Vectors: A = Ax xˆ + Ay yˆ + Az zˆ A = A = Ax2 + Ay2 + Az2 ( C y = A y + By C = A + Bx x x A ⋅ B = Ax B x + Ay B y + Az B z = AB cos θ Kinematics: Constant acceleration: ) 1 2 a aˆ = a Cz = Az + Bz r = xxˆ + yyˆ dr v= = vx xˆ + v y yˆ dt dv a= = ax xˆ + a y yˆ dt ∆r = rf − ri ∆r < v >= ∆t ∆v < a >= ∆t 1 x = xo + voxt + ax t 2 2 Earth’s gravity: g = 9.8 m/sec2 vx = vox + axt vx2 = vox2 + 2ax ( x − xo ) < vx >= Uniform circular motion: v2 ar = r Quadratic formula x= v f + vi x − xo =< vx > ∆t 2 − b ± b 2 − 4ac 2a Newton’s 2nd Law Fx = max Friction Ff = µN Restoring Force (Hooke’s Law) Fs = k(l - lo) Fy = may Fx = kx 5 Fz = maz Work & Energy Mechanical Energy Impulse & Momentum Rocket Universal Gravitation W = F⋅d⋅cos(θ) Wtotal = ∆K; Wconservative = -∆U ∆Ug = mg∆y or U = mgh E=K+U ∆E = Wnonconservative = ∆I J = F ⋅ ∆t = ∆p p = m⋅v vector version dv dm Fext = m +V dt dt dm >0 dt Fg = G⋅M ⋅m r2 G = 6.67 × 10 −11 N ⋅ m2 kg 2 6 1 2 mv 2 1 2 k (l − l o ) 2 1 = kx 2 2 ∆U spring = ∆U spring No external force : p final = p initial one dimensional as in the text dm ve > 0 ; <0 dt Ug = − K= G⋅M ⋅m r Fext , x = m ve = dv x dm + ve, x dt dt 2GM R
© Copyright 2026 Paperzz