NRC Publications Archive Archives des publications du CNRC

NRC Publications Archive
Archives des publications du CNRC
On the properties of adsorption caused by the "Thermal Disorder" on
the surface of a crystal
Volkenshtein, F. F.
For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.
Publisher’s version / Version de l'éditeur:
http://doi.org/10.4224/20331413
Translation (National Research Council of Canada), 1950-05-01
NRC Publications Record / Notice d'Archives des publications de CNRC:
http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=2ff87399-fa49-4539-916e-74ebcdaeb86a
http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=2ff87399-fa49-4539-916e-74ebcdaeb86a
Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.
L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site
http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
[email protected]. If you wish to email the authors directly, please see the
first page of the publication for their contact information.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à [email protected].
NATIONAL RESEARCH COUNCIL OF CANADA
TRANSLATION
TT-126
ON SOME P R O P E R T I E S OF ADSORPTION CAUSED B Y THE
"THERMAL DISORDERt' ON THE SURFACE OF A CRYSTAL
( 0 Nekotorykh Ocobennostyakh Adsorp t s i i Obyslovlennykh
"Teplovym Besporyadkon" na Poverkhnosti K r i s t a l a )
by
F. Fo Volkenshtein
Translated by
Eo Rabkin
OTTAWA
May,
1950
NATIONAL RESEAFtCB COUNCIL O F CANADA
O tt a w ,
TRANSLATION
Canada
TT-126
Titler
On Some Ppopeptie s of Adsorption Caused
by t h e wThermal Disorder" on t h e Surface
of a C r y s t a l
By:
F, F, Volkenshtein
Reference :
Zhurnal F i z i c h e s k o i Khimii, Vol, 23,
No. 8, 1949, p a 917, Akademiya Nauk,
U,S.S,R,
T r a n s l a t e d by:
E s t h e r Rabkin
Read by:
S, C , Liang
Zhurnal Fizicheskoi Khfmii Vol. 23, Noo 8 , 1949
Acadsiny of Scfancas, U,S,S,R,
ON SOW PROPERTIES OF ADSORPTION CAUSED BY THE
"THERMALDISORDlB'"ON
THE SURFACE OF A CRYSTAL
by
F. F. Volkenshtein
Translated by
Esther Rabkin
SUMMARY
The adsorption of gas molecules on t h e s u r f a c e of a
c r y s t a l when t h e number of adsorbed c e n t r e s v a r i e s with ternpera.ture has been analysed,
Adsorption c e n t r e s a r e t r e a t e d
a s d e f e c t s of t h e s u r f a c e , t h a t i s , a s l o c a l d i s t o r t i o n s i n
the p e r i o d i c s t r u c t u r e of t h e l a t t i c e .
The k i n e t i c s of adsorp-
t i o n a t defined c o n d i t i o n s a r e found t o be e x a c t l y t h e same
a s f o r t h e case of t h e so-called " a ~ t i v a t e d 'a~d s o r p t i o n , a l -
-
though t h e a c t i v a t i o n b a r r i e r i s absent.
therm of the type Q
An a d s o r p t i o n i s o -
p h a s been obtained.
The d i f f e r e n t i a l
h e a t of adsorption was found t o be a f u n c t i o n of the f i l l i n g
i n , although t h e s u r f a c e i s e n e r g e t i c a l l y homogeneous and t h e
r e a c t i o n s between t h e adsorbed molecules a r e ignored.
1,
Disorder I n s i d e a C r y s t a l
A r e a l c r y s t a l d i f f e r s from an i d e a l c r y s t a l by t h e
presence of d e f e c t s .
By t h e word Ibdefectthwe mean any d i s -
t o r t i o n i n the p e r i o d i c s t r u c t u r e of t h e l a t t i c e .
Among
d6f ec t s p r e s e n t i n a r e a l l a t t f ce, we must df s t i n g u f s h
between t h e macroscopic and microscopPc d e f e c t s ,
By macroscopic d e f e c t s we w f l l assume a d l s t o r t i o n over a r e g i o n , t h e dfmensfons of which ape c o n s i d e r a b l y
g r e a t e r t h a n the dimensfons of an i n d i v i d u a l c r y s t a l l i n e
nucleus.
Cracks, p a r t i c l e s of f o r e f gn substance and a l l
t y p e s of macsoacopfc embeddfngs a r e d e f e c t s of t h i s type,
The supfaces and r i b s of t h e c r y s t a l f t s e l f may b e looked
upon a s macroscopPc d e f e c t s which d i s t o r t t h e s t r i c t p e r i o d i c s t r u c t u r e of an i n f i n i t e i d e a l l a t t i c e ,
By mfcroscopic d e f e c t s we w f l l assume such a
d i s t o r t i o n whfch by f t s dimensf ons f s of t h e same o r d e r of
magnitude a s a n f n d f v i d u a l c r y s t a l l i n e n u c l e u s ,
Thus, f n
t h e case of a mfcroscopic d e f e c t , t h e p e r i o d i c s t r u c t u r e
of t h e c r y s t a l f s p r a c t f c a l l y r e - e s t a b l i s h e d a t a d i s t a n c e
of s e v e r a l l a t t f ce c o n s t a n t s ,
We w i l l n o t e t h e f o l l o w i n g t y p e s of mf croscopfc
d e f e c t s : ( 1 ) a h o l e praoduced by t h e disappearance of an
atom o r i o n from t h e i d e a l l a t t i c e ; (2) a n e u t r a l atom o r
i o n of the l a t t f c e l o c a t e d between t h e normal p o s i t i o n s ;
(3) an i o n I n a h e t e r o p o l a r l a t t i c e found i n a normal posf-
t i o n b u t c a r r y i n g an abnormal charge; ( 4 ) a f o r e i g n atom
l o c a t e d between t h e normal p o s i t i o n s ; ( 5 ) a f o r e i g n atom
l o c a t e d In t h e normal p o s f t i o n , t h a t I s , r e p l a c i n g a
n a t u r a l atom of t h e l a t t f ce,
Defects of t h e s e types a r e schematically shown i n
Figure 1. We must note t h a t each d e f e c t produces around
i t s e l f a c e r t a i n deformation of t h e l a t t i c e which i s n o t
shown i n t h e f i g u r e .
S t r i c t l y speaking, we should imagine
the t o t a l r e g i o n i n which t h e l a t t i c e i s deformed a s a
defectc
From now on we w i l l l i m i t o u r s e l v e s t o t h e a n a l y s i s
of micro-defects, ignoring t h e macroscopic d i s t o r t i o n s ,
We
w i l l thus d e a l w i t h an i d e a l i z e d p i c t u r e of a r e a l c r y s t a l .
We w i l l note t h a t , s t r i c t l y speaking, micro-defects
can n o t be considered a s being f i x e d i n s i d e a c r y s t a l :
possess d e f i n i t e m o b i l i t y ,
they
The m o b i l i t y of the d e f e c t s i s a
r e s u l t of t h e p e r i o d i c s t r u c t u r e of t h e l a t t i c e .
The d i s -
placement of a d e f e c t along t h e l a t t i c e demands some energy
of a c t i v a t i o n ; t h a t i s , i t i s connected with t h e overcoming
of p o t e n t i a l b a r r i e r s , t h e hei@;ht of which i s determined by
t h e n a t u r e of the d e f e c t , t h e s t r u c t u r e of t h e l a t t i c e and
t h e d i r e c t i o n of motion of t h e d e f e c t .
Another g e n e r a l p r o p e r t y of micro-daf e c t s i s t h e
presence of i n t e r a c t i o n s between them, which i s n o t i c e a b l e
when they approach each o t h e r .
each o t h e r .
