RS -11- I -21 TARGET – IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS HINTS & SOLUTION O CHEMISTRY 1.[C] 1 1 1 = + λ2 300 760 As above 1 1 1 = − λ 2 300 760 CH3COO– + H+ CH3COOH C (C – Cx) 0 0 Cx Cx 760 − 300 1 = 760 × 300 λ2 i = [1 + (y – 1)x] = 1 + x = 1.0 1 ∴λ2 = wavelength of the second photon x = 0.0 1 = 496 nm [H+] = Cx = 0.01 × 0.01 = 1 × 10–4 M ∴ pH = 4 2.[1] z= Thus, (C) 2.[A] 0.12 M → 0.06 M 50 % change T50 = 10 h = 0.12 M → 0.03 M 75 % change T75 = 20 h 1× 10 5 × 18 × 10 −3 = 0.97 0.6 × 8.314 × 373 Since T75 = 2 × T50 hence order = 1 Note : All the values have been taken in SI units Hence (A) (m in kg mol–1, ρ in kg m–3, R in J mol–1 K–1) 3.[B] 4.[B] 3. [7] 5.[A,B,C] 6.[A,B,D] 4. [1] 7.[C,D ] 8.[B,C] 9.[A,B,D] Column Matching 1. A → P; B → S; C → R; D → Q 2. A → T; B → S; C → P; D → Q Numerical Response : 1. [5] PV PV PVm Pm = = = w ρRT nRT wRT RT m Wavelength of the first photon = λ1, E1 = hc λ1 and that of second photon = λ2 E2 = hc λ2 Etotal = E1 +E2 = emitted energy hc hc hc = + λ λ1 λ2 CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Cl–CH2COO– + H+ Cl–CH2COOH van't Hoff factor i = (1 + x) using the Ostwald's dilution law fo weak electrolyte x= Ka = C 1.36 × 10 −3 = 0.37 0.01 ∴ i = (1 + x) = 1.37 hence, elevation in b.p. (∆T)b = Kbm (molality) i = 0.51 × 0.01 × 1.37 = 0.007º hence, b.p. of solution T = T0 + (∆T)b = 100 + 0.007º = 100.007ºC Page # 1 5. [5] ⇒ ∑xy = 24 1.8 = 0.01 180 Moles of carbohydrate = Moles of acetyl chloride = 3.92 = 0.05 78.5 ⇒ xyz = –OH and CH3COCl react in 1 : 1 parts Number of (OH) group = 2 3 ∴ x3 + y3 + z3 – 3xyz = (x + y + z) (∑x2 – ∑xy) moles of CH 3COCl =5 moles of carbohydrate ∴ ∑x3 – 2 = 12 (96 – 24) 6.[8] 7. [1] ∑ xy = 36 xyz Now , ⇒ ∑x3 = 866 – SO42– + R(OH ) 2 → RSO4 + 2OH re sin in exchange OH– + 3[A] No. of determination corresponding to 1st column = 2 → H2O H+ in H 2 SO4 No. of determinants corresponding to 2nd column = 3 25 × N (OH–) = 21.58 × 2 × 10–3 N(H2SO4) No. of determinants corresponding to N(OH–) = 1.7264 × 10–3- N 3rd column = 4 N(CaSO4) = N(SO42–) = 1.7264 × 10–3 N Total No. = 2 × 3 × 4 = 24 1.7264 × 10 −3 M(CaSO4) = mol L–1 2 from multiplication theorem = 0.1174 g L–1 So, choice (A) is correct. 4.[A] = 117.4 ppm A 8. [4] E O MATHEMATICS 1[B] tan 3 α cot α = = ⇒ tan2 α = = M B 3 tan α − tan 3 α tan α(1 − 3 tan 2 α ) 3 − tan 2 α 1 − 3 tan 2 α AM = = x (say) (3x − 1)( x − 3) (3 x − 1) 2 2 p , MD 3 1 2 2 p , BM = q BM 3 3 = x −3 3x − 1 = BM2 + DM2 5.