Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus I March 24, 2016 Quiz 14 The functions f and g are given by f (x) = tan x and g(x) = 3 . 2x − π Evaluate the following limit lim π − x→( 2 ) f (x) . g(x) Recall: L’Hopital’s Rule Let f and g be differentiable on an open interval I containing a with • • lim f (x) = 0 (resp. lim f (x) = ±∞ ) lim g(x) = 0 (resp. lim g(x) = ±∞ ) x→a− x→a− x→a x→a • g 0 (x) 6= 0 when x 6= a, then f (x) f 0 (x) = lim 0 − g(x) g (x) x→a lim x→a− Since lim tan x = ∞ π − and x→( 2 ) lim π − x→( 2 ) 3 = −∞ using 2x − π L’Hopital’s Rule we have lim π − x→( 2 ) f (x) = g(x) = lim π − x→( 2 ) lim x→( π2 )− tan x L’Hopital’s Rule = lim π − (tan x)0 0 3 3 x→( 2 ) 2x−π 2x−π 1 (2x − π)2 cos2 x Simplify = lim −6 x→( π2 )− −6 cos2 x (2x−π)2 since • • lim (2x − π)2 = 0 x→( π )− 2 lim (−6 cos2 x) = 0 x→( π )− 2 • (−6 cos2 x)0 = −6 · 2 cos x sin x, and −6 · 2 cos when x 6= π2 , using L’Hopital’s Rule we have lim π x→( 2 )− = lim π − x→( 2 ) π 2 sin (2x − π)2 ((2x − π)2 )0 = lim 2 2 0 π −6 cos x x→( 2 )− (−6 cos x) ((2x − π)2 )0 2(2x − π)(2x − π)0 = lim x→( π2 )− −6 · 2 cos x(cos x)0 (−6 cos2 x)0 π 2 6= 0 = lim π − 2(2x − π) · 2 −6 · 2 cos x(− sin x) lim π − 4(2x − π) 6 · 2 cos x sin x lim π − 4(2x − π) 6 sin 2x lim π − 4 (2x − π) 6 sin 2x x→( 2 ) Simplify = x→( 2 ) 2 cos x sin x=sin 2x = x→( 2 ) = x→( 2 ) = 4 (2x − π) lim 6 x→( π2 )− sin 2x since • • lim (2x − π) = 0 x→( π )− 2 lim x→( π )− 2 sin 2x = 0 • (sin 2x)0 = cos 2x · (2x)0 = 2 cos 2x, and 2 cos(2 π2 6= 0 when x 6= π2 , using L’Hopital’s Rule we have lim π x→( 2 )− = = = = (2x − π) (2x − π)0 = lim 0 sin 2x x→( π )− (sin 2x) 2 4 4 (2x − π)0 2 lim = lim 6 x→( π2 )− (sin 2x)0 6 x→( π2 )− 2 cos 2x limx→( π2 )− 2 4 6 limx→( π2 )− 2 cos 2x 4 2 4 · =− 6 −2 6 2 − 3 2 (since lim x→( π )− 2 π 2 cos 2x = 2 cos(2 ) = −2 6= 0) 2
© Copyright 2025 Paperzz