D e f e c t s may a t t r a c t o r r e p u l s e
Thus, f o r example, i n a h e t e r o p o l a r l a t t i c e
constructed from i o n M+ and 'R
t h e empty m e t a l l i c p o s i t i o n s
r e p u l s e each o t h e r , b u t they a r e a t t r a c t e d t o t h e empty
m e t a l l o i d p o s i t i o n s or t o t h e m e t a l l i c i o n s between t h e
natural positions,
An e l e c t r o n i n such a l a t t i c e , which we
must imagine a s a n e u t r a l s t a t e of t h e i o n M+, i s a t t r a c t e d
t o t h e empty m e t a l l o i d p o s i t i o n and i s repulsed from an
empty m e t a l l i c p o s i t i o n (1).
When two o r s e v e r a l d e f e c t s a r e combined t o g e t h e r
a new d e f e c t , possessing d i f f e r e n t p r o p e r t i e s , i s formed.
Thus, f o r example, m e t a l l o i d and m e t a l l i c h o l e s joined toget h e r , o r an e l e c t r o n a t t r a c t e d by a m e t a l l o i d hole c o n s t i t u t e
formations of a d i f f e r e n t type, possessing p r o p e r t i e s d i f f e r e n t from t h e i r components analysed i n d i v i d u a l l y .
Thus, i n s i d e a r e a l c r y s t a l l i n e l a t t i c e we have a
c h a r a c t e r i s t i c "chemistry of d e f e c t s M . "Reactionsm between
d e f e c t s may be exothermic o r endothermic, the same a s g e n e r a l
reactions.
These "reactions",
t h e same a s g e n e r a l r e a c t i ons,
may proceed w i t h o r without a c t i v a t i o n , depending on t h e
n a t u r e of t h e r e a c t i n g d e f e c t s .
b o t h produce and absorb d e f e c t s .
A c r y s t a l l i n e l a t t i c e can
Thus, f o r example, i n an
i d e a l l a t t i c e , the displacement of an atom from a p o s i t i o n
i n t o t h e space between t h e n a t u r a l p o s i t i o n s c o n s t i t u t e s an
example of a r e a c t i o n which produces a d e f e c t .
A d e f e c t of a given kind under given conditions
possesses a d e f i n i t e average l i f e duration.
It can disappear
and reappear.
We w i l l assume t h a t d e f e c t s do n o t disappear beyond
t h e l i m i t s of the l a t t i c e and t h a t they do not e n t e r i t from
the outside,
I n t h f s case a t equilibrium t h e r e a r i s e a s
many d e f e c t s of a given kfnd a s t h e number t h a t d i s a p p e a r s
per u n i t time i n a u n i t
f volume of t h e c r y s t a l ,
The con-
c e n t r a t i o n of d e f e c t s i n t h i s case i s d e t e ~ m i n e dby t h e
equilibrium conditions.
The e q u i l i b ~ i u mconcentration
I n a d d i t i o n , i t i s dependent on
changes with temperature.
t h e h i s t o r y of t h e sample.
I n a given sample a t a given
temp r a t u r e t h e e q u i l i b r i u m concentpation may be changed
under the i n f l u e n c e of e x t e r n a l f o r c e s ( i l l u m i n a t i o n , e l e c t r i c f i e l d and o t h e r s ) .
This i s connected with t h e f a c t ,
t h a t t h e e x t e r n a l f o r c e s charge t h e r a t e s of t h e r e a c t i o n s ,
i n which t h e s e d e f e c t s p a r t i c i p a t e .
From now on when we speak of t h e c o n c e n t r a t i o n of
d e f e c t s we w i l l mean equilibrium c o n c e n t r a t i o n s a
words, we w i l l ignore t h e 'frozent"(metastable)
In other
s t a t e s of
the l a t t i c e .
The t o t a l number
f d e f e c t s of a l l t y p e s contained
i n a u n i t volume of a c s y s t a
disorder i n t h e crystal,
w i l l 1 be r e f e r r e d t o a
a
It i s assumed t h a t t h e t o t a l d i s -
order i s s u f f i i e n t l y small* n o t h e r words f t i s assumed
t h a t the t o t a l concentration of a l l d e f e c t s i s small a s
compared t o t h e number of n u c l i i n a u n i t volume. Otherwise
we would s t e p out beyond t h e frame of our p i c t u r e ,
In f a c t
when t h e number of d e f e c t s i s comparable with t h e number of
nuc e i we can not speak of t'micro-defects",
t h e summation of
which i n t h i s case must be looked upon a s a fGmacro-defectw,
I n a t o t a l d i s o r d e r we must d i s t i n g u i s h between
t h e h i s t o r i c a l and t h e thermal p o r t i o n s of t h e d i s o r d e r ,
The p o r t i o n of t h e d i s o r d e r which i s r e t a i n e d a t zero temp e r a t u r e we w i l l name a s the h i s t o r i c a l ( i r r e v e r s i b l e ) d i s order.
B y t h e thermal d i s o r d e r , which i s of a r e v e r s i b l e
c h a r a c t e r , we w i l l assume an a d d i t i o n a l d i s o r d e r , superimposed on t h e i n i t i a l h i s t o r i c a l d i s o r d e r by h e a t i n g .
Thus, f o r example, a l a t t i c e of type M, Rr with a
d i s t o r t e d stoichiometry p o s s e s s i n g , f o r example, an excess
of metalloid may contain empty m e t a l l i c p o s i t i o n s r i g h t from
t h e very beginning,
The number of t h e s e d e f e c t s a t zero
temperature c h a r a c t e r i z e s t h e h i s t o r i c a l d i s o r d e r ,
During
h e a t i n g , m e t a l l i c i o n s of t h e l a t t i c e move from t h e n a t u r a l
p o s i t i o n s i n t o t h e space between t h e p o s i t i o n s , hence addit i o n a l empty m e t a l l i c p o s i t i o n s a r e formed.
The degree of
d i s t o r t i o n of t h e stoichiometry d u r i n g h e a t i n g does n o t
change, b u t t h e g e n e r a l d i s o r d e r i n c r e a s e s due t o t h e superimposition of the thermal on t h e h i s t o r i c a l df s o r d e r ,
The r e l a t i o n s h i p between t h e h i s t o r i c a l and thermal
d i s o r d e r s i s n a t u r a l l y dependent on t h e h i s t o r y and t h e temp e r a t u r e of t h e sample,
I n some c a s e s t h e h i s t o r i c a l d i s -
o r d e r predominates considerably over t h e thermal d i s o r d e r .
I n t h i s case t h e t o t a l d i s o r d e r i s p r a c t i c a l l y unchanged
with temperature.
I n o t h e r c a s e s , on t h e c o n t r a r y , t h e
h i s t o r i c a l d i s o r d e r may be neglected a s compared with t h e
thermal d i s o r d e r .
I n t h e s e c a s e s p r a c t i c a l l y t h e whole
d i s o r d e r i s of a h e a t o r i g i n .
2.
Disorder on t h e Surface of a C r y s t a l and
I t s Function i n Adsorption
On the surface of an i d e a l i z e d r e a l c r y s t a l , the
same a s i n s i d e of a c r y s t a l , we d e a l w i t h micro-defects of
v a r i o u s types.
Thus, t h e surface of a r e a l c r y s t a l i s
c h a r a c t e r i z e d by a d e f i n i t e degree of d i s o r d e r .
