Worksheet 13 Limits and Their Properties Review 1 ⎛ sin 5x ⎞ lim ⎜ ⎟ x→0 ⎝ cos 4 x ⎠ 2 ⎛ sin 2 3x ⎞ lim ⎜ 2 x→0 ⎝ x cos x ⎟ ⎠ 3 ⎛ ⎞ ⎜ sin 5x ⎟ lim ⎜ x→0 1 ⎟ ⎜⎝ sin x ⎟⎠ 3 1 + sin x limπ x→ 1 − cos x 4 ⎛ x ⎞ lim ⎜ ⎟ x→0 ⎝ tan x ⎠ 6 cos 2x x→∞ x2 7 ⎛ 6x 3 − 5x ⎞ lim ⎜ 2 x→∞ ⎝ x − 3x ⎟ ⎠ 8 ⎛ 4a 2 − x 2 ⎞ lim ⎜ x→b ⎝ 2a + x ⎟ ⎠ 9 8x 3 − 5x x→−∞ x 2 − 3x 4x 3 − 32 lim 2 x→2 5x − 20 4 ⎛ x⎞ lim sin ⎜ ⎟ x→0 x ⎝ 5⎠ 10 x2 + x4 x→∞ x 2 + x 6 5 lim− x→4 x − 4 2x − 2 x→2 x − 4 Write an equation of the line perpendicular to 3x − 4y = 12 that passes through the point ( −3,1) . 16 5 2 11 13 15 17 lim 12 14 lim+ 18 lim lim 4x 3 − 5 x→1 5x 2 − 6 8x 2 − 2x 3 lim x→∞ 2x 2 + 4x lim ⎧ x 2 − 4, x ≤ −3 ⎪ Graph f ( x ) = ⎨ x + 3, −3 < x < 2 ⎪−x + 2, x ≥ 2 ⎩ Use the following graph of f ( x ) to answer the next five questions. 19 lim+ f ( x ) x→1 20 lim− f ( x ) x→1 21 lim f ( x ) x→1 22 lim f ( x ) x→−1 23 lim f ( x ) x→2 Use the graph of f ( x ) below to answer 24 a-c 24 a) Use the 3-part definition of continuity to show if f ( x ) is continuous at x = 3 24 b) What type(s) of discontinuity are shown in the graph of f ( x ) ? 24 c) Is there is a removable discontinuity? If so, assign a value to remove it. 25 26 27 28 ⎧2x − 1, x ≤ 1 If f ( x ) = ⎨ , use the definition of continuity to show if f ( x ) continuous at x = 1. ⎩−3x + 1, x > 1 ⎧ x 2 + 6x + 8 , x ≠ −2 ⎪ If f ( x ) = ⎨ x + 2 , use the definition of continuity to show if f ( x ) continuous at x = −2 . ⎪2, x = −2 ⎩ x3 + 8 , use the definition of continuity to show if f ( x ) is continuous at x = −2 . x+2 x 3 − 64 When f ( x ) = , then f ( x ) has point discontinuity. Assign a value to f ( x ) that removes the discontinuity. x−4 NOTATION!! If f ( x ) = Answers: 1. 0 2. 9 3. 15 8. 2a − b 9. −∞ 10. 0 15. -1 16. 22. 2 23. 1 ∞ 17. y − 1 = − 4. 1 5. 2 12 5 18. Graph below 11. 4 ( x + 3) 3 18. 6. 0 12. −∞ 19. 1 3 2 14. 1 7. 4 5 20. -2 13. 21. DNE 24.a) I. f ( 3) = 3 II. lim f ( x ) exists ⎡⎢ lim− f ( x ) = lim+ f ( x ) = 2 ⎤⎥ x→3 ⎣ x→3 ⎦ x→3 III. f ( 3) ≠ lim f ( x ) x→3 ∴ f ( x ) is not continuous at x = 3 24. b) removable at x = 3 , non-removable at x == 1 24. c) f ( 3) = 2 25. I. f (1) = 1 26. I. f ( −2 ) exists ⎡⎣ f ( −2 ) = 2 ⎤⎦ II. lim f ( x ) DNE ⎡⎢ lim+ f ( x ) = 1 ≠ lim_ f ( x ) = −2 ⎤⎥ x→1 ⎣ x→1 ⎦ x→1 ∴ f ( x ) is not continuous at x = 1 II. lim f ( x ) exists ⎡⎢ lim+ f ( x ) = lim− f ( x ) = 2 ⎤⎥ x→−2 ⎣ x→2 ⎦ x→2 III. f ( −2 ) = lim f ( x ) = 2 27. I. f ( −2 ) DNE ∴ f ( x ) is continuous at x = −2 28. ( x − 4 ) x 2 + 4x + 16 x 3 − 64 lim = lim = lim x 2 + 4x + 16 = 48 x→4 x − 4 x→4 x→4 (x − 4) ∴ f ( x ) is not continuous at x = −2 x→−2 ( f ( 4 ) = 48 ) ( )
© Copyright 2026 Paperzz