=54 r 0.23 0.34 0.07 0.05 -0.27 -0.15 -0.06 P 0.09 0.01 0.64 0.71 0.05 0.27 0.69 r -0.33 0.26 0.14 0.08 -0.41 -0.17 0.09 P 0.01 0.06 0.32 0.56 0.002 0.21 0.53 Organic Matter (%) r -0.23 0.35 0.02 0.02 -0.11 -0.13 -0.13 P 0.09 0.01 0.87 0.86 0.42 0.36 0.36 pH r 0.17 -0.42 -0.10 0.12 -0.20 0.09 0.13 P 0.22 0.002 0.49 0.41 0.15 0.52 0.36 a2) Earthworm Biomass by Genus vs. Soil Parameters 2. Phosphorus, Phosphorus, P1 (ppm) P2 (ppm) (m-2) Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas N=54 r -0.24 -0.01 -0.12 -0.09 -0.27 -0.19 0.17 P 0.09 0.97 0.38 0.50 0.05 0.18 0.23 r 0.06 -0.09 -0.05 0.06 -0.17 -0.06 0.13 P 0.68 0.52 0.72 0.67 0.23 0.65 0.36 136 Potassium (ppm) Magnesium (ppm) Calcium (ppm) r -0.04 -0.09 -0.13 0.01 -0.15 0.09 -0.11 r 0.05 -0.36 -0.05 0.14 -0.26 0.13 0.15 P 0.75 0.54 0.36 0.95 0.28 0.53 0.44 P 0.71 0.01 0.75 0.31 0.06 0.35 0.27 r 0.03 -0.44 -0.001 0.16 -0.35 0.08 0.26 P 0.83 0.001 0.99 0.25 0.01 0.59 0.05 Earthworm Community - Soil Community Interactions b1) Earthworm Biomass by Ecological Group vs. Soil Parameters 1. Total Total Carbon (%) Nitrogen (%) -2 (m ) r Epigeic Endogeic Anecic N=54 P -0.34 0.01 -0.20 0.15 -0.16 0.25 r P -0.36 0.01 -0.28 0.04 -0.19 0.18 Organic Matter (%) r P -0.24 0.08 -0.21 0.13 -0.14 0.30 pH r P -0.05 0.71 0.16 0.26 -0.14 0.33 b2) Earthworm Biomass by Ecological Group vs. Soil Parameters 2. Phosphorus, Phosphorus, P1 (ppm) P2 (ppm) (m-2) r Epigeic Endogeic Anecic N=54 P -0.18 0.21 -0.27 0.05 -0.06 0.69 r P -0.04 0.78 -0.05 0.73 -0.13 0.36 Potassium (ppm) r P -0.23 0.10 -0.04 0.76 -0.05 0.70 Magnesium (ppm) Calcium (ppm) r P -0.08 0.59 0.10 0.50 -0.16 0.24 r P -0.10 0.50 0.06 0.67 0.21 0.13 No Earthworms Amynthas Other Genera N= Earthworms c) Soil Chemistry Comparisons between: Pa, plots with and without earthworms and Pb, plots with Amynthas and plot with earthworms other than Amynthas. Pa Pb 0.40 0.54 Total Carbon (%) 0.89 0.67 d) T-test between Plots with Dendrobaena Total Nitrogen (%) 0.08 0.51 and those with Other Genera by Soil pH. Organic Matter (%) 0.17 0.58 P < 0.001 pH Phosphorus, 0.98 0.19 Bray-P1 (ppm) Phosphorus, 0.92 0.77 Bray-P2 (ppm) 0.10 0.25 Calcium (ppm) 0.01 0.45 Magnesium (ppm) 0.92 0.73 Potassium (ppm) 54 9 12 42 137 Metroparks Field Study: Invertebrate Raw Data subclass order genus 5 4 2 7 1 5 1 3 1 12 4 12 6 78 74 27 65 4 7 4 2 2 1 1 1 3 1 7 4 5 4 1 1 2 4 1 1 3 2 1 1005 005 1006 006 1008 007 1009 008 1010 24 1 1 1 15 7 12 88 183 1 2 3 004 1 1 1004 1 003 1 1003 57 132 5 1 9 39 65 15 47 32 4 2 2 1 1002 002 Total Total Types Count Site ID 1 001 APPENDIX M 138 family Unidentified winged pupa malacostraca eumalacostraca isopoda sow bugs insecta psocoptera barklouse insecta hymenoptera tenthredinidae saw fly insecta hymenoptera formicidae ant insecta hymenoptera wasp insecta hymenoptera wasp/bee/ant 1 insecta hemiptera tingidae lace bug insecta hemiptera true bug 1 insecta hemiptera locust-form insecta