The laws
con t r o l l i n g t h i s d i sorder a r e r e f l e c t e d i n t h e behaviour
of adsorption,
I n f a c t t h e a d s o r p t i o n of g a s molecules t a k e s
p l a c e , a s i s known, a$ i n d i v i d u a l adsorptfon c e n t r e s , t h e
number of which, g e n e r a l l y speaking, may n o t be l a r g e i n
comparf son with t h e t o t a l number of t h e s u r f a c e atoms,
According t o Taylor, t h e geometric heterogenei t i e s of t h e
s u r f a c e a r e such adsorption c e n t r e s .
On our i d e a l i z e d sur-
f a c e , t h e micro-def e c t s appear t o be such h e t e r o g e n e i t i e s .
Remaining i n the frame of the Taylor assumptions, we may
t r e a t micro-defects p r e s e n t on t h e surf ace a s adsorption
centres.
From t h i s p o i n t of view t h e i d e a l s u r f a c e does
n o t g e n e r a l l y adsorb,
The degree of d e v i a t i o n of t h e r e a l
surface from t h e i d e a l s t a t e determines t h e adsorption
capacity.
We must n o t e t h a t t h e p r e s e n c e of d e f e c t s on t h e
s u r f a c e does n o t by i t s e l f mean t h a t t h e h e t e r o g e n e i t y i s
energetic,
E n e r g e t i c h e t e r o g e n e i t y presupposes t h e p r e s e n c e
of v a r i o u s t y p e s of a d s o r p t i o n c e n t r e s ,
However, i f t h e
a d s o r p t i o n c e n t r e s w i l l be d e f e c t s of o n l y one d e f i n i t e t y p e ,
c h a r a c t e r i z e d by t h e same h e h t a d s o r p t i o n q , t h e n our s u r f a c e from an a d s o r p t i o n p o i n t of view w i l l be e n e r g e t i c a l l y
homogeneous.
From now on, f o r s i m p l i c i t y , we w i l l d e a l w i t h
an e n e r g e t i c a l l y homogeneous s u r f a c e c o n s i d e r i n g t h a t t h e
a d s o r p t i o n of a g a s molecule may t a k e p l a c e n o t on any d e f e c t
of t h e s u r f a c e , b u t o n l y on d e f e c t s of a d e f i n i t e t y p e .
I n t h e g e n e r a l t h e o r i e s of a d s o r p t i o n , t h e following propertie s are assigned t o t h e adsorption centres:
(1) It i s assumed t h a t the number of a d s o r p t i o n c e n t r e s
on t h e s u r f a c e i s a c o n s t a n t v a l u e , c h a r a c t e r i s t i c f o r a
g i v e n s u r f a c e and that i t does n o t change with t e m p e r a t u r e ,
T h i s number i s completely determined by t h e h i s t o r y of t h e
surf ace.
( 2 ) F u r t h e r , i t i s assumed t h a t t h e a d s o r p t i o n c e n t r e s
a r e l o c a l i z e d on t h e s u r f a c e .
They a r e immobileo The h i s -
t o r y of t h e a d s o r p t i o n c e n t r e s d o e s n o t change with t i m e s o
t h a t we d e a l w i t h a s o - c a l l e d f r o z e n d i s t r i b u t i o n of adsorpt i o n c e n t r e s on t h e s u r f a c e ,
(3)
F i n a l l y , i t i s assumed t h a t t h e number of c e n t r e s
does n o t change wl t h coverage.
I n o t h e r words, t h e t o t a l
number of c e n t r e s i s independent of t h e f a c t of how many of
them a r e occupied by adsorbed molecules and how many remain
free.
It must be noted t h a t t h e conception r e g a r d i n g
t h e adsorption c e n t r e s a s d e f e c t s of t h e s u r f a c e does n o t i n
t h e l e a s t support t h e s e assumptions.
The r e v e r s e i s t r u e :
a l l t h r e e assumptions a r e i n c o n t r a d i c t i o n with t h f s conception.
Thus, i d e n t i f y i n g t h e a d s o r p t i o n c e n t r e s w i t h t h e
d e f e c t s of t h e s u r f a c e , we must d i s r e g a r d t h e t h r e e assumpt i o n s enumerated above, which a r e t h e b a s i s of t h e g e n e r a l
adsorption theory,
Later i t wf 11 be shown how t h e b a s i c
adsorption laws change.
We w P l l d e s i g n a t e by A t h e d e f e c t s which a c t a s t h e
adsorption c e n t r e s ,
Let NA be t h e c o n c e n t r a t i o n of t h e s e
d e f e c t s on t h e s u r f a c e a t a temperature T .
We w i l l consider
t h a t t h e concentratfon of d e f e c t s A i n c r e a s e s with t h e temp e r a t u r e from some minimum value NA = X a t T = 0 t o some maxi-
m value NA = Y a t T =
-,
so t h a t
X CNA & Y.
(1)
We w i l l agree t o c h a r a c t e r i z e t h e d i s o r d e r on t h e
s u r f a c e by a concentration of d e f e c t s A, s e t t i n g a s i d e t h e
o t h e r d e f e c t s which may be p r e s e n t on t h e s u r f a c e and which
may e n t e r i n t o r e a c t i o n s w i t h d e f e c t s A .
Then, NA e x p r e s s e s
the d i s o r d e r a t a temperature T ; moreover, t h e number X exp r e s s e s t h e h i s t o r i c a l p o r t i o n of the d i s o r d e r , and t h e number
- X) -
(NA
Z =Y
-
t h e thermal p o r t i o n of t h e d i s o r d e r .
The number
X i s t h e d-ifference between t h e maximum and minimum
d i s o r d e r s r e a l i z e d on t h e s u r f a c e .
This number remains con-
s t a n t f o r a given surface and may be used a s i t s c h a r a c t e r i s tic
0
We w i l l d i s t i n g u i s h between two p a r t i c u l a r ( l i m i t i n g ) cases:
(1) X = 0 o r Z = Y,
This i s t h e case when t h e t o t a l
d i s o r d e r i s of a thermal o r i g i n ( t h e h i s t o r i c a l d i s o r d e r i s
absent).
(2) X = Y or Z = 0.
This i s t h e case when t h e t o t a l
d i s o r d e r i s of a h i s t o r i c a l o r i g i n ( t h e thermal d i s o r d e r i s
absent).
We must note t h a t the g e n e r a l t h e o r i e s of adsorpt i o n d e a l w i t h t h e second of t h e s e two p a r t i c u l a r c a s e s ,
Thus, t h e s e t h e o r i e s , based on a c o n s t a n t (unchanging
tem-
p e r a t u r e s ) number of adsorption c e n t r e s , remain t r u e only
while t h e thermal d i s o r d e r can be considered s u f f i c i e n t l y
small a s compared t o t h e h i s t o r i c a l .
I n the p r e s e n t paper
we a r e analysing a more g e n e r a l c a s e , when t h e thermal and
the h i s t o r i c a l d i s o r d e r s a r e comparable i n magnitude,
Our
formulae may be transformed i n t o t h e g e n e r a l formula of t h e
Langmuir theory f o r t h e l i m i t i n g case Z = 0.
We w i l l consider t h a t each adsorption c e n t r e A
may a c c e p t one and only one gas molecule, s o t h a t t h e
adsorption c e n t r e on which a gas molecule i s found i s
incapable of f u r t h e r a d s o r p t i o n and f a l l s out of t h e p l a y ,
Such an occupied adsorption c e n t r e , t h a t i s , u n i t e d with
t h e adsorbed gas molecule, we w i l l d e s i g n a t e by t h e symbol
B , i n d i s t i n c t i o n from t h e f r e e c e n t r e
A,
A o
The f r e e c e n t r e s
a s w e l l a s t h e occupied c e n t r e s B , c o n s t i t u t e d e f e c t s
on t h e surface b u t they a r e d e f e c t s of d i f f e r e n t types,
W e w i l l d e s i g n a t e by NB the c o n c e n t r a t i o n of t h e B d e f e c t s ,
Evidently NB i s t h e number of gas molecules adsorbed p e r
u n i t surface.
