Unit 3: Expressions and Equations Lesson 1: Solving Quadratics Graphically/Solving Quadratics by Factoring (P3) Special Factoring Patterns Pattern Name Pattern Example Difference of Two Squares 5) 64x2 - 81 7) 49n2 - 64 6) 9b2 - 49 8) 16x2 - 9 9) 7x2 – 343 10) 125x3 - 245x 11) 10x2 - 90 12) 324x3 - 4x Special Factoring Patterns Pattern Name Pattern Example Perfect Square Trinomial 13) 9x2 - 30x + 25 14) 4x2 + 4x + 1 15) 100x2 + 160x + 64 16) 20x3 - 60x2 + 45x 17) 16x2 - 40x + 25 18) 16v2 + 24v + 9 19) 9a2 - 24a + 16 20) 25k2 - 10k + 1 21) 4b3 + 24b2 + 36b 22) 125n3 + 100n2 + 20n 23) 32n2 + 48n + 18 24) 16x2 - 48x + 36 Solving Quadratics Graphically 1. Solving quadratic equations like 3x2 − 15 = 0 and 3x2 − 15x = 0 locates the x-intercepts on the graphs of quadratic functions y = 3x2 − 15 and y = 3x2 − 15x . a. Using the graphs above, explain how the symmetry of these parabolas can be used to relate the location of the minimum (or maximum) point on the graph of a quadratic function to the x-intercepts. b. Write your solutions from Problem 2 on the lines provided. Then find the coordinates of the vertex point on the graphs of these quadratic functions. i. y = x2 + 4x x = ____ , _____ ii. y = 3x2 + 10x x = ____ , _____ iii. y = x2 − 4x v. y =− 2x2 − 6x vii. y = x2 − 2x − 3 x = ____ , _____ x = ____ , _____ x=_____,_____ iv. y =− x2 − 5x x = ____ , _____ vi. y = x2 − x x = ____ , _____ viii. y = x2 + 5x + 4 x = ____ , _____ Check for Understanding… Solve the following graphically. 1) 4x2 − 12x = 0 2) x2 + 2x = 0 3) 5x2 − 20x = 0 4) x2 + 5x + 6 = 0 5) x2 + 1x − 6 = 0 6) x2 + 4x + 3 = 0 Solving Quadratics by Factoring You can use factoring to solve certain quadratic equations. A quadratic equation in one variable can be written in the form of form of the equation. If the left side of be solved using the zero product property. Zero Product Property Solving Quadratic Equations 25) 26) 27) where . This is called standard can be factored, then the equation can 28) 29) n2 + n = 42 30) p2 + 28 = -11 p 31) 35a2 + 48 = -86a 32) 14x2 - 27x = -9 33) -b2 + 40b + 31 = -3b - 6b2 + 7 34) 7 p2 - 17 p + 2 = -2 p
© Copyright 2025 Paperzz