3 Differential Calculus Contents Section ..................................................................................................................................... Page 3 Differential Calculus ................................................................................................................... 1 3.1 Differentiation from First Principles ......................................................................................... 3 Note 1 – Differentiation from First Principles............................................................................. 3 Definition 2 – Differentiable ....................................................................................................... 4 Example 3 – Differentiation from First Principles ...................................................................... 5 Further Examples ..................................................................................................................... 5 Note 4 – Limits .......................................................................................................................... 6 Note 5 – Two Useful Limits ....................................................................................................... 6 Example 6 – Differentiation from First Principles ...................................................................... 6 Note 7 – Standard Derivatives .................................................................................................. 7 Further Examples ..................................................................................................................... 7 3.2 Sums and Differences Rule .................................................................................................... 8 Definition 1 – Sums and Differences Rule ................................................................................ 8 Example 2 – Sums and Differences Rule ................................................................................. 8 Further Examples ..................................................................................................................... 8 3.3 Chain Rule.............................................................................................................................. 9 Definition 1 – Chain Rule .......................................................................................................... 9 Example 2 – Chain Rule ........................................................................................................... 9 Further Examples ................................................................................................................... 10 3.4 Product Rule ......................................................................................................................... 11 Definition 1 – Product Rule ..................................................................................................... 11 Example 2 – Using the Product Rule ...................................................................................... 11 Example 3 – Using the Product Rule to find the Gradient at a Point ....................................... 11 Further Examples ................................................................................................................... 11 3.5 The Quotient Rule ................................................................................................................ 12 Definition 1 – The Quotient Rule ............................................................................................. 12 Example 2 – Using the Quotient Rule ..................................................................................... 12 Further Examples ................................................................................................................... 12 3.6 Derivatives of sec x, cosec x, cot x and tan x ....................................................................... 13 Definition 1 – The derivative of sec x ...................................................................................... 13 Definition 2 – The derivative of cosec x .................................................................................. 13 Definition 3 – The derivative of tan x ....................................................................................... 14 Definition 4 – The derivative of cot x ....................................................................................... 14 Page i Contents Note 5 – Derivatives of Trigonometric Functions .................................................................... 15 Example 6 – Derivatives of Trigonometric Functions .............................................................. 15 Further Examples ................................................................................................................... 15 3.7 The Derivatives of Exponential and Logarithmic Functions .................................................. 16 Definition 1 – The Derivative of ex........................................................................................... 16 Definition 2 – The Derivative of ln x ........................................................................................ 16 Example 3 – Finding the Derivatives of Exponential and Logarithmic Functions .................... 17 Further Examples ................................................................................................................... 17 3.8 Higher Derivatives ................................................................................................................ 18 Note 1 – Higher Derivatives .................................................................................................... 18 Example 2 – Higher Derivatives .............................................................................................. 19 Note 3 – Continuity of Higher Derivatives ............................................................................... 19 Further Examples ................................................................................................................... 19 Page ii 3 Differential Calculus 3.1 Differentiation from First Principles 3.1 Differentiation from First Principles Note 1 – Differentiation from First Principles Differentiation is an important tool in maths used to find the gradient of a tangent to a curve for a given point. An approximation for the gradient of a curve is to use the gradient of a straight line y y1 m 2 where m is the gradient of the line and the points ( x1, y1 ) and ( x2 , y 2 ) lie on the curve. x2 x1 This approximation gives rise to: m y 2 y1 x2 x1 f ( x h) f ( x ) ( x h) x f ( x h) f ( x ) m h m y y y f ( x h) f ( x h) f (x) f (x) O x xh x O x xh x As h becomes smaller the approximation for the gradient m As h 0 the approximation f '( x ) lim h 0 O x f ( x h) f ( x ) improves. h f ( x h) f ( x ) f '( x ) . h f ( x h) f ( x ) . h The definition of the derivative includes the term h which represents a small change in x and is often referred to as the x increment denoted by δx . Similarly, f ( x h) f ( x ) represents a small change in y and is referred to as the y-increment denoted by δy . δy dy This gives rise to the notation f '( x ) lim dx . h 0 δx Page 3 3 Differential Calculus 3.1 Differentiation from First Principles Definition 2 – Differentiable A function f is differentiable at x if the limit f '( x ) exists as the point x is approached from the left (left differentiable) and the limit f '( x ) exists as the point x is approached from the right (right differentiable). If both limits exist and they are the same, then the function f is differentiable at x. y y y tan x y x2 O O π 2 x x The function y x 2 is not differentiable The function y tan x is not differentiable at O since the left derivative is negative and at the right derivative is positive. therefore the derivative is undefined at π 2 since there is a break in the graph, Note: The derivative f ' of a function f is called the derived function. Page 4 π 2 . 3 Differential Calculus 3.1 Differentiation from First Principles Example 3 – Differentiation from First Principles Find the derivative of each function below from first principles. (a) f ( x ) 6x (c) f ( x ) 5 x 3 2x 2 (b) Further Examples Maths In Action: Book 1 Page 29 Exercise 1A Page 5 f (x) 3 x 3 Differential Calculus 3.1 Differentiation from First Principles Note 4 – Limits 1. For f ( x ) c where c is a constant, then lim f ( x ) c . 2. lim kf (h) k lim f (h) where k is a constant. 3. lim(f (h) g(h)) lim f (h) lim g(h) . 4. lim(f (h) g(h)) lim f (h) lim g(h) . 5. f (h ) f (h ) lim h 0 lim for lim g (h) 0 . h 0 g ( h ) h 0 g (h ) lim h 0 h 0 h 0 h0 h0 h 0 h0 h0 h0 h0 Note 5 – Two Useful Limits For the purposes of finding the derivatives of certain function the following limits are required: sin h cos h 1 lim 1 lim 0. h 0 h 0 h h Example 6 – Differentiation from First Principles Find the derivative of f ( x ) sin5 x from first principles. Page 6 3 Differential Calculus 3.2 Sums and Differences Rule Note 7 – Standard Derivatives Generally, when differentiating a function it is simpler to use standard derivatives instead of differentiating from first principles. Three standard derivatives are: 1. d (ax n ) nax n 1 dx 2. d (sin ax ) a cos ax dx 3. d (cos ax ) a sin ax dx Further Examples Maths In Action: Book 1 Page 29 Exercise 1B Page 7 3 Differential Calculus 3.2 Sums and Differences Rule 3.2 Sums and Differences Rule Definition 1 – Sums and Differences Rule For the functions f and g which are differentiable let k ( x ) f ( x ) g( x ) , then k '( x ) f '( x ) g '( x ) . Proof k(x ) f (x ) g(x ) f ( x h) f ( x ) g ( x h) g ( x ) k '( x ) lim h 0 h h f ( x h) f ( x ) g ( x h) g ( x ) lim lim h 0 h h h 0 f '( x ) g '( x ) Example 2 – Sums and Differences Rule (a) Differentiate x 4 cos3x . (c) For y (b) 3 x 2 2x dy find . 2 x dx Further Examples Maths In Action: Book 1 Page 30 Exercise 2 Page 8 For f ( x ) x 3 6 x 2 find f '( x ) . 3 Differential Calculus 3.3 Chain Rule 3.3 Chain Rule Definition 1 – Chain Rule For g differentiable at x and f differentiable at g ( x ) , k is differentiable and k '( x ) f '(g( x )).g '( x ) for k f (g ( x )) . Proof Let u g ( x ) and t g( x h) g( x ) noting that t 0 as h 0 . Hence g( x h) g( x ) t u t . f (g ( x h )) f (g ( x )) f (u t ) f (u ) h h f (u t ) f (u ) t t h f (g ( x h )) f (g ( x )) k '( x ) lim h 0 h f (u t ) f (u ) t lim h 0 t h f (u t ) f (u ) t lim lim h 0 t h 0 h f (u t ) f (u ) g ( x h) g ( x ) lim lim h 0 t h h 0 f '(u ) g '( x ) f '(g ( x )) g '( x ) Example 2 – Chain Rule (a) Find the derivative of (3 x 4)10 . (b) Page 9 For f ( x ) cos3 x find f '( x ) . 3 Differential Calculus 3.3 Chain Rule (c) For y sin x find dy . dx (d) Further Examples Maths In Action: Book 1 Page 32 Exercise 3A Page 10 For y 5 dy find . 2 dx (1 6 x ) 3 Differential Calculus 3.4 Product Rule 3.4 Product Rule Definition 1 – Product Rule For the functions f and g which are differentiable and k ( x ) f ( x ).g( x ) then k '( x ) f '( x )g( x ) f ( x )g '( x ) . Example 2 – Using the Product Rule Find the derivative of the following functions. (a) x 4 cos x (b) ( x 2)2 (2x 3 1)2 Example 3 – Using the Product Rule to find the Gradient at a Point For f ( x ) x 2 cos x 2 , find f '( π3 ) . Further Examples Maths In Action Page 35 Exercise 4A/4B Page 11 3 Differential Calculus 3.5 The Quotient Rule 3.5 The Quotient Rule Definition 1 – The Quotient Rule For the functions f and g which are differentiable and k ( x ) k '( x ) f '( x )g ( x ) f ( x )g '( x ) . (g ( x ))2 Example 2 – Using the Quotient Rule Find the derivatives of the following functions. (a) x8 x2 7 (b) x 1 ( x 3)3 4 2 Further Examples Maths In Action Page 37 Exercise 5A/5B Page 12 f (x) then g( x ) 3 Differential Calculus 3.6 Derivatives of sec x, cosec x, cot x and tan x 3.6 Derivatives of sec x, cosec x, cot x and tan x Definition 1 – The derivative of sec x The secant function is the reciprocal of the cosine 1 function sec x and has the graph shown. cos x The derivative of sec x can be obtained through the quotient rule: d d 1 (sec x ) dx dx cos x 0 cos x 1 ( sin x ) cos2 x sin x cos2 x sin x 1 cos x cos x tan x sec x y 1 O 1 π 2 x 3π 2 Definition 2 – The derivative of cosec x The cosecant function is the reciprocal of the sine 1 function csc x and has the graph shown. sin x The derivative of csc x can be obtained through the quotient rule: d d 1 (csc x ) dx dx sin x 0 sin x 1 (cos x ) sin2 x cos x sin2 x cos x 1 sin x sin x 1 csc x tan x cot x csc x Page 13 y 1 O 1 π 2π x 3 Differential Calculus 3.6 Derivatives of sec x, cosec x, cot x and tan x Definition 3 – The derivative of tan x y The tangent function has the graph shown. The derivative of tan x can be obtained through the quotient rule: d d sin x (tan x ) dx dx cos x cos cos x sin ( sin x ) cos2 x cos2 x sin2 x cos2 x 1 cos2 x sec 2 x O π 2 π 3π 2 x 2π Definition 4 – The derivative of cot x The cotangent function is the reciprocal of the tangent 1 function cot x and has the graph shown. tan x The derivative of cot x can be obtained through the quotient rule: d d 1 (cot x ) dx dx tan x 0 tan x 1 (sec 2 x ) tan2 x sec 2 x tan2 x 1 sec 2 x tan2 x 1 cos2 x cos2 x sin2 x 1 2 sin x csc 2 x Page 14 y O π 2 π 3π 2 2π x 3 Differential Calculus 3.6 Derivatives of sec x, cosec x, cot x and tan x Note 5 – Derivatives of Trigonometric Functions d sin x cos x dx d cos x sin x dx d tan x sec 2 x dx d csc x csc x cot x dx d sec x sec x tan x dx d cot x csc 2 x dx Example 6 – Derivatives of Trigonometric Functions Find the derivatives of the following functions: (a) cot(5 x ) (b) sec x csc x (c) cot 2 (3 x ) Further Examples Maths In Action Page 40 Exercise 7 Page 15 3 Differential Calculus 3.7 The Derivatives of Exponential and Logarithmic Functions 3.7 The Derivatives of Exponential and Logarithmic Functions Definition 1 – The Derivative of ex The derivative of e x (also written as exp( x ) ) can be obtained from first principles. Let f ( x ) a x then f ( x h) f ( x ) f '( x ) lim h 0 h a x h a x lim h 0 h a x (a h 1) lim h 0 h a h 1 lim a x lim h 0 h 0 h a h 1 a x lim h 0 h ah 1 eh 1 When a e then lim lim 1. h 0 h h 0 h Therefore when f ( x ) e x then f '( x ) e x . d x e ex dx generally d x a a x ln a dx Definition 2 – The Derivative of ln x The derivative of the natural logarithm ln x (or loge x ) can be obtained via the chain rule. Since eln x x then deln x dx ln x e .d ln x dx d ln x dx d ln x dx dx dx 1 1 eln x 1 x d 1 ln x dx x generally Page 16 d 1 loga x dx x ln a 3 Differential Calculus 3.7 The Derivatives of Exponential and Logarithmic Functions Example 3 – Finding the Derivatives of Exponential and Logarithmic Functions Differentiate 3 (a) e9x (c) 4ln(2 x 1) e(3 x 2) (d) 5x (b) ln(sin x ) (e) log6 x Further Examples Maths In Action Page 43 Exercise 8A/8B Page 17 3 Differential Calculus 3.8 Higher Derivatives 3.8 Higher Derivatives Note 1 – Higher Derivatives Some functions can be differentiated more than once. The notation used for these higher derivatives is as follows: Function 1st Derivative 2nd Derivative ... nth Derivative f f' f '' ... f (n) y dy dx d 2y dx 2 ... dny dx n Continual differentiation of a polynomial will eventually lead to 0 e.g. y dy dx d 2y dx 2 d 3y dx 3 d 4y dx 4 x 3 6 x 2 4 x 12 3 x 2 12 x 4 6 x 12 6 0 Continual differentiation of a trigonometric function follows a pattern e.g. f ( x ) cos x f '( x ) sin x ( cos( x π2 )) f ''( x ) cos x ( cos( x π2 π2 ) cos( x π )) f '''( x ) sin x ( cos( x π2 π2 π2 ) cos( x 32π )) f ''''( x ) cos x ( cos( x π2 π2 π2 π2 ) cos( x 2π )) f (n) ( x ) cos( x nπ2 ) Page 18 3 Differential Calculus 3.8 Higher Derivatives Example 2 – Higher Derivatives Find the fourth derivative of y e x cos x . Note 3 – Continuity of Higher Derivatives For a function f which is continuous it is not necessarily true that all of the derivatives of f are continuous. Further Examples Maths In Action Page 46 Exercise 9A/9B Page 19
© Copyright 2026 Paperzz