The r e a c t i o n of a d s o r p t i o n and desorption
i s expressed i n t h e form:
A
+
G & B 9
(2
where G i s t h e symbol f o r t h e g a s molecule.
This r e a c t i o n
i s exothermic i n t h e forward d i r e c t i o n and endothermic i n
the reverse direction,
the reaction,
NAONG
NB
--
We w i l l d e s i g n a t e by q t h e h e a t of
For an equilibrium s t a t e we have:
O C 9
where
-Q
ce = ocoe
(3)
Here NG i s t h e concentration of gas molecules i n t h e gas
phase :
Adapting t h e d e s i g n a t i o n N = NA + NB
where,
obviously, N i s t h e t o t a l number of adsorption c e n t r e s
( f r e e + occupied) we may r e w r i t e t h e condition ( 3 ) thus:
Taking i n t o account r e a c t i o n (2) we must r e w r i t e
i n s t e a d of ( 1):
(11)
X < N < Y .
I n t h e p a r t i c u l a r case, when the t o t a l d i s o r d e r
i s of a p u r e l y h i s t o r i c a l o r i g i n we have X = N = Y and
equation (39) t ~ a n s f o r m si n t o t h e g e n e r a l L a n m u i r e q u i l i brium equation:
3,
Tlie Appearance and Disappearance of
Adsorption
Centres
--- -- -
-
- -
- -
- -
-
-
D e f e c t s A , which a c t a s t h e a d s o r p t i o n c e n t r e s ,
p a r t i c i p a t e not only i n t h e r e a c t i o n s of a d s o r p t i o n and
d e s o r p t i o n ( 2 ) b u t a l s o i n a number of o t h e r r e a o t i o n s proceeding on t h e s u r f a c e simultaneously w i t h r e a c t i o n (2),
These simultaneous r e a c t i o n s may vary depending on t h e
n a t u r e of t h e d e f e c t s p r e s e n t on t h e s u r f a c e .
Ignoring
t h e s e d e f e c t s means a r e t u r n t o the Langmuir t h e o r y o Below
we dl1 analyse two of t h e s i m p l e s t c a s e s , when d e f e c t s A
r e a c t with t h e o t h e r d e f e c t s on t h e s u r f a c e according t o
monomolecular and bimolecular r e l a t i o n s ,
A s t o d e f e c t s B,
we must consider t h a t they p a r t i c i p a t e only i n r e a c t i o n ( 2 ) .
If we would a s s i g n t o t h e s e d e f e c t s the c a p a c i t y t o p a r t a k e
i n any o t h e r r e a c t i o n s , then t h i s would mean a t r a n s i t i o n
t o a heterogeneous s u r f a c e , and we would go beyond the frame
of our theory.
Let u s Imagine t h a t along with d e f e c t s A end B
t h e surface a l s o c o n t a i n s d e f e c t s of a t h i r d type which we
w i l l d e s i g n a t e by C , and t h e concentration of which a t a
temperature T we w i l l d e s i g n a t e by NC,
Vje wf 11 assume t h a t
t h e d e f e c t s C and A a r e i n t e r t r a n s f o r m a b l e ,
C S
(6)
A
We w i l l consider, t h a t the tramlbrmation of a d e f e c t C i n t o
a d e f e c t A demands a c e r t a i n expenditure of energy u,
Thus, d e f e c t s A take p a r t i n two simultaneous
r e a c t f o n s ( 2 ) and ( 6 ) .
A t equilibrium we must add t o equa-
t i o n ( 5 ) the following equation:
..
/3 = p 0 e - kT
u
N~
= p.
N~
where
We now have: Y = NA + NB + NC,
0
X = 0, so that
equation ( 7 ) may be r e w r i t t e n thus:
N
-
NB
Y - N
=
Po
From t h e two equations ( 3 ) and ( 7 ) t w o unknowns
may be determined: the t o t a l number of adsorbed c e n t r e s N
and the t o t a 1 number of adsorbed molecules NB.
We w i 11 analyse an example of the monmolecular
reaction ( 6 ) .
We w i l l assume t h a t on t h e s u r f a c e of a c r y s t a l ,
atoms of a f o r e i g n impurity a r e d i s t r i b u t e d .
s u r f a c e concentration of such atoms.
Let Y be the
During h e a t i n g a por-
t i o n of the atoms of t h e impurity i s t r a n s f e r r e d from t h e
norlnaP i n t o the excf ted s t a t e
(electron excitation).
w i l l d e s i g n a t e by u tho energy o r e x c f t a t i o n .
We
We w i l l
consider t h a t t h e a d s o r p t i o n c e n t r e s a r e e x a c t l y t h e s e
e x c i t e d a t m s of t h e impurf t y .
I n corrospondence with
t h e d e s i g n a t i o n s adopted above, we w i l l d e s i g n a t e by C t h e
atoms of t h e impurity found i n t h e normal s t a t e , by A t h e
excited
atoms of t h e impurity, by B t h e a toms of t h e impu-
r i t y connected w i t h t h e adsorbed molecules,
We have two
sfmuBtaneously proceeding r e a c t i ons ( 2 ) and (6).
The con-
d i t i o n s of equflibroium s t a t e s a r e expressed by t h e e q u a t i o n s
(31) and (7s).
We w i 11 analyse another p o s s i b l e case,
Let us
assume t h a t along wfth t h e d e f e c t s A ( f r e e a d s o r p t i o n c e n t r e s )
and d e f e c t s B (occupied a d s o r p t i o n c e n t r e s ) two o t h e r t y p e s
of d e f e c t s C and D a r e p r e s e n t on t h e s u r f a c e of a c r y s t a l ,
which do n o t d i r e c t l y p a r t i c i p a t e i n a d s o r p t i o n .
Vfe w i l l
assume, however, t h a t t h e d e f e c t s C a r e capable of b r e a k i n g
up i n t o d e f e c t s A and D.
of d f s s o c f a t i o n .
L e t u s assume t h a t u i s t h e energy
We w i l l d s o assume t h a t a r e v e r s i b l e pro-
c e s s f s a l s o pogsfble: t h e recombination of d e f e c t s A and D
wfth the formation of a d e f e c t C.
Thus t h e following r e a c t i o n t a k e s p l a c e
C Z A AD,
proceedfng sfmultaneously wf t h r e a c t i o n (2).
(8)
A t a s t a t e of
equilfbrfum we must add t o e q u a t i o n (3') t h e f o l l o w i n g
equation t
N~ . N ~ =
N~
/s,
VJe have here:
so t h a t equatf on
where
p
=
pee -3%
Y = NA + NB + NC,
o
(9)
X = NA + NB + ND9
( 9 ) may be r e w r i t t e n thus2
From equatfons (3') and ( 9 ' )
t h e unknowns N and NB
can be determined,
I n t h e case of the bimolecular r e a c t i o n ( 8 ),analysed
h e r e , a s i n the case of t h e mon~molecularr e a c t i o n ( 6 ) , ad$ o r p t i o n c e n t r e s A ' l o r i g i n a t e " from d e f e c t s C,
During h e a t i n g
t h e number of d e f e c t s A i n c r e a s e s a t t h e expense of t h e d i s appearance of d e f e c t s C,
Thus, t h e r e a c t i o n s ( 6 ) o r ( 8 )
appear t o be sources of thermal d i s o r d e r on t h e s u r f a c e of a
crystal.