hemiptera nymph insecta hemiptera true bug 2 insecta diptera fly larva insecta diptera chironomidae chironomid larva insecta diptera adult midge insecta diptera midge 1 insecta pterygota thysanoptera thrips insecta pterygota lepidoptera moth 2 insecta pterygota lepidoptera moth larva insecta pterygota lepidoptera catepillar insecta pterygota lepidoptera moth 1 insecta pterygota coleoptera staphylinidae rove beetle insecta pterygota coleoptera nitulidae sap beetle insecta pterygota coleoptera elateridae click beetle insecta pterygota coleoptera derodontidae fungus beetle insecta pterygota coleoptera wevil insecta pterygota coleoptera scaraboid beetle insecta pterygota coleoptera beetle larva insecta pterygota coleoptera beetle 1 insecta dermaptera earwig gastropoda shelled snail entognatha collembola sminthuridae globular springtail entognatha collembola snowflea springtail entognatha collembola springtail entognatha diplura campodea diplurans diplopoda millipede clitellata worm chilopoda lithobiomorpha stone centipede chilopoda geophilomorpha soil centipede arachnida dromopoda pseudoscorpiones pseudoscorpion arachnida dromopoda opilliones harvestmen arachnida acari oribatid mite arachnida acari gamasid mite arachnida acari mite arachnida araneae spider class Metroparks Field Study: Invertebrate Raw Data Total 2 1 5 1 1 2 5 3 4 1 14 1 14 1 1 5 1 18 46 12 2 2 9 1 13 3 16 1 9 8 73 113 95 12 17 85 57 21 24 6 5 2 5 3 1 3 3 10 8 1 1 1 5 6 5 16 67 116 18 41 1 1 1 1 2 1 23 6 4 1 4 11 3 1 3 1 1 1034 028 1035 029 1038 030 1039 031 1040 032 1041 033 1044 034 1047 035 1048 036 1050 1 1 8 5 8 2 1 37 20 82 66 29 1 2 2 1 2 3 1 11 11 10 2 2 2 1 1 3 3 17 2 5 6 1 1 2 1 5 2 1 3 6 1 1 1 4 5 2 3 1 1 2 4 027 14 6 1 1 1 4 4 1 2 3 2 1 3 1033 1 026 1 1031 1 025 1 1 1030 1 024 1 1029 1 1 15 12 44 30 16 18 26 1 1 1 1 1 3 1 10 1 3 2 2 1 2 1 1 1 1028 023 1 4 022 8 1 2 1026 1 021 1 1025 2 1024 020 69 12 8 019 11 44 9 3 1 1022 139 15 102 50 6 2 1021 018 2 2 017 2 2 1 25 5 1019 1 1 016 5 37 56 24 11 1 1 1018 2 3 2 1017 015 2 6 4 014 4 16 1016 4 8 013 2 38 24 1015 20 1 2 1 5 3 1014 012 1 011 2 1013 3 1012 010 2 009 2 Total Types 4 winged pupa sow bugs barklouse saw fly ant wasp wasp/bee/ant 1 lace bug true bug 1 locust-form nymph true bug 2 fly larva chironomid larva adult midge midge 1 thrips moth 2 moth larva catepillar moth 1 rove beetle sap beetle click beetle fungus beetle wevil scaraboid beetle beetle larva beetle 1 earwig shelled snail globular springtail snowflea springtail springtail diplurans millipede 1 worm stone centipede soil centipede 1 pseudoscorpion harvestmen oribatid mite 12 gamasid mite mite spider 1 Count Site ID Metroparks Field Study: Invertebrate Raw Data 6 7 1 7 1 1 1 1 2 18 4 5 5 2 3 1 24 8 18 9 2 7 1 3 1 1 9 13 36 1 6 7 6 1 2 1 19 1 21 3 2 2 15 1 4 2 10 048 1074 049 1083 050 1136 051 1376 052 1388 053 3420 5 11 054 3484 9 3 055 3596 056 3668 057 3732 058 AT01 1 1 1 6 9 9 93 