J
.1
I
I
I
J
1
t\
Volumeof Prlsms
The volune (V) of an objectis the amount of spacethat a solid
contains.Volume is measuredin cubic units.
llre volumeof any prism can be found by multiplying the
measuresof the area of the base(B) and the height (h).
Erample:Find the volurneof the prisrn at the right
V : Bh
A
Thcbar tr r tr|rngb.
: /l t fO x fZ) x fS
\2
|
| ! l15m
rhc alcr of r rrtanstc
1/*'12m
;i ;;;;--
10m
:6 i 0x 15
'
: 900
Ttre volune is 900 m3.
Fird AE volumeof eh
6m
E+ o
Nrsnr.
.2.
0.6 km
o'8km
4u"
lJ"
7'
eOxr S- _ \
z,\lr\
6.
IL
). q . t z
3cm
's!
1 2c m
5 in.
qo
5{-3 '
fl::
21 .n^
M
\bZ c'^3
'4\'
14cm
zr,t+
350.^ t
I
i
l, rn
I ,,'^'...I
L"
I
/\'1
A
3
,.]'"
v
3cm
t'
3
4cm
e
/,il" A Aft,:"
q!-',,*.,*r.u:^
8'
3:c)
o.\.{{ L.3
9cm
\25i'"3
q
! .26.
z
A15km
L,'h.f' *'
20km
)- ---- -+--
rZo,..3
4'
3.
0.3 km
"J
BG
36x(z:
4BZyv3
( tu v
4 Bcu
(t
SurtaceAreaof Prisms
Ib find the surface anea,find the area of eachsurface.Ttren add
the areas.
R€ctangular hism
Ttiangular kism
5cm
5cm
Area:
Top and bottom: 2.(5.3)
30 crnz
2-(2.5)
20 cmz
2.(2-3)
L2 cmf
Front and back:
* Tfvosldes:
62 wf
Total surface aroa
2.
z9.2 cm
I
I
22.
/TI7FV
*t.o>
3.
t-/
3.1fr
Vo
1a9.oB
I
I
I
4 in.
4. Ttre baseof a triangular prism is a right hiangle
with a height of L2 inchesand a baseof 5 inches.,"
Find the area of ttris triangle.
i '5'tz = 3c) l^z
5 in'
-,r,-\
-/\
2ZO '^
5
44
tz- ttr ts, t;-,.S.
of thetriangularprismyou
| 9f
L
N,4
5. Sketchthe triangular prism describedin Exercise4
\)eeo
)ro
<o
using 15 inchesfor the length of the prism.Write 'J
^
-? the dimensions
of the three rectangular
dimensionso.f
rectangularsides.
B'\ ..oa
\$e
rs r
havedrawn. 3o + 9e'
1 0i n .
50
at}{$ta
d SOg c"..2
l3 \5
6. Findtfr" ,urdf*a
+Lo
7.4tt
9.2cm
501'B *
9'
72 crf
4.2n
-
9.2cm
(tS
ryr}
'3'4)
,.(;
Total rurface arla
)----+-
.'- -l--.
,
20 qrf
15 crn2
25 cmf
L2 cmz
4.5
3.5
5.5
ol enchr*tangular prlsm.Roundto tp
Findthe Wa
nearesrwffimoen
1.
Area:
Top:
Front:
Bottom:
* fUo rldes:
+ tSor - lS
3 5\O
-/\
,"M
\
[-\,/tt
5
i^ , 2
113
Glencoe Division. Macmillan/McGraw-Hill
T
g
Volumeof Cylinders
The area of one layer is
the sameas the area of
the base.(The baseis a
circle.)
The volume of a cylinder
is the area of 1 layer
times the number of
layers.
V : B h o r V : rfh
The number of layers is
the same as the height.
B:tl
Find the volume of each cyllnder.Round de+lmalanswers to lhe
(
nearesttenth.U* o = 3.14.
.t,
.h)
8 in.
30 ft
3.
2.
o
r. 9
",kh
I l,s
.,::
tjj
I
b
tos"-.'-
b.A
tl
16 in.
B = 7@ t f
\- ?4cm
\,
2 t , Oo O Sr 3
'N.8"'ro
B= 7m z
t 5\q
3,Z\b.bG
3 3,2*\5.$ in
h
5.
7.
crn
,4 ffr
,--,,
(
.J1
f-,1
I
I
I = 3m2
B = 7Ocm2
- t o. q
(o3Oc.'.'R
tl
3-B
Zt\
s \.,b\q .8 c"'.'
8. .-<5"
r
l{.
le'
It 52.\ G
"j
* r{b2.2
GlencoeDivision,Macmillan/McGraw-Hill
L9
I
lh
|
|
' tl
10cm
\,
t{ ' 5". 16
--'
bb.*,.S
'lY . {". g
117
a.
\
\/
,-.3
.-t (o
l.'
r\
\g
z
'Tt.\\ . -l
*...s
Name
Date
SurfaceAreaof Cylinders
6f
A=rx78
A = l5llt6
A- lil
C = 2rt
rr - 3.1f
C = 43.96
C- A
A=lxw
A=44x71
A=616
14 in.
Tbtal surfacearea
til
tu
+ 616
about 924 square inches
Use lDe flgure at the rlght.
l. Label the dimensioruof the
rectangle and the two circlea
e F'ind the area of the rectangleand of
eachcircle.
il"U-5i-\
,-.t €oct^ ci.ctre: -18.5,.^2
3. Find the surfacear,eaof the cylinder.
2 ( 1 8 .5)
\ bbA.. z
+ 3\.q
FIndtlre surfae atenof eachcyllnder.Roundas ln the
5.
18.7mm
2
13m
\lo't
{
z
il64\l
-l rt.92-
.,*.J
H 8\2*..^z
F B,\'
7. Sketch the following two cylinders in the spaceat the right.
Cylinder A has a radius of 5 cm and a hgight of l0 crn
ro
Cylinder B has a raditrs of 10 crn and a height of 5 cm-
q
-:
-1
I
8. hedict whether cylinder A o(ytin-aerlviil
havethe greater
surfacearea.Ttren computethe-surFiceareasto seeif you
predictedconectly.
A= ^rrt c...1
S'grlZco,ra
114
GlencoeOhdsin, Macnrilhn/McGraw-llil
t
'I
© Copyright 2026 Paperzz