We w i l l analyse t h e example of a bimolecular r e a c t i o n
( 8 ) ,.
We w i l l assume, t h a t we d e a l w i t h a h e t e r o p o l a r
c r y s t a l constructed from i o n s M+ and ,'R
i n which t h e s t o i -
chiometrfc r a t i o i s d i s t o r t e d t o some degree.
A s an example,
we s h a l l d e a l with a c r y s t a l which h a s a s t o i c h i o m e t r i c excess
of a
metal.
We a f l l consider, t h a t on t h e s u r f a c e of such
a c r y s t a l a r e d i s t r i b u t e d the "excess" atoms of a metal M,
which b e shown and designated i n f i g u r e (2) by t h e symbol A,
These "excesst' atoms can be t r e a t e d a s d e f e c t s on t h e s u r f a c e
of the c r y s t a l . ,
defects a t T = 0.
Let X be t h e concentration of these
We w i l l consider t h a t t h e a d s o r p t i o n
c e n t r e s a r e d e f e c t s of t h f s [and only t h i s ) type.
An
adsorption c e n t r e , connected w i t h a gaseous molecule, f s
designated I n FOgzxre 2 by the symbol B.
The r e a c t i o n s of
adsorption and d e s o r p t i o n a r e schematically shown i n
Figure 2 by t h e arrow3 1 and 2 r e s p e c t i v e l y .
In a d d i t i o n ,
we w i l l assume t h a t i n the s u r f a c e l a y e r of a c r y s t a l t h e r e
a r e a l s o contained d e f e c t s of another type: empty m e t a l l o f d
positions,
It must be noted t h a t one of the m e t a l l i c i o n s
the l a t t i c e , d i r e c t l y nefghbouring w i t h such an empty
metallofd s i t e , myst be i n a n e u t r a l s t a t e ( i n o t h e r words
f t must take an e x t r a e l e c t r o n ) ,
D e f e c t s of t h i s type
(empty m e t a l l o i d s i t e connected wf t h an atom of t h e m e t a l )
a r e designated f n Figure 2 by t h e symbol C.
The concentra-
t i o n of such d e f e c t s a t T = 0 we w i l l designate by Z o These
d e f e c t s - a c c o r d i n g t o our assumption do n o t p a r t i c i p a t e
d i . ~ e c t l y , f na d s o r p t i o n o The d e f e c t s A and C ensure a s t o i chiometric excess of a metal i n t h e s u r f a c e l a y e r of t h e
crystal a t T = 0 ,
During h e a t i n g , t h e atoms of the metal connected
with t h e empty m e t a l l o f d s i t e s , d i s s o c i a t e from the s u r f a c e
of t h e l a y e r and t o t h e s u r f a c e of t h e c r y s t a l ,
A s a re-
s u l t af such a d f s s o c f a t i o n i n t h e surface l a y e r t h e r e remains
an empty m e t a l l i c sf t e , connected wf t h t h e empty m e t a l l o i d
s i t e (defect
'd)
i n Figure 2), and on t h e s u r f a c e of the
c r y s t a l t h e r e appears an "excesst4 m e t a l l i c atom A ,
In
o t h e r words, during h e a t i n g the d e f e c t C b r e a k s up t o form
a d e f e c t A and a d e f e c t
B o This r e a c t i o n i s schematically
shown i n Figure 2 by t h e arrow 3,
The r e v e r s e p r o c e s s
simultaneously comes i n t o play: t h e recombination of def e c t A and D which b r i n g s about t h e formation of a d e f e c t
C,
T h i s r e a c t i o n of t h e recombination i s shown i n Figure 2
by t h e arrow 4.
The equilfbrfuln c o n c e n t r a t i o n s of t h e defects. A ,
B, C , D, corresponding t o some temperature T a r e connected
by t h e equations ( 3 ) and ( 9 ) or,which i s t h e same t h i n g ,
by equatfons ( 3 ' ) and ( g 9 ) .
Here t h e number X c h a r a c t e r i z e s
t h e i n i t i a l ( h i s t o p i c a l ) d i s o r d e r on t h e s u r f a c e of a c r y s t a l ,
and the number Y = X + Z c h a r a c t e r i z e s t h e degree of d i s t o r t i o n of t h e stofchiometry of t h e s u r f a c e l a y e r of t h e c ~ y s t a l ~
I n a p a r t i c u l a r case d e f e c t s C may be completely absent
(2 = 0 ),
I n t h i s case t h e t o t a l d i s o r d e r i s of a p u r e l y
h i s t o r i c a l o r i ~ i n :t h e number of adsorption c e n t r e s i n t h i s
case w i l l n o t change ~ 5 t h
temperature (Langmuir t h e o r y ) ,
In another p a r t i c u l a r case a t T = 0, t h e d e f e c t s of type A
may be completely absent (X = O ) o
I n t h i s case t h e adsorp-
t i o n c e n t r e s A appear on t h e s u r f a c e during h e a t i n g exclus i v e l y a t the expense of t h e decomposition of d e f e c t s C ,
and the d i s o r d e r i s of a p u r e l y thermal o r i g i n ,
W e w i l l analyse another example of a bimolecular
relationship.
We dl1 assume t h a t on t h e s u r f a c e of an i o n i c
c r y s t a l , atoms of an imgurity a.re d i s t r i b u t e d .
The concen-
t r a t i o n of theso atoms we w i l l d e s i g n a t e by 2.
A s an
example, we s h a l l assume t h a t t h e s e atoms a r e l o c a t e d on
t h e negative i o n s of t h e l a t t i ce a s shown i n Figure 3,
During h e a t i n g t h e atoms of t h e impurity i o n i z e , and t h f s
i o n i z a t i o n i n c r e a s e s with temperature.
In Figure 3 the
n e u t r a l atoms of t h e impurity a r e designated by t h e symbol
C , and t h e ionized by t h e symbol D o An e l e c t r o n which h a s
departed from an atom of t h e impurity becomes the c o l l e c t i v e p r o p e r t y of t h e s u r f a c e l a y e r of t h e l a t t i c e ( f r e e
e l e c t ~ o n ) , Free e l e c t r o n s , t h e c o n c e n t r a t i o n of which
i n c r e a s e s with temperature, f o m an e l e c t r o n g a s , which
determines t h e e l e c t r o - c o n d u ~ t vi i ty of the c r y s t a l ,
Thus
atoms of an impurity appear t o be a r e s e r v o i r which supp l i e s t h e conducting e l e c t r o n s .
The appearance of a f r e e
e l e c t r o n i n t h e s u r f a c e l a y e r of t h e l a t t i c e means a
n e u t r a l i z a t i o n of one of t h e i o n s M+ of the s u r f a c e l a y e r .
The d i splacement of an e l e c t r o n along t h e s u r f a c e means
t h e displacement of t h e n e u t r a l s t a t e M from one ion M+
t o t h e neighbourfng ion M+.
We w i l l consider t h a t adsorp-
t i o n c e n t r e s a r e e x a c t l y t h e se n e u t r a l i z e d m e t a l l i c atoms
of the l a t t i c e .
I n Figure 3 they a r e designated by t h e
symbol A ; an adsorgtf on cenbre, which h a s taken onto i t s e l f
a gas molecule and I s connected wf t h i t , i s designated by
t h e symbol B.
I n other words, t h e adsorption c e n t r e s i n
our model a r e tho f r e e e l e c t r o n s ,
(The conceptf on regard-
i n g e l e c tro-conductivity a s a d s o r p t i on c e n t r e s h a s been
p o s t u l a t e d b y 0, M, Todes.)