[A, D] 2 ( 2 sin 2 x −3 sin x +1) Since tan2 α is non-negative, Let 2 ( 2 sin either x < 1/3 ⇒t+ or C D x ≥ 3, so x cannot lie between 1/3 and 3. 2[D] (x + y + z)2 = 144 2 ∴ ∑x + 2∑xy = 144 CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 2 + 2 3− ( 2 sin x −3 sin x +1) 2 x −3 sin x +1) =9 =t 8 =9 t ⇒ t2 – 9t + 8 = 0 ⇒ t = 1, 8 ⇒ 2sin2x – 3sinx + 1 = 3 Page # 2 or 2sin2x – 3sinx + 1 = 0 ⇒ sinx = − ∆AOB = 1 1 , sin x = , sin x = 1 2 2 ⇒ | t1 t2 (t1 – t2) | = 20 ⇒ | (t1 – t2) | = 5 6.[B, C] Q a > 2 Also Now ⇒ t1 = ± 4 or ± 1 8ax >0 a−2 ∴x>0 A ≡ (16, 8) or (16, –8) as a > 2 2 or (1, 2) or (1, –2) 2 x + 15a 8ax = a−2 a−2 2 Column Matching : 2 ⇒ x – 8ax + 15a = 0 ⇒ (A) → (T), (B) → (S), x = 3a, 5a (C) → (P), (D) → (Q) ∴ x = 9 (given) (A) domain of f(x) is (1, 3] ⇒ x = 3, 1. 9 5 ∴ integers in the domain are 2 and 3 Hence probability = 1/2 But a > 2 7.[C,D] 1 2 | t1 – 2t2 – t22 – 2t1| = 20 2 (B) ∴ a=3 at a = 3 ⇒ x = 9, 15 x2 → x 0, 2, 4, 6, 8 ∴ Probability = S1 = 1, S2 = 23 ⇒ A & B are not true S 2 − S1 = 22 4 (C) 9(S2 – S1) = 198 Hence C & D are correct. 2 2 × 0, 4, 6, 6, 4 2 5 3 2 7 = 1 35 2 2 2 8. [B, D] (D) Rectangles can be of sizes α α α |A(α)| = α α α = 0 α α α 1 × 1, 1 × 2, 1 × 3, ………..1 × 8 = 8 numbers 2 × 2, 2 × 3,……….. 2 × 8 = 7 numbers 3 × 3, 3 × 4,………….3 × 8 = 6 numbers ∴ A–1 does not exist. α Now A (α) = 3 α 2 α 2 2 2 2 2 8 × 8 = 1 numbers α 2 α 2 α 2 α 2 Total rectangles = 1 + 2 + 3 + …. + 8 = 36 2 α α2 ∴ Required probability = 2 A (a) = 3A(α ) ⇒ A (1) = 3A(1) ⇒ A3(1) = 3A2(1) ⇒ A3(1) = 9A(1) 9.[A, B, C, D] A(t1) & B(t2) ∠AVB = 90° 2. 8 2 = 36 9 (A) → S, T, (B) → R, (C) → S, (D) → P,Q 2 2 = – 1 ⇒ t1 t2 = – 4 . t1 t 2 f(x) = (x + 1)3 – 3α(αx + 1) + 2α2 f′(x) = 3(x + 1 – α) (x + 1 – α) Q g(x) = f(x).f ′(x) CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Q f′(x) = 0 for two distinct values of x so Page # 3 g(x) has atleast three roots f(α – 1) –α(α – 1) (α – 3/2); f(–1 –α) = α(α + 3)(2α – 1) (A) Q g(x) has atleast three roots So A∈φ (B) so 2.[1] Equation represents parabola. 3.[3] Rank is 2710 4.[4] apply B can be anything. R1 → R1 – R2 R2 → R2 – R3 g(x) = 0 has five solution then 1 −1 0 0 1 − 1 = 1([z] + 1 + [y] ) + 1⋅([x]) [ x] [ y ] [ z ] + 1 f(x) should have three solution 1–α = [x] + [y] + [z] + 1 –1–α Maximum value = 2 + 0 + 1 + 1 = 4 α∈ (–∞, –3) ∪ (1/2, 1) ∪ (3/2, ∞) (C) Let X = x 5.[3] So f(–1 – α) f(1 – α) × 0. 1 1 + lny lnz . 