128 161 13 39 16 181 36 46 220 3211 14 10 1 7 1 3 13 8 5 10 5 1 9 4 1 3 1 1 1 8 1 1 1 2 1 1 3 39 1 1 14 8 1 1 5 4 1 5 1 2 15 12 32 58 26 101 82 103 82 67 42 7 1 1072 1 1071 047 1 046 3 2 1070 Total Total Types 1 7 1 1 1 045 1 5 60 102 9 10 1068 1 7 8 044 1 48 32 15 8 1067 2 56 7 043 1 44 10 1060 1 37 5 042 1 5 1058 2 19 10 041 81 2 1 6 6 1055 3 2 3 1054 040 1 4 039 2 10 7 5 14 1 3 1 29 1 1 1 64 14 12 1 0 0 33 5 3 13 1 1 3 6 14 0 0 1 3 7 2 1 3 13 4 30 2 1 2 44 3 1 71 1 1 1 5 4 94 29 20 1 3 65 466 47 1 3 37 8 2 4 1 13 4 1 9 35 1 106 15 27 110 1727 38 12 14 13 300 8 68 1053 2 038 1 1051 3 037 140 TOTAL winged pupa sow bugs barklouse saw fly ant wasp wasp/bee/ant 1 lace bug true bug 1 locust-form nymph true bug 2 fly larva chironomid larva adult midge midge 1 thrips moth 2 moth larva catepillar moth 1 rove beetle sap beetle click beetle fungus beetle wevil scaraboid beetle beetle larva beetle 1 earwig shelled snail globular springtail snowflea springtail springtail diplurans millipede worm stone centipede soil centipede pseudoscorpion harvestmen oribatid mite gamasid mite mite spider Count Site ID Earthworm Identification Table In Study Setae Species Family Ecological Group Pigmentation Live color Pairing Location Aporrectodea calignosa Lumbricidae endogeic none pink nose or tail closely ventral Aporrectodea tuberculata Lumbricidae endogeic none pink nose or tail closely ventral Aporrectodea trapezoides Lumbricidae endogeic none pink nose or tail closely ventral x Aporrectodea longa Lumbricidae endogeic may have light head pigmentation closely ventral x Aporrectodea rosea Lumbricidae endogeic none very pink nose or tail closely ventral Allolobophora chlorotica Lumbricidae endogeic none distinct greenish closely ventral x Octolasion tyrtaeum Lumbricidae endogeic none grey, blue, or pink widely circumf. x Octolasion cyaneum Lumbricidae endogeic none widely circumf. x Dendrobaena octaedra Lumbricidae epigeic strongly: red to dark brown separate circumf. x Dendrodrilus rubidus Lumbricidae epigeic moderate: red to dark brown; less on tail widely circumf. x Lumbricus terrestris Lumbricidae anecic strongly red-brown back; pale yellow, purple irrid belly closely ventral x Lumbricus rubellus Lumbricidae epi-endogeic strongly red-brown back; pale yellow, purple irrid belly closely ventral x Eisenia fetida Lumbricidae epigeic strongly red on back closely ventral Eiseniella tetraedra Lumbricidae epigeic strongly dark brown back; golden yellow belly closely ventral Eiseniella eiseni Lumbricidae epigeic closely ventral Amynthas spp. Megascolecidae epi-endogeic bristle circumf. x 141 x strongly red-brown on back; less on belly light or dark; no contrast between back & belly yellow bands between segments APPENDIX N Genus Earthworm Identification Table Segment Position x Octolasion tyrtaeum M T T T x Octolasion cyaneum M T T T x Dendrobaena octaedra m T T T x Dendrodrilus rubidus T t x Lumbricus terrestris m M m x Lumbricus rubellus m T x Eisenia fetida M G G G tG TG TG TG tG G Eiseniella tetraedra Eiseniella eiseni Amynthas spp. T t T T T TG T TG TG T T T T T T T T M smooth, annular T T G T TG TG TG T M T T … T T t T T T T T T T T M = Male Pore T = Tuberculata Pubertatis G = Genital Tumescence lowercase letters are used to indicate that the landmark may or may not pe present probable clitellum location bounded in bold 142 x G T TG T G M usually 37 T 36 M 35 chlorotica 33 Allolobophora very flared 32 rosea 31 Aporrectodea 30 x 29 T 28 m M m 27 longa 26 Aporrectodea 25 x 24 G 23 M 22 trapezoides 21 Aporrectodea 20 M 19 tuberculata 18 Aporrectodea 17 M 16 calignosa qualifier 15 Aporrectodea x Shape 14 Species 13 Genus 34 In Study Clitellum Earthworm Identification Table Length (cm) Range Genus Species Tuberculata Pubertatis Genital Tumescence Probocis Lo Hi Aporrectodea calignosa notched, adult alt seg only epilobic 09 15 Aporrectodea tuberculata notched, adult alt & cons segs epilobic 09 15 Aporrectodea trapezoides unnotched alt & cons segs epilobic 08 x Aporrectodea longa elliptical alt & cons segs epilobic x Aporrectodea rosea elliptical not pres Allolobophora chlorotica button or suckerlike discs x Octolasion tyrtaeum x Octolasion cyaneum x Dendrobaena octaedra x Dendrodrilus x Max In Study Clitellum Landmark Config Prevalence Common Name(s) most common & widely dist. endogeic A. calignosa complex 14 common & widely dist. endogeic Angle Worm, Canadian Gray Worm 09 15 common in agriculture; less common in forests Black Head Worm epilobic 02 05 less common than other species in genus Rose Worm maybe epilobic 03 07 less common than Aporrectodea & Octolasion Swamp Worm, Green Worm prefers wet or swampy conditions maybe epilobic 03 07 18 much less common than Aporrectodea; patchy Field Worm maybe epilobic 03 07 18 less common than O. tyrtaeum clitellum may be orange, red, or yellow clitellum is usually yellowish or beige linear, threadlike not pres epilobic 01 03 06 most common & widespread species in world Small Leaf Worm rubidus small ovals, ventral edge, if; 2930 not pres epilobic 02 05 09 much less common than D. octaedra Small Litter Worm Lumbricus terrestris broadly oval maybe tanylobic 09 15 30 very common in N. America Night Crawler flattened tail x Lumbricus rubellus broadly oval to slightly notched maybe tanylobic 05 10 15 extremely common Beaver Tail flattened tail x Eisenia fetida linear oval if present epilobic 03 13 not found in natural habitats Red Wriggler, Compost Worm Eiseniella tetraedra typically broad not usu pres epilobic 02 06 uncommon Small Brown-nosed Litter Worm Eiseniella eiseni not pres maybe epilobic 03 06 uncommon Brown Litter Worm Amynthas spp. not pres not pres 04 20 increasing Alabama Jumpers x 143 x linear, oval; contrasts clitellum puckered appear; contrasts 08 Comments nose and tail are more pointed
© Copyright 2026 Paperzz