The i o n f z a t f o n p r o c e s s of a n e u t r a l atom of t h e
impurity C mag be t r e a t e d a s a simultaneous appealaance of a
f r e e e l e c t r o n A and a tihole'!* D , connected with an atom of
t h e impurity.
Along with t h i s p ~ o c e s st h e r e t a k e s p l a c e
t h e r e v e r s i b l e n e u t r a l i z a t i o n process of t h e impuri t y f on,
c o n s i s t i n g of a recombination of an e l e c t r o n w i t h a "holefY,
The condf t i o n s of equi l i b r i u m a r e expressed by t h e equations
(3') and ( 9 0 f o r which, however, i t must be assumed t h a t
X = 0 and Y = Z , ( t h e absence of t h e h i s t o r i c a l d i s o r d e r ) ,
I n f a c t , t h e number of "holesft f s e q u a l t o the t o t a l number
of e l e c t r o n s , t r a n s f e r r e d t o t h e c o l l e c t i v e s t a t e ,
These
c o l l e c t i v e e l e c t p o n s a r e composed of e l e c t r o n s which remain
f r e e , and of e l e c t r o n s which e n t e r i n t o a bond with gaseous
molecules, t h u s f a l l i n g out of a c t i o n ,
We have
%
= N A + NB 9
from which i t f o l l o w s t h a t X = 0 a n d Y = Z,
4t
The term "holeff i s used here i n t h e same sense a s i n t h e
t h e o ~ yof semf-conductors,
"Holeft means the absence of an
electron,
4,
The Isotherm and the D i f f e r e n t i a l Heat of Adsorpt i o n by Taking I n t o Account the Thermal Disorder
It can be e a s i l y shown t h a t , although t h e thermal
d i s o r d e r due t o t h e monanolecular r e a c t i o n ( 6 ) e x e r t s an
e f f e c t on t h e k i n e t i c s of adsorption, i t has no e f f e c t on
the a d s o r p t i o n equilibrfum,
Thus, from the viewpoint of
equilibrium, r e a c t i o n ( 6 ) i s of no i n t e r e s t ,
I n t h i s para-
graph we w i l l l i m i t o u r s e l v e s t o t h e case when t h e thermal
d i s o r d e r can be expressed by t h e bimolecular r e a c t i o n (81,
I n t h i s case t h e equilibrium c o n c e n t r a t i o n s ND and N = NA+NB
a r e determined from t h e equations ( S f ) and ( g q) , We w i l l
rewri t e these equations thus :
We dl1 analyse equation ( l o b ) ,
Solving t h e equa-
t i o n with r e s p e c t t o N we o b t a i n N a s a f u n c t i o n of T
and^^:
We must note t h a t i f i n this expression we assume
Z = 0, which means t h a t t h e thermal d i s o r d e r i s disregarded,
then we o b t a i n from ( 1 1 ) ; N = X , a s i t should be,
The r e l a t i onship between N and NB ( a t a g i ven T =
c o n s t a n t ) i s schematically shown i n Figure 4a.
A s the surface
becomes covered with adsorbed molecules ( a s NB i n c r e a s e s ) ,
t h e t o t a l number of adsorption c e n t r e s N = NA + NB inareasea)
*
I n t h e o r i g i n a l t h e s i g n i s +,
from a c e r t a i n minimum value ( a t VEj = 0 ) up t o a maximum
value N = Y ( a t NB = Y ) ~ Thus, i n t h e p r c e s s of adsorption
t h e r e a r i s e a d d i t i o n a l adsorption c e n t r e s ,
A s t h e tempera-
t u r e i n c r e a s e s the p o i n t A i n Figure 4a d i s p l a c e s upwards
while t h e p o i n t B remains f i x e d
.
The family of curves N = N( NB )
,
corresponding t o v a r i o u s values of T , a r e shown i n Figure 4b.
The curves a r e numbered i n t h e order of i n c r e a s i n g T o
Curve 1
corresponds t o t h e l i m i t i n g case T = 0; curve 4 corresponds t o
the o t h e r l i m i t i n g case, T =
- 0
We w i l l d e r i v e an equation f o r t h e isothermo For
t h i s purpose we w i l l r e t u r n t o t h e equation of equilibrium ( l o & ) ,
S u b s t i t u t i n g i n t h i s equation t h e
expressions ( 4 ) and ( 1 1 ) and
solving t h i s equation w i t h r e s p e c t t o NB, we o b t a i n t h e following expression f o r the isotherm:
We have here designated:
It must be noted t h a t a t p
T ) expression ( 1 2 ) g i v e s NB
+w
+Y
(independent of t h e value f o r
(saturation).
If we n e g l e c t the thermal d i s o r d e r i n comparison with
t h e h i s t o r i c a l , assuming Z = 0 ( o r , which i s t h e same t h i n g ,
X =
*I n
Y) then the expression (12) i s transformed i n t o the g e n e r a l
the o r i g i n a l t h e s i g n i s
+ 0
as i t should be,
If, however, we n e g l e c t t h e historical d i s o r d e r a s
compared with t h e thermal d i s o r d e r , assuming X = 0, and i f we
a l s o consider t h a t Z = Y i s s u f f i c i e n t l y l a r g e , so t h a t
Z = Y )) p , then formula (12 may be approximated a s follows:
a ) In t h e region of "smallr' p r e s s u r e s , a t Y p &
b ) 1n t h e r e g i o n of "averagem p r e s s u r e s , a t 1
C)
I n t h e region of t b l a r g e vp r e s s u r e s , a t 1
%a,
14; r
< y p<P
t
<< jjY < d p :
we o b t a i n the g e n e r a l Henry law a t t h e begin-
ning of the isotherm, which i s dfsplaced by t h e r e l a t i o n s h i p
on t h e
%-fi
mfddle of t h e isotherm, and which a g a i n i n i t s
t u r n i s transformed i n t o s a t u r a t i o n .
We must note t h a t t h e r e l a t i o n s h i p NB
- fi
i n the
g e n e r a l t h e o r f e s of adsorption may be obtained a s a r e s u l t of
a heterogeneous s u r f a c e (exponentfal d i s t r i b u t i o n f u n c t i o n ) o r
a s a r e s u l t of i n t e r a c t i ons between adsorbed molecules o r ,
f i n a l l y , by assuming t h a t the e x c e s s molecules d % s s o e i a t e
d u r i n g adsorption.
Generally t h e isotherm N B d
6
indf c a t e s
t h a t one of t h e s e t h r e e c o n d i t i o n s i s p r e s e n t ,
I n our case,
however, t h e s u r f a c e i s known t o be homogeneous ( a d s o r p t i o n
c e n t r e s of one type o n l y ) , t h e i n t e r a c t i o n s of adsorbed
~ o l a c u l e sa r e ignored and the d i s s o c i a t i o n of excess molec u l e s i s absent.
Here t h e r e l a t i o n s h i p
pletely different origln: i t
13
~ ~ ah afs ai com-
determined by t h e i n c r e a s e
i n t h e number of adsorption c e n t r e s o r i g i n a t e d from t h e surf a c e being covered a s a r e s u l t of t h e thermal d i s o r d e r ,
We dl1 now t u r n t o t h e c a l c u l a t i o n s of the d i f f e r e n t i a l h e a t of a d s o r p t i o n Q,
For t h i s we w i l l determine t h e
energy W of a c r y s t a l which h a s on i t s s u r f a c e N adsorption
c e n t r e s , of which NB c e n t r e s a r e occupied by adsorbed molecule s and NA c e n t r e s a r e f r e e .
O f the t o t a l number N c e n t r e s ,
X c e n t r e s have a h i s t o r P c a l o r i g i n , and t h e remaining N
c e n t r e s have a thermal o r i g i n ,
-X
I n o r d e r t o produce a thermal
adsorption c e n t r e , i t i s necessary t o use up a q u a n t i t y of
energy u; on t h e o t h e r hand, a combination of each gaseous
molecule with an a d s o r p t i o n c e n t r e r e l e a s e s an energy q.
Thus, we w i l l have:
w = UCN
- X) -
q
~
~
.
Here f o r zero energy we t a k e t h e energy of a system which h a s
no adsorbed molecules and which h a s no thermal d i s o r d e r on
the surface,
We must n o t e t h a t t h e s e l e c t i o n of the zero
p o i n t i s n o t e s s e n t i a l f o r t h e c a l c u l a t i o n s of Q,
For tk.e d i f f e r e n t i a l h e a t of a d s o r p t i o n we obtain:
S u b s t i t u t i n g (Il), we o b t a i n
If we n e g l e c t t h e thermal d i s o r d e r , assuming
Z =
0,
then e x p r e s s i on (14) g i ves Q = q = c o n s t a n t , a s should be
expected,
The v a r i a t f o n of Q w i t h NB i s due t o t h e thermal
d i s o r d e r and i s t h e more pronounced t h e l a r g e r i s Z o
The curve Q = Q(NB) i s s c h e m a t i c a l l y shown i n Figure
5,
A s the s u r f a c e i s covered, Q d e c r e a s e s from some maximum
value Q =
&ma
NB = Y ,
he p o s i t i o n of t h e p o i n t s Qa,
a t NB = 0 t o some minimum v a l u e $ =
and
i s dependent on t h e magnitude of t h e parameter 2,
$Ifnat
i n Figure 5
By decseas-
i n g Z , t h a t i s , a s t h e magnitude of t h e h i s t o r i c a l d i s o r d e r i n
Sn
t h e g e n e r a l d i s o r d e r i n c r e a s e s , t h e p o i n t s Qmax and Qmin
Figure 5 a r e d i s p l a c e d u ~ w a r d s ,moreover t h e p o i n t
p l a c e s f a s t e r than the p o i n t
out.
have
Gax, SO
Gin d i s -
that the curve s t r a i g h t e n s
I n t h e limf t a t Z = 0 ( a p u r e l y h i s t o r i c a l d i s o r d e r ) we
h, = Gin =
qo
We obtained a d e c r e a s e i n t h e d i f f e r e n t i a l h e a t with
coverage, although t h e s u r f a c e i s e n e r g e t i c a l l y homogeneous
and t h e f n t e r a c t i o n s between adsorbed molecules a r e absent.
.n
I n the o r i g i n a l 'the s i g n i s +,
The relatYonsh2.p between Q and NB f o r t h e case which we have
analysed, i s s t i p u l a t e d by t h e f a c t t h a t t h e t o t a l number o f
adsorptfon c e n t r e s N does n o t remain c o n s t a n t b u t i n c r e a s e s
a s NB f n c r e a s e s ,
The a d s o r p t i o n c e n t r e s on t h e surf ace of a
c r y s t a l a r e t r e a t e d h e r e a s a c h a r a c t e r i s t i c of t h e coverage
of g a s on t h e orsfg i n a l s u r f a c e , t h e c o n c e n t r a t i on of t h e
c e n t r e s i n c r e a s i n g t o g e t h e r w i t h an i n c r e a s e i n NB,
and t h e
energy change of t h i s i n c r e a s e should be taken i n t o account
when s a l c u l a t f n g t h e d i f f e r e n t i a l h e a t of a d s o r p t i o n ,
I n p a r t i c u l a r , i f we assume t h e model analysed a t
t h e end of s e c t i o n 3 i n which t h e f r e e e l e c t r o n s of a c r y s t a l
a r e t h e a d s o r p t i o n c e n t r e s then t h e "gas of a d s o r p t i o n centres1'
may be considered a s an e l e c t r o n g a s i n a c r y s t a l ,
In thf s
case our a n a l y s i s a g r e e s w i t h t h a t by Breger and Zhukhovf t s k i d
( 2 ) , who i n t h e c a l c u l a t i o n s of t h e d i f f e r e n t i a l h e a t of t h e
a d s o r p t i o n took i n t o account t h e change of energy of an e l e c t r o n gas d u r i n g a d s o r p t i o n ,
The d f f f e r e n c e i s t h a t B r e g e ~
and Zhukhovitskii have analysed an e l e c t r o n g a s i n a metal,
b u t i n our model we a r e d e a l i n g with an e l e c t r o n g a s I n a
semi-conductor,
I n t h e model of Breger and Z h ~ k h o v i t s k f f ~ t h e
same i n our model, each adsorbed molecule i s connected with
the s u r f a c e of a c r y s t a l by means of a l a t t i c e e l e c t r o n ,
hence t h i s e l e c t r o n f a l l s out from t h e t o t a l f a m i l y of f r e e
electrons,
Thus, i n t h e model of Breger and Zhukhovitskii t h e
f r e e e l e c t r o n s of a c r y s t a l a r e t r e a t e d a s a d s o r p t i o n c e n t r e s ,
t h e same a s f n our model.
5,
The E f f e c t of t h e Thermal Disorder on t h e
K i n e t i cs of Adsorptf on
For t h e r a t e of a d s o r p t i o n we have
where
GC " / q r=
NGNA
)> N N B I which means t h a t we
oC.
I n t h f s equation we w f l l assume t h a t
a s compared t o a d s o r p t i o n ,
w i l l neglect desorption
This c o n d i t i o n i s f u l f i l l e d a t
s u f f i c i e n t l y small NB o r s u f f i c i e n t l y l a r g e q.
Lettfng
ko = x v N G P we may r e w r i t e equation 15 a s f o l l o w s :
where NA 1s a f u n c t i o n of
NBo
We w f l l assume t h a t the s t a t e of e q u i l i b r i u m i s
r e t a i n e d f o r the a d s o r p t i o n c e n t r e s ,
If the thermal df sorder
i s governed by a bimolecular r e a c t f on ( 8 ) , then t h e s t a t e of
e q u i l i b r i u m may be expressed by e q u a t i o n s ( 9 )
o r ( 9 , ) from
which we o b t a i n ( s e e ( 1 1 ) ) :
If t h e thermal df sorder i s described by a monomolecula~ Peac-
t i o n ( 6 ) then t h e s t a t e of equflibrium may be expressed by
equations ( 7 ) o r (7') from which we obtain:
By s u b s t i t u t i n g ( 1 7 ) o r (18) i n t o (161, w e can
f i n d t h e r e q u i r e d r e l a t i o n s h i p between
%
and t f o r t h e
cases of bimolecular and monomolecular r e a c t i o n s r e s p e c t i vely,
Vie dl1 analyse both of these cases,
F f r s t , we wf 11 analyse t h e c a s e when t h e r e l a t f on-
shfp be tween NA and NB 1s g i ven by e x p r e s s i on ( 1 7 ) .
If i n (17) we assume t h a t
Z = 0 ( o r X = Y-), which
means t h a t we n e g l e c t t h e thermal d i s o r d e r , then (17) g i v e s
NA = Y
- NBQ
kinetics:
I n t h f a case we o b t a i n the g e n e r a l Langmufr
'
a s should be expected,
Conversely, if we neglect the h i s t o r i c a l d i s o r d e r
assuming i n ( 1 7 ) X = 0 ( o r 2 = Y ) , then i n t h i s case ( 1 7 ) w i l l
become:
Expression (179) may be considerably s i m p l i f i e d f o r the two
l i m i t i n g cases: f o r the case of s u f f i c i e n t l y "high" and f o r
t h e case of s u f f i c i e n t l y "low" temperatures.
region of "high" temperatures, assuming
from ( 1 7 ' ) : NA = Y
- NB
P
In f a c t , i n t h e
>
NB,
we have
which again l e a d s t o t h e formqla ( 1 9 ) .
The d e v i a t i o n from t h e Langmuir k i n e t i c s appear i n the region
of s u f f i c i e n t l y
consider t h a t
temperatures.
N
/3 4 N ~ ? ,
I n t h i s region, i f we
expression (17 ) assumes t h e
following sfmple form:
Substf t u t f n g (20) i n t o ( 1 6 ) and i n t e g r a t i n g equat f o n ( 1 6 ) w e obtain:
NB
2
Y
(1
- N)
=
- i$a t ,
where the f o l l o w f n g deaf g n a t i on i s assumed:
A t NB
/g
Y (21) gives
We w f l l now r e t u r n t o the case i n which t h e r e l a t i o n s h i p between NA and
%
i s given by e x p r e s s i on ( 1 8 ) ,
S u b s t i t u t i n g ( 1 8 ) i n t o ( 1 6 ) we o b t a i n :
from h e r e , assumfng t h e d e s i g n a t f o n
we o b t a i n
I n t h e r e g f o n of s u f f f c f e n t l y h i g h temperatures,
when
p
9 1, we
have according t o ( 2 3 ) : k = ko and formula
( 2 4 ) cofncldes with ( 1 9 ) .
I n t h e r e g i o n of sufficiently low temperatures,
kfnetieu,
when
In t h f s case we o b t a i n t h e Langmuir
c g
1, w e have
u
I n t h i s case we o b t a i n k f n e t f c s t y p i c a l f o r t h e s o - c a l l e d
" a c t i v a t e d " adsorptf on,
For t h e theory of a c t f v a t e d a d s o r p t i o n t h e o r i g i n
of formulae ( 2 4 ) and ( 2 5 ) i s g e n e r a l l y connected with t h e
presence on t h e c r y s t a l surface of a p o t e n t f a l b a r r i e r wfth
a height u , hence only those gaseous molecules which have a
k i n e t i c energy f n a d i r e c t 1on normal t o t h e s u r f a c e l a r g e r
than t h e energy u (3,4) w i l l r e a c h t h e s u r f a c e ,
However, in
our ease t h e r e f s no such p o t e n t i a l b a r r i e r near the s u r f a c e
of the c r y s t a l and formulae ( 2 4 ) and ( 2 5 ) have a d i f f e r e n t
o r i g i n , I n t h e concept of the a c t i v a t f o n p o t e n t i a l b a r r i e r
--
t h e number of gas molecules f a l l f n g on t h e s u r f a c e f n ~ e a s e s
kT
wfth t h e temperature i n proportion t o a m u l t f p l f e r e
,
while t h e number of adsorptfon c e n t r e s a c c e p t i n g t h e s e molec u l e s remains constant; conversely, f n t h f s concept, t h e
number of a c c e p t i n g c e n t r e s i n c r e a s e s
--
P$
t h temperature i n
U
proportion t o t h e m u l t i p l i e r e kT, while t h e number of f a l l f n g
molecules remains p r a c t i c a l l y constant,
We must note t h a t t h e theory of a c t i v a t e d adsorp-
t i o n may be constructed without t h e concept of t h e p o t e n t i a l
a
r
e
In f a c t , we w i l l assume t h a t t h e r e a r e no p o t e n t i a l
b a r r i e r s , and t h a t t h e s u r f a c e of a c r y s t a l c o n t a i n s a cons t a n t ( n o t changing w i t h temperature) number of adsorp t i o n
c e n t r e s , however, we w i l l consider t h a t not a l l t h e centres;
a r e capable t o adsorb, b u t only those c e n t r e s yrrhfch a r e found
f n an e x c i t e d ( a c t i v e ) s t a t e ,
Let u be t h e energy of excf-
t a t l ~ n( a c t i v a t i o n ) of t h e adsorptf on c e n t r e .
The adsorption
I n t h f s case befng a r e a c t f o n of combfnation between a gas
molecule and an adsorp t f on c e n t r e , wf 11 r e q u i r e an a c t i v a t i on
energy u.
Thus we have i n the c a s e of a heterogeneous r e -
a c t i o n a s f t u a t i o n w e l l known i n t h e chemistry of homogeneous
reactfons,
This p i c t u r e completely a g r e e s wfth o u r s , I n which
adsorption proceeds without a c t i v a t i o n , b u t the number of
adsorption c e n t r e s does not remain constant, and i n c r e a s e s
w f t h temperature ( t h e r m a l d i s o r d e r ! ) ,
I n f a c t , f n our case
when t h e appearance and df sappe arance of adsorp t i on c e n t r e s
i s described by a monomolecular r e l a t i o n s h f p C
A,
the
i n c r e a s e i n t h e number of c e n t r e s with temperature may be
t r e a t e d a s a t r a n s i t f o n of a d s o r p t i o n c e n t r e s from the
"passfvev s t a t e C I n t o t h e " a c t i v e " s t a t e
Ao
Such a t r a n s i t i o n
f s connected ~ 4 t han expenditure of energy u and may be t r e a t e d
a s an tOexcitationT'of t h e a d s o r p t i o n c e n t r e ,
In t h i s treat-
ment the t o t a l number of c e n t r e s remains c o n s t a n t (does n o t
change
tvi t
centres A,
h tempera'tur e ) however, t h e number of '4active'b
capable f o r adsorption, Increases w i t h h e a t i n g
a t t h e expense of a d e c ~ e a s ei n t h e number of 'spassive'k
c e n t r e s C which d o n o t d i r e c t l y p a r t i c i p a t e i n a d s o r p t i o n ,
The a:lt;lor wishes t o e x p r e s s h i s g r a t i t u d e t o
C , Z, RoginskSi f o r a number of v a l u a b l e remarks d u r i n g t h e
d i s c u s s i o n of t h i s work,
S e q t t o t h e e d i t o r J u l y 1 4 , 1948,
Academy of S c i e n c e s U,S,S.R,
I n s t i t u t e of P h y s i c a l Chemistry
D i v i s i o n of C a t a l y s i s and Topochemistry
Moscow,
REFERENCES
1,
F ,F0 V o l k e n s t e i n , ' L ~ l e c t r o - ~ o n dtui cv i t y of Semi -Condue t o r sLb
Chapter 1, S t a t e P u b l S s h e r s , 1947,
2,
A,Kh, Breger and A , A ,
Zhukhovitskii,
Zhuro F i z , Khfm,, 2
-9 1
423, ( 1 9 4 7 ) ,
3,
Lennard-Jones,
3,
F,F, V o l k e n s t e i n ,
-
Trans, F a r , Soc, 28, 333 (1932).
-
Zhur, F i z , K h i m , 21, 163 (1947) ,
o o o ~ s o o o s s e ~ e ~ o o o o o o o o o o o
o sooo 000000€3e0e~00~~0000000
o o 0 s s o 0 ~ o e ~ e ~ e o o o o o o o ~ o o
ccoaooococeegoeloooooooooo
1. Vacant s i t e .
4 . A forel,rn atom i n the i n t e r s t i c e s .
2 . Neutral atom in the i n t e r s t l c e s . 5 . A foreigna t o m in a normal s i t e .
3 . Ions with anomalous c h a r g e s .
0 ion R ion R ion M +
atom M
gaseous
molecule
Fig. 2
ion M +
atom M
a t o m of a n
impurlty
ion of a n impurity
gaseous
molecule
Fig. 3
a)
-
Fig. 4
0
I
.
x+p
Fig. 5
a)