1 1 + y lnz lnx 1 1 1 1 ⇒ ln X = ln x + (ln y) ln y + ln z ln z + ln x When f(1 – α) = 0 or f(–1 – α) = 0 (D) 1 1 (ln z) + + ln x ln y g(x) = 0 has at most three solution if Now given ln x + ln y + ln z = 0 ∴ ln x ln z =–1 + ln y ln y similarly f(1 – α) . f(–1 –α) > 0 Numerical Response ∴ R.H.S. = – 3 ∴ ln X = – 3 X = e–3 → → 1.[4] a . b = 0 ⇒ sec α . cos 5 α + 1 = 0 6.[2] ⇒ cos 5 α = – cos α Let α is common root α3 + a α – 1 = 0 ……(i) ⇒ 5 α = 2nπ ± (π – α) …..(i) cos α ⇒ cos α > 0 ⇒ α is in I and IV quadrant 2 ln y ln z =–1 & + ln x ln x ln x ln y =–1 + ln z ln z So α∈(–3, 1/2) ∪ (1, 3/2) Condition (i) & α4 + a α2 + 1 = 0 ……(ii) Multiply equation (i) by α & subtract from (ii) ∴ α = –1 2 (ii) ln (2πα – α ) ⇒ 2πα – α > 0 ∴ put in (i) ⇒ α ∈ (0, 2π) ⇒ a = –2 so α = . z 1 1 + lnx lny π π 7 π 11π , , , 6 4 4 6 hence 4 solutions CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Page # 4 7.[4] eˆ2 = 6 tan α –1 tan α = tan–1 + tan 2 8 + 2 tan α 4 eˆ2 = − 2 Q 3 tan α < 1 16 + 4 tan 2 α 4.[A] 3 a= 2 2 iˆ + ˆj 3 2 2 iˆ − ˆj − kˆ 3 2F where M is mass of rod. M 3F – T = Q cot4x – 2(1 + cot2x) + a2 = 0 − FNet = 3F – F = 2F = tan–1 (tan α) = α 8.[0] iˆ + ˆj − kˆ 3 sin 2α –1 tan α tan–1 + tan 4 5 + 3 cos 2 α cot4x – 2cot2x + a2 – 2 = 0 M × x×a L T (cot2x – 1)2 = 3 – a2 3F x to have at least one solution 3 – a2 ≥ 0 ∴ a ∈ [– 3 , 3 ] 3F − T = ∴ integer values of a = – 1, 0, 1 M 2F × x× L M ∴ sum = 0 x O PHYSICS 1.[C] P1 + T = 3F − 1 1 ρv12 = P2 + ρ2v22 2 2 = TL = ∆L AY 1 ρ(v22 – v12) 2 P1 – P 2 = L ∴ Total extension 1 ρ(16 – 4) = 6ρ 2 1 P1 + ρgh1 + + ρg (h2 – h1) + ρv32 2 2 Fx L = 5.[A,D] 3FL FL 2 FL − = AY AY YA A 30º (1) (3) 1 1 6P + ρv32 = ρv42 2 2 30º 60º (2) 28 B 2.[B] 3.[D] Fx dx 0 1 = P2 + ρgh2 + ρv42 2 v4 = ∫ 3F − L AY On mirror B light fall normally, thus light retrace and reflect at mirror A. Total no. of reflection is 3. eˆ2 = eˆ1 − 2(eˆ1.Nˆ ) Nˆ eˆ1 = iˆ + ˆj − kˆ 3 iˆ + ˆj Nˆ = 2 Deviation of light is π. 6.[A,B,D] When block was floating upthrust is equal to weight of block. When it is pressed upthrust become more than weight and force required to press block = upthrust – mg. CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Page # 5 Work done by force F will be equal to work done against (upthrust – mg). It mean work done is equal to work done against upthrust – loss of potential energy of block. Option-(D) : Volume and temperature is increasing V = aT – b PV = nRT P(aT – b) = nRT 7.[A,B] nRT nR = b aT − b a− T P= 8.[A,C] 9.[A,B,D] En = − 13.6Z 2 as T will increasing P will decrease. eV/atom n2 For Z = 2, E1 = – 54.4 eV 40.8 eV is the difference between two energy levels n = 2 and n = 1. Also from ground state the electron cannot fall and hence cannot emit photon. – E = k and E = 1. 2. A 12Ω 1.[4] 24Ω C1 12Ω C2 24Ω B ∠AC1B = 120º U 2 AC1 = AC2 A → P,Q,S; B → P,R,S; C → P,S,T; D → P,Q,R,S,T A → Q,R,T ; B→P; C → R,S ; D → Q,R,S = C1C2 = radius resistances of four sections are 24, 12, 12 and 24Ω equivalent resistance = R across AB 1 1 1 1 1 = + + + R 24 12 12 24 Option-(A) : P is decreasing and volume is increasing ⇒ R = 4Ω P = – aV + b power = PV = nRT (– aV + b) V = nRT T=– 60º 60º60º 2.[2] 20 2 400 = = 100 watt R 4 v 2 aV bV + nR nR 20 2 45º u T/V graph is parabola ∴ T first increase and then decrease. Option-(B) : Pressure is increasing and temperature is constant. energy conservation 40 = PV = nRT v2 = 400 (aT + b) V = nRT v = 20 CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 1 1 mu 2 = m × 10 × 20 + mv 2 2 2 v 2 sin( 2 × 45º ) 10 P = aT + b bV b T= = nRT − aV nRT −a V as T is increasing V will increase. 20 A Option-(C) : Pressure and temperature is increasing bV = nRT – aTV B 1 2 1 u = 200 + × 400 2 2 u2 = 400 + 400 u= 800 = 20 2 Page # 6 5.[3] mg sin 37º 3.[3] Mg sin 37º λ = 0.5 2 mg cos 37º mg 37º λ = 1Å C A We can say Mg cos 37º E= Mg p2 2m 37º h E= λ 2m As system is in static equilibrium, moment of forces acting on the system is zero. 2 Moment about C = 0 Mg sin 37º × R + mg sin 37º × R 6.[3] Plane make angle θ with horizontal R = mg cos 37º× R m = 3 kg Considering normal forces 170g ⇒ N Mg cos 37º + mg cos 37º θ = 32 Newton Considering force along the plane F = Mg sin 37º + mg sin 37º µmin = 4.[1] 8 15 R = 170 g cosθ = 24 Newton F ≤ µN ∴ µ ≥ tan θ = F , N 24 3 = 32 4 R = 1500 N Force on friction on A = 1500 × 0.2 = 300 N Force on friction on B = 1500 × 0.4 = 600N For cylinder A process is isobance while for B, it is isochoric For A, QA = nCp ∆TA For B, QB = nCv ∆TB Given QA = QB n Cp ∆TA = n Cv ∆TB ∆TB Cp = = 1.4 = 1 ∆TA Cv Considering the two blocks as a system the net force parallel to the plane = 2 × 170 g sin θ – 300 – 600 = 1600 – 900 = 700 N acceleration = 700 35 m/s2 = 340 17 170g sin θ – 300 – P = 170 × 35 17 ⇒ P = 150 N (P is pull on bar) CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Page # 7 7.[2] m2 m1 θ l x x + y + x 2 + l 2 = constant 1 dx dy dx + + × 2x =0 dt dt 2 x 2 + l 2 dt dx = velocity of m2 = v dt dy = velocity of m1 = – 3 dt v −3− v =0 2 v = 2m/s 8.[3] Magnetic induction of origin is due to one semi finite wire and two quarter circle of radii R and 2R. CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Page # 8
© Copyright 2